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ABSTRACT

Context. Identification of metal-poor stars among field stars is extremely useful for studying the structure and evolution of the Galaxy
and of external galaxies.
Aims. We search for metal-poor stars using the artificial neural network (ANN) and extend its usage to determine absolute magnitudes.
Methods. We have constructed a library of 167 medium-resolution stellar spectra (R ∼ 1200) covering the stellar temperature range
of 4200 to 8000 K, log g range of 0.5 to 5.0, and [Fe/H] range of −3.0 to +0.3 dex. This empirical spectral library was used to
train ANNs, yielding an accuracy of 0.3 dex in [Fe/H], 200 K in temperature, and 0.3 dex in log g. We found that the independent
calibrations of near-solar metallicity stars and metal-poor stars decreases the errors in Teff and log g by nearly a factor of two.
Results. We calculated Teff , log g, and [Fe/H] on a consistent scale for a large number of field stars and candidate metal-poor stars. We
extended the application of this method to the calibration of absolute magnitudes using nearby stars with well-estimated parallaxes.
A better calibration accuracy for MV could be obtained by training separate ANNs for cool, warm, and metal-poor stars. The current
accuracy of MV calibration is ±0.3 mag.
Conclusions. A list of newly identified metal-poor stars is presented. The MV calibration procedure developed here is reddening-
independent and hence may serve as a powerful tool in studying galactic structure.
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1. Introduction

Metallicity estimates for large samples of stars among differ-
ent Galactic components can provide a wealth of information
on the structure and formation of our Galaxy. Extremely metal-
poor stars are the relics of early Galaxy, while moderately metal-
poor stars can provide indications of whether it is a thick or thin
disk when supplemented by additional information such as the
kinematics of these objects. A high spectral resolution follow-
up of these metal-poor stars (identified mostly through low- and
intermediate-resolution spectral surveys) has resulted in identi-
fications of exotic objects such as very metal-poor (VMP), ex-
tremely metal-poor (EMP), ultra metal-poor (UMP), and hy-
per metal-poor (HMP; explained in Beers & Christlieb 2005),
which show different degrees of metal deficiencies. Among
these metal-poor class, subclasses comprising carbon-enhanced
metal-poor stars (CEMPs) have also been identified, which show
a wide range in s- and r-process element enhancements. These
objects are important tools for understanding the enrichment of
the interstellar medium (ISM) caused by stars of different mass
range in our Galaxy.

Intrinsic luminosity is another important parameter that not
only helps in deriving the distances of the objects, but also helps
in distinguishing objects at different evolutionary stages. The
photometric determination of MV , however, requires a good red-
dening estimate. The spectroscopic approaches based on line
strengths, line ratio, and profiles of H i, Ca ii, etc. are reddening

independent. A list of luminosity-sensitive features for different
spectral types can be found in Gray & Corbally (2009), and a
condensed review in Giridhar (2010).

A large number of metal-poor stars have been identified
with the help of earlier surveys such as the HK Survey (Beers
et al. 1992). However, multi-object spectrometers like 6df on
the UK Schmidt telescope (Watson et al. 1998), AAOMEGA
at the Anglo-Australian Telescope (AAT) (Sharp et al. 2006),
and the LAMOST project (Zhao et al. 2006) can provide a large
number of spectra per night. The ongoing and future surveys and
space missions will collect a vast amount of spectra for stars be-
longing to different components of our Galaxy and nearby galax-
ies. The wide variety of objects covered in these surveys require
good pipelines for data handling and automated procedures that
are efficient as well as robust in deriving accurate stellar param-
eters that are essential ingredients in studying the structure and
evolution of our Galaxy.

Several automated methods of spectral classification and
parametrization such as the minimum distance method (MDM),
the gaussian probabilistic model (GPM), the principal compo-
nent analysis (PCA), and the neural network have been devel-
oped over the last two decades. These methods have been sum-
marized in Bailer-Jones (2002).

These automated methods differ in two major ways. Real
stellar spectra of well-known calibrated stars, referred to as
the empirical library, are employed by some groups (includ-
ing us), while others prefer using a synthetic spectral library.

