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Some mathematical calculations of the
dimensions, weight, etc., of Earth,
Moon and Sun.

By Rzvp. A. C. Ripspare, M.A,, F.R.AS,,
(continued.)
Earth’s form.—

A true globe would not be compatible with rotation. Thus
measurements show that degrees of arc of the Earth’s cir-
cumference along & meridian arc of variable length. In
order to find the Earth’s ellipticity mathematically, we must
first measure the lengths of arcs along & meridian from
Equator to pole. Thence we can find their radii of curvature,
which are the radii of their osculatory circles, and hence
from the gvolute of their centres, we can assign by the princi-
‘ples of conig sectiong, the proportions as well as the actual
lengths of all these radii, and hence the Earth’s true form.

Fhus tf X T be any aro, and @ be a point on the Evolute
where the nermals of X and ¥ meet, and if  and ! represent
the latitudes of X and ¥ respectively.

Then the circular measure of XGY =ﬂ—-},§z
arc XY arc XY arc XY 182

o YG = cird. meaﬁ-, Of X@Y ?(y—.lk X% '-:—-‘zr__l) X"?
: 180

The Earth’s ellipticity = -‘T}"s&

The lengths of degrees of latitude vary: bebween
68-8 miles = 363,000 f4. at the Equator
and €9:4 miles = 368,000 £t. at the Poles.

An ellipse is shorter than its o i
st dﬁyﬁg?;y . r than itg mcum&m@ent gPhere‘ by half
Therefare, 1& meridian s shorber tham the Egwator biy

B . - BV
«« § meridian 24,900 xﬁagmﬂes,m length

=24,856} miles in length.

i
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Earth’s Ellipticity.—

Tet E = equatorial radius, and let P = Polar radius

then ellipticity = E—P _ 396339497

z 3963
133 i
3063 ~ 298 M
B_p B _p:

Edrtl's Eccentricity = ./ — = v —5
. (3963)'—(3949:7)°
3083
= 0826

The Earth’s form is the figure produced by the revolution of
the Ellipse about its mino¥ &xis, which is an oblate spheroid.

The other chief methods of astértaining thie form of the
Earth which we can only bdfely mention here, are the
dynamical methods of {1) calculating the value of the irre-
gularities ii the Moon’s motion that are due to the Earth’s
elliptical form, (about 8”), which works out at something

between éfﬁ' and ?lﬁ ; (2) caloulations from the varia~

tion of gravity at diff.ent points on a meridian ; and
(3) calculating the effeots of lani—solar nutation, from which
Hatkness indkes tH6 Barth's éliptisity to be 5= th. But thig
method is not very certain, as the distribution of the Earth’s
mmatter is not accurately known.

Eartk’s mass.—The best method for calculating the Barth’s
mass is by that of the *“ Torsion balance.” As I warged you,
however, 1 cannot enter into the details as to how the prac-
tical experiment is carried out. Any elementary text-book
of asticmonty WEF éxplafy tHab. The mathesvdlest Privvoiple
oF the calowdtiol? M Shmply that wé compsls 6 dnd
wBE o large Hall, Of knowr midsd and raditty, ¥ $b16 bo afidct
@ ginld Body, & compared with the axiouwf theé BarfR &
dhle to 2itedot 19, or it other words its welght. Y6 &

nefitios dalould¥ion. The ratio Wil be proporfionst 6

et Yeffoolive mamsed; afid inversely proportioral to fhe

dponre of thely ridii. ‘
Thus if # = Barth’s ass required, and a_= amount of

attraction of large ball, and @ =that of the Farth, and r =
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radius of large ball, and R =radius of Earth, and m =mass
of large ball the formula will be—

W R?
r =m X — X —
"] rt

The Earth’s mass can also be calculated by means of the
common balance.

If, for example, a small body when attracted by a large
one placed above it loses '00000001 of its weight, and the
large body is a globe of 1 foot radius, and weighs 3 cwt.