Article published by EDP Sciences A121, page 1 of 11

http://dx.doi.org/10.1051/0004-6361/201219918
http://www.aanda.org
http://www.edpsciences.org


A&A 556, A121 (2013)

Both approaches have their merits and disadvantages. Synthetic
spectra depend on the quality with which the model atmosphere
(often assuming local thermodynamic equilibrium) represents
actual stars, and the line lists used are sometimes poor; in partic-
ular the line data for molecular lines are not very accurate. Our
attempt at validating these line lists by comparing the synthetic
spectra with spectra of well-known stars has shown disagree-
ments that indicate that there are unidentified lines or that the
oscillator strengths of poor quality. The problem is more severe
for cool stars with molecular lines.

In empirical libraries, the stars are assigned a spectral class
based upon the appearance of spectral features and therefore are
model independent. Earlier reference libraries did not have the
required uniform range in atmospheric parameters. The empiri-
cal libraries assembled by Jacoby et al. (1984), Pickles (1985),
and Silva & Cornell (1992) mostly contained solar-metallicity
objects; the last two libraries also have lower resolution. The li-
braries assembled by Worthey et al. (1994) and Kirkpatrick et al.
(1991) had lower resolution, and the library by Serote Roos et al.
(1996) had insufficient spectral coverage. At the inception of
our program (more than a decade ago) the database of stellar
libraries was not satisfactory (particularly for metallicity cover-
age), hence we chose to develop our own reference library. The
situation has changed considerably now. In the past decade, sev-
eral new empirical libraries providing good spectral coverage
at good resolution (R ∼ 2000 or better) have been developed.
For the optical region, libraries such as STELIB (Le Borgne
et al. 2003), ELODIE (Prugniel & Soubiran 2004; Prugniel et al.
2007), INDO-US (Valdes et al. 2004), and more recently MILES
(Sánchez-Blázquez et al. 2006) have been provided while NGSL
(Gregg et al. 2006), IRTF-Spex (Rayner et al. (2009), and XSL
(Chen et al. 2011) provide extended coverage from the ultravio-
let to the infrared. With the help of softwares such as ULySS
(Koleva et al. 2009) large samples of stars can be classified
and parametrized (see e.g. Prugniel et al. 2011). These empir-
ical libraries are very important tools for building population-
synthesis models and also for the automated classification and
parametrization of stars. Notwithstanding its modest size, the
reference library developed by us is very useful for the present
problem because of its uniform coverage in metallicity, temper-
ature, and gravity.

From the medium-resolution spectra metal-poor stars have
been detected using different approaches; some are based upon
the usage of strong features such as the Ca II lines (e.g. Allende
Prieto et al. 2000 on INT spectra), while others employ PCA or
even full spectra (e.g. Snider et al. 2001). A good account of
stellar parametrization approaches developed for handling data
from different surveys can be found in the volume edited by
Bailer-Jones (2008).

In this paper we used the artificial neural network (ANN) to
estimate stellar parameters Teff, log g, and [Fe/H] and MV for
a modest sample of candidate metal-poor stars using medium-
resolution spectra.

In Sect. 2 we describe the stellar spectra database developed
by us and the subset used for calibrating the ANN. Section 3
describes the observations and spectral analysis. Section 4 deals
with the network configuration and the adopted network-training
approach. We present in Sect. 5 the atmospheric parameters and
calibration errors and the use of trained networks to estimate
the parameters for a sample of candidate metal-poor stars and
some unexplored field stars. The determination of absolute mag-
nitudes is presented in Sect. 6, derived parameters for candidate
metal-poor stars are given in Sect. 7. We summarize our results
in Sect. 8.

2. Calibrated stars

We have initiated a program for the definite identification of
metal-poor candidates from different surveys such as the ob-
jective prism survey of Beers et al. (1992), which is gener-
ally referred to as the HK survey, the Edinburgh − Cape blue-
object survey by Stobie et al. (1997), and the high tangential
velocity objects listed by Lee (1984). During 1999–2001 we
obtained spectra of a modest sample and also a good num-
ber of stars of known parameters. The semi-empirical approach
adopted in Giridhar & Goswami (2002) resulted in identifying
and parametrizing the metal-poor star candidates at a very slow
pace, hence we chose to explore an ANN-based approach. Our
earlier attempt at using the spectra of calibrated stars from the
known empirical library (e.g. Jacoby et al. 1984) for training the
network and then employing them for parametrizing our sam-
ple proved to be difficult despite our attempts at matching the
resolution of two spectra. We faced convergence problems, and
the calibration errors were unacceptably large. The spectral li-
braries available then also had no stars with good coverage in
metallicity.

On the other hand, using stellar spectra of calibrated stars
obtained with the same instrument configuration and compris-
ing stars evenly distributed in parameter space yielded a very
good calibration accuracy even for calibrated samples of modest
size. It should be noted that the spectral resolution and spectral
coverage of our spectra are well suited for our objective.

We therefore created a library of observed stellar spectra
for stars with well-determined parameters (adding more spec-
tra in 2004–06), which was used for training ANNs. These were
used to estimate the astrophysical parameters, Teff , log g, [Fe/H],
and MV for a modest sample of unexplored field stars using
medium-resolution stellar spectra.

Our database of stars with known spectral classification and
parallaxes is presented in Table 1, which contains the star name,
the Hipparcos number, the V magnitude, (B − V), log g, Teff ,
[Fe/H], and references for the stellar [Fe/H]. Many objects
were observed more than once. These objects with known at-
mospheric parameters were selected primarily from Gray et al.
(2001), Allende Prieto & Lambert (1999), Snider et al. (2001),
and Cayrel de Strobel et al. (2001). Gray et al. (2001) have cal-
culated atmospheric parameters with the following uncertainties:
80 K in Teff , 0.1 in log g, and 0.1 in [M/H]. The temperatures tab-
ulated by Allende Prieto & Lambert (1999) have an uncertainty
of 200 K, while the uncertainty in log g varies from ±0.1 at log g
of 4.5 to as much as ±0.5 at log g of 2.2. The uncertainties in the
Snider et al. (2001) data are the following: 150 K in Teff, 0.3
in log g, and 0.2 in [Fe/H]. We also made use of the [Fe/H]
derived from the high-resolution spectroscopy of the individual
stars available in literature and those from the Elodie data base
(Soubiran et al. 1998), whose parameter uncertainties are 145 K
in Teff , 0.3 in log g, and 0.2 in [Fe/H]. The 73 metallicity cal-
ibration stars with known log g, Teff, and [Fe/H] contained in
Table 1 (full table available in electronic form) are indicated with
an asterisk mark. We observed more than two hundred stars and
rejected those with binarity or other peculiarities such as Ap-
Am spectra and those with emission lines. Some spectra were
rejected due to poor signal to noise ratios (S/N).

3. Observation and data handling

The spectra were obtained using a medium-resolution
Cassegrain spectrograph mounted on the 2.3 m Vainu Bappu
Telescope at VBO, Kavalur, India. When used with a grating
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Table 1. List of observed stars and their parameters.

Sl No Star HIP Vmag (B − V) Literature ANN Ref.
log g Teff [Fe/H] Mv log g Teff [Fe/H] Mv