Let ¢ = weight of Earth (required) in tons

then 00000001 : 1 :: —— @oS00 00 tons
, - (20,800,002 x 15
. 00000001
_ 43,681 x 3 x 1018
50

= 6552 x 1018 tons, or 6552 trillions of tons
(a more accurate basis of calculations gives 5840 trillions}).

The result is indeed a little too large a quantity, because
we had supposed too large a loss of weight in.the experiment.

The mass of the Earth can also be calculated by the dyna-~
mical methods of—

(1) the position of the centre of gravity of Earth and
Moon, being = % the Sun’s angular displacement
at first and last quarters; their combined mass

being known from the orbital motion round
the Sun.

(2) by calculating the attraction of the superposed
masses of water which we call the tides.

The old mountain or ‘¢ Schehallien method > (as also the
mine experiment) is too inaccurate to yield results of any
value. The mathematical principle involved, is the measure-
ment of the difference between the geographical and astro-
nomical latitudes of two places, due to the attraction of the
known mass of a mountain between them. I need hardly
remind you that Mass is not strictly equivalent to weight.
Whilst Mass is & constant quantity, weight is a variable one,
because weight unlike mass is proportional to the variations

gravity, which is itself proportional to the square of the
wiree from the centre.
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The Density of the Earth—
mass 6 x 1021 . . .
= Solums = 59.850,000 tons ih 1 cubic mile.
=8,960 x 6,000,000,000,000,000,000,000 Ibs. i o f
359,850,000 x (1760 x 3)3 & in 1 cubic foot.
= 342 Ibs. in 1 cubic foot,
Specific gravity of Earth—

= pumber of lbs. in 1 cubic foot of Earth’s matter
divided by the number of Ibs. in 1 cubic foot of water.

2
= %% (since 1 cubic foot of water weighs 62} Ibs.)
= 5'472 (where water is unity).

I may add that, whilst 5'5 i¢ thé dénsity of the Earth as
a whole, or in other words its average density, only 26
is the density of the Earth’s surface. * Laplace calculates that
10-74 is the density of that portion of our globe which lies
within a sphere of 3,000 miles radius, and that is more than
four timés the surface density. The pressure towards the
centre of the Earth can thus be calculated as rather over
three million tons per square foot.

The surfaée gravity of Eorth—

Earth’s mass
(Bdrth’s radius)2
Weight of bodies on the Earth’s surfacé
Earth’s mass x body’s mass
=T (Earth’s radius)?

Owing to the so-called centrifugal force (whish would I
think be more accurately styled ‘ resistance to deviation )
gurface gravity on the Earth ig not a constant quantity. The
loss of gravity at the Equator, is the fraction represented by
the number of feet in the Earth’s radius; multiplied by the
square of the radius per mean Solar second (in feet), and
divided by the number of feet per second represénted by
gravity. . 2 b g

hus C = 14 472 R 1 4x2 R

=

Y 7 X =""p hence loss of
42 1
(864002 * 323

gravity = (3960 x 5280) x
'11127 1
324 T 289.

2 o
and since C = ZE ; if velocity be x 17 at the Earth’s equator,
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then C = (17)2 x present centrifugal forcé = 289 x present
centrifugal force, thus C = 289 x—g—;—g‘-g = lg. In this case
bodies at the Equator would weigh zero.

The weight then of & body is less at the Equator than at
the poles ( owing to centrifugal force) by gz th. At other
latitudes than at the Equator the centrifugal force O' =C

eos? ¢ ; ¢ represénting the angle of latitude. The tangential
component is given by the formula U! =C cos ¢ sin ¢.

There is another reason, however, why the surface gravity
&t the Equator should be léss than at the Poles, wiz., because
the radius is greater at the Equator than at the poles. And
gravity is reduced in the rativ of the square of the radius.
This works out to a loss of 2§ oz. on 100 lbs., represented by

. ~ {Polar r)2
the fraction % I— (oquatorial 77 } 100 Ibs.

That is, & body weighing 100 Ibs. 2§ oz. at the poles will
weigh 100 Ibs. at the Equator. In order to find the total
diminution of gravity at the Equator, the amount due to
centrifugal force and that due to increased radius have of
course to be added together, thus :—

1 1 1
(289 + 595-5) g = (about)—grg.