1 HD 344 655 5.67 1.119 2.41 4570.9 0.7 2.28 4635.6 −0.04 0.8
2 HD 496∗ 765 3.88 1.013 2.47 4786.3 +0.13 0.7 2.58 4786.4 +0.02 0.7 4
3 HD 587∗ 840 5.85 0.973 3.05 4786.3 −0.24 2.1 2.96 4812.4 −0.24 2.1 1
4 HD 1529 1565 7.95 0.818 3.70 5248.1 3.99 5294.8 −0.17
5 HD 10142 7643 5.94 1.045 2.68 4786.3 0.9 2.40 4767.6 −0.34 0.9
6 HD 14679 10 973 9.28 0.652 4.50 5754.4 4.56 5754.8 −0.68
7 HD 18709 13 902 7.39 0.590 4.40 6025.6 4.4 4.30 6050.0 −0.50 4.4
8 HD 19445 14 594 8.05 0.46 4.38 6020.0 −1.95 5.1 4.34 5964.0 −2.06 4.6 1
9 HD 19659 14 613 7.11 0.684 3.58 5754.4 2.3 3.58 5664.4 −0.37 2.3
10 HD 20902∗ 15 863 1.82 0.48 0.90 6300.0 0.15 −4.5 1.56 6316.4 +0.23 −4.2 11
11 HD 21718 16 270 8.96 1.163 3.60 4786.9 3.76 4695.6 −0.34
12 HD 21925 16 479 8.30 0.418 4.42 6606.9 4.31 6651.2 −0.12
13 HD 22484∗ 16 852 4.28 0.57 4.15 5981.0 −0.11 3.6 4.14 6121.2 −0.05 3.2 1
14 HD 23190 17 575 6.83 0.210 4.20 7943.3 2.1 4.35 7848.0 0.21 2.4
15 HD 23650 17 887 9.01 0.582 4.55 6025.6 5.0 4.54 6008.8 −0.23 4.6
16 HD 26519 19 501 7.86 0.440 4.42 6606.9 3.9 4.49 6555.6 −0.48 3.8
17 HD 26749 19 767 6.74 0.677 4.11 5754.4 4.0 4.43 5543.2 −0.60 4.3
18 HD 27045 19 990 4.93 0.259 4.30 7585.8 2.6 4.25 7654.8 0.17 2.6
19 HD 27174 20 334 8.25 1.071 3.43 4677.4 3.7 3.36 4634.0 −0.05 3.8
20 HD 29140∗ 21 402 4.25 0.184 3.81 7943.3 0.27 0.9 3.94 7835.2 −0.006 1.2 17
21 HD 30177 21 850 8.41 0.773 4.30 5495.4 4.7 4.89 5483.0 −0.27 5.2
22 HD 284908 22 684 9.28 1.128 3.73 4677.4 4.10 5369.0 −0.38
23 HD 31109 22 701 4.36 0.257 3.40 7244.4 0.1 3.40 7362.0 0.18 0.1
24 HD 32890 23 668 5.71 1.166 2.70 4570.9 3.089 4717.2 −0.109
25 HD 33111 23 875 2.78 0.161 3.70 7943.3 0.6 3.85 7850.4 0.21 0.3
26 HD 33419 24 041 6.11 1.098 2.50 4570.9 1.2 2.29 4655.2 0.07 1.2
27 HD 34303 24 665 6.85 1.061 2.85 4677.4 2.2 2.87 4679.2 −0.03 2.2
28 HD 34500 24 730 7.41 0.204 4.36 7943.3 2.8 4.16 7889.2 0.22 2.7
29 HD 36079∗ 25 606 2.81 0.807 2.54 5248.1 0.05 2.34 5275.6 −0.13 1
30 HD 36153 25 651 7.32 0.305 4.28 7244.4 2.8 4.07 7360.4 0.12 2.7
31 HD 36673∗ 25 985 2.59 0.21 1.10 7400.0 0.04 −5.4 1.25 7357.6 0.01 −5.7 14
32 HD 37192 26 219 5.76 1.120 2.40 4570.9 0.8 2.30 4558.4 −0.05 0.7
33 HD 37430 26 412 6.15 0.322 4.30 7244.4 2.9 4.28 7283.6 0.08 2.7
34 HD 37984∗ 26 885 4.90 1.144 2.21 4570.9 −0.55 0.07 2.21 4747.6 −0.45 0.3 1
35 HD 37613 26 996 7.84 0.455 4.20 6606.9 3.0 4.36 6565.6 −0.02 2.9
36 SAO 58437 27 361 9.19 0.372 4.40 6918.3 4.3 4.57 6939.6 −0.37 4.0
37 HD 39425∗ 27 628 3.12 1.146 2.31 4570.9 +0.13 1.0 2.29 4572.8 +0.081 1.0 1
38 HD 41393 28 654 6.88 0.201 4.29 7943.3 2.3 4.13 7874.8 0.26 2.3
39 BD+191185∗ 28 671 9.31 0.588 4.29 5440.0 −1.21 4.74 5571.2 −1.05
40 HD 41116∗ 28 734 4.16 0.835 2.97 5248.1 −0.01 0.8 3.109 5323.2 −0.045 1.0 1
41 HD 41547 28 854 5.88 0.374 3.90 6918.3 −0.10 4.054 7069.6 0.095 12
42 HD 41712∗ 29 002 6.94 0.455 3.90 6606.9 −0.03 2.3 4.10 6535.2 +0.06 2.4 12
43 HD 44007∗ 29 992 8.06 0.84 2.00 4830.0 −1.71 2.03 4845.6 −1.77 1
44 HD 43750 30 165 7.44 0.201 4.34 7943.3 2.8 4.28 7768.0 0.03 2.7
45 HD 43771 30 275 7.43 0.209 4.33 7943.3 2.6 4.24 7822.0 0.15 2.2
46 HD 46355 30 932 5.20 1.087 2.26 4677.4 0.3 2.25 4679.2 −1.21 0.3
47 HD 48329∗ 32 246 3.02 1.40 0.80 4582.0 −0.05 −4.2 1.32 4511.6 +0.21 −4.1 1
48 CD-333337 33 221 9.03 0.48 4.11 5930.0 −1.40 4.146 5973.6 −1.74 3
49 HD 52622 33 577 6.46 0.389 3.68 6918.3 1.5 2.963 6901.2 0.181 1.3
50 HD 56935 35 154 7.69 0.653 3.75 4786.9 4.0 3.77 4781.2 −0.07 4.0
51 HD 56221 35 341 5.87 0.181 3.94 7943.3 1.3 3.90 7855.6 0.17 1.2
52 HD 58431∗ 36 059 7.84 0.331 4.31 7244.4 −0.07 3.0 4.32 7393.2 −0.16 2.9 12
53 HD 58946∗ 36 366 4.16 0.31 4.47 7145.0 −0.17 2.8 4.11 7082.4 −0.35 2.9 12
54 HD 61295∗ 37 339 6.16 0.374 3.70 6918.3 0.02 1.5 3.47 6939.2 0.14 1.4 1
55 HD 62781 37 710 5.80 0.320 4.16 7244.4 2.6 4.17 7306.4 0.09 2.4
56 HD 62345∗ 37 740 3.57 0.93 2.90 5000.0 −0.16 0.4 2.54 4892.0 +0.01 0.3 1
57 HD 62196 37 802 7.67 0.313 4.37 7244.4 3.6 4.518 6952.8 −0.78 3.6
58 HD 62509∗ 37 826 1.15 1.00 2.75 4865.0 −0.04 1.0 2.78 4813.2 +0.04 1.0 1
59 HD 63660 38 146 5.32 0.751 3.02 5495.4 0.3 2.93 5479.2 0.10 0.2