Variations of the gravitational force can also be dynamically
calculated in terms of a second’s pendulum.
Sinewt = J—é—-, and 12 ="'Z‘
thésefore g = 22 x longth of pemdulum (in feet) + 12

(= wnity ). In the latitude of Greenwich, such a penédulam
is 3% feet in length.

Gravity at Gréenwich = (2 x $:28) feet

= ( 986 x 325) feet

= 32:045 feet.
o | ““ per second per second,” which
niedns, of course, the velocity with which a body would con-
tinue to fall in perpetuurh, if gravity ceased to operate upon
1t after the first sécond. I wer take the two causes together,
a body weighing 194 Ibs. at the Pole will weigh 193 Ibs. at
the Eq_ua.tor, or an ordinary clock peﬂd'ul'ilm would Tose about
235 minutes in & day if transferred from Kondon to Singa-




MAY-JULY’ 14.] CALCULATIONS, &C., OF EARTH, MOON & ST 175

Lose of gravity due ta tide-raising forces,—

Lastly, it may be of interest to point out the loss of weight
incurred by a body on the surface of the Earth, when directly
under the Moon, or on the opposite side of the Earth from
the Moon. On geometrical principles (which are too elaborate
4o state here) it can he shown that directly wnder the Moon,
the tide-raising force wpon the body is 5 x Moon’s whale
attraction, And as the Moon's mags iz % x Earth’s mass,
and her distance is 60 x Earth’s radius, the amount of
diminution of gravity, under the Moon can be expressed
by the following formula, if d denotes the ratio of the Moon’s
distanoce to the Earth’s radius, thus—

Moon’s mass |

0 * Farth's mas ™ 90 &
« L ox. 1 1
¢ * 81 " 30 * 3600

= ........!'_.__. of it;
8,748,000 O 8ravily.

Thus the Moon’s tide-raising force om a body is less than
one eight-millionth of the Earth’s surface gravity. Similarly
the Sun’s tide-raising foxce also redwoces the Farth’s gravity,
when directly overhead or underfoot, And since the tide-
raising foree varies inversely as the eube of the distanc> (and
not as its square) the tide-raising force of the Sun worss out
at about 2’ of that of the Moon,

Hence the weight of a body when directly under th Sun

is dimipished b gz s x $th

1
~ 91,870,000

In other words a body which normally weighs 1,000 tons, |
Joses 1714275 o, when the Sun is overhead, or underfoot
that is at mid-day or mid-night.

But the tide-raising forces of both Sun and Moon, when
overhead, axe slightly gmeater than whem undexfoot, because,
when overhead, the xakio betweem the Kasth’s yadius and

their distances is slightly greater (especially im the case of the
Moon) than when underfoot.

Thus the Moon’s tide;raising force on a hody nearést to her

is x ‘0123
7 oy

th.
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but on a body farthest from her on the Earth’s surface is
x‘012?3
(61)2
the difference being 00000023 x g.
Finally, let me conclude my paper by venturing to remind

you of the following mathematical relations and differenecs ;
which are of the greatest importance in astronomy :—

That ever% atom in the Universe attracts every other
atorn, But that (for convenience sake) it is possible
to regard a homogeneous sphere as attracting from its
centre of mass.

Barth’s mass

(radius)?®

But that the weight of bodies at the Earth’s surface

= the above quantity x body’s mass.

That the attraction at the Earth’s surface =

That the aovelerating force on
M T % M = Mt

et = (Jistance M- M )2 gt Eil
and that the accelerating force on—

M x My My

i Y
e ~ (distance M .M 57 + M7 = ?l_’s
That the gravitational force between two bodies
M: x My

But that the relative acceleration between two bodies
M- + Ms.
= )
That accelerating foroe is a one-dimensional quantity, thus ;
mass (3 dimensional) .
distance * (2 dimensional)
But that weight is a four-dimensionsal quantity, thus;

mass (8 dimensional) x gravitational force
{1 dimensional).

That gravitational force on Mz (r),

But that tidal force on M3 = (r.).%
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