Notes. (∗) Indicates stars with known metallicity, the references for metallicity are given below.

References. 1. Cayrel de Strobel et al. (2001); 2. Ryan & Lambert (1995); 3. Snider et al. (2001); 4. Gratton & Ortolani (1986); 5. Tomkin et al.
(1992); 6. Oinas (1974); 7. Axer et al. (1994); 8. Gray et al. (2001), 9. Edvardsson et al. (1993); 10. Luck & Lambert (1981); 11. Luck & Lambert
(1985); 12. Moultaka et al. (2004); 13. Balachandran (1990); 14. Venn (1995); 15. Burkhart & Coupry (1989); 16. Adelman & Philip (1994);
17. Patchett et al. (1973); 18. Tomkin & Lambert (1999); 19. Spite et al. (1994).
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Table 1. continued.

Sl No Star HIP Vmag (B − V) Literature ANN Ref.
log g Teff [Fe/H] Mv log g Teff [Fe/H] Mv

60 HD 63700∗ 38 170 3.34 1.25 1.15 4990.0 0.24 0.825 4684.8 +0.317 1
61 HD 63791∗ 38 621 7.92 1.80 4750.0 −1.65 1.79 4761.6 −1.70 1
62 HD 65228 38 835 4.20 0.73 1.70 5900.0 0.52 1.663 5728.0 0.138 1
63 HD 67078 39 565 6.62 0.448 3.81 6606.9 2.0 4.09 6583.2 0.01 2.3
64 HD 65871 39 616 8.16 0.529 4.40 6309.6 4.3 4.42 6272.8 −0.47 4.0
65 HD 70110∗ 40 858 6.18 0.607 4.01 6025.6 0.07 3.1 4.29 5994.8 −0.01 3.3 1
66 HD 69960 41 022 8.00 0.756 4.06 5495.4 4.0 3.86 5455.2 −0.02 3.8
67 HD 71973 42 249 6.31 0.308 3.85 7244.4 1.7 3.59 7183.2 −0.04 1.5
68 HD 73764 42 528 6.60 0.899 3.22 5011.9 2.0 3.08 4992.4 −0.11 2.0
69 HD 74706 42 928 6.10 0.195 4.11 7943.3 1.6 4.05 7824.8 0.19 1.5
70 HD 76218 43 852 7.69 0.771 4.59 5495.4 5.6 4.47 5426.0 −0.19 5.2
71 HD 76582 44 001 5.68 0.209 4.25 7943.3 2.2 4.04 7792.0 0.20 2.3
72 HD 76932∗ 44 075 5.86 0.53 4.37 5965.0 −0.82 4.128 5896.8 −1.315 9
73 HD 76617 44 103 8.17 0.596 4.12 6025.6 3.4 4.08 6005.6 −0.04 3.2
74 HD 76909 44 137 7.84 0.756 4.22 5495.4 4.4 4.16 5528.8 0.06 4.3
75 HD 78752 44 915 7.84 0.602 4.01 6025.6 3.2 3.96 5935.2 −0.24 3.5
76 HD 233608 45 098 9.40 0.879 4.34 5248.1 4.48 5362.4 −0.08
77 HD 76990 45 421 6.30 0.339 3.72 6918.3 1.5 3.63 6993.6 −0.18 1.6
78 HD 83212∗ 47 139 8.34 1.09 1.00 4763.0 −1.47 2.662 4932.8 −1.37 2
79 HD 83808 47 508 3.52 0.516 3.23 6309.6 0.4 3.42 6390.8 −0.17 0.4
80 HD 84441∗ 47 908 2.97 0.81 1.70 5300.0 0.17 −1.4 2.611 6014.4 0.048 −1.4 1
81 HD 84850 47 913 6.22 0.461 3.70 6606.9 1.7 3.92 6532.4 0.08 1.7
82 HD 84937∗ 48 152 8.28 0.41 4.00 6211.0 −2.34 3.7 4.439 6614.8 −2.18 3.7 1
83 G43-5∗ 12.52 0.65 4.66 5310.0 −2.12 4.71 5338.8 −2.36 3
84 HD 85379 48 347 7.34 1.187 3.20 4570.9 3.0 3.19 4540.4 −0.01 3.0
85 HD 85444∗ 48 356 4.11 0.918 2.48 5011.9 −0.14 −0.5 2.61 5109.6 −0.02 −0.5 1
86 HD 085773 48 516 9.43 1.16 0.99 4470.0 −2.27 2.318 4659.2 −2.08 3
87 HD 85844 48 590 8.23 0.263 4.37 7585.8 3.4 4.38 7554.8 −0.14 3.5
88 HD 87427 49 339 5.70 0.303 3.70 7244.4 1.2 3.70 7355.2 0.16 1.2
89 HD 87140∗ 49 371 9.00 0.70 2.58 4940.0 −2.02 2.573 5086.0 −1.85 5
90 G43-33∗ 49 988 7.85 0.55 4.30 5925.0 −0.37 4.17 5948.0 −0.344
91 G54-21∗ 50 355 7.62 0.60 4.48 5862.0 −0.03 4.60 5839.0 −0.243
92 HD 89086 50 364 7.62 0.468 4.22 6606.9 3.2 4.29 6616.0 −0.10 3.0
93 HD 89449∗ 50 564 4.80 0.44 4.14 6385.0 0.09 3.2 4.26 6584.4 0.09 3.1 1
94 HD 89962 50 851 6.06 1.119 2.90 4677.4 1.8 2.85 4679.6 −2.01 1.8
95 HD 90860 51 414 7.01 0.622 3.74 6025.6 2.2 3.65 5978.4 −0.56 2.6
96 HD 91135 51 475 6.51 0.534 3.60 6309.6 1.6 3.45 6244.8 0.08 1.6
97 HD 91669 51 789 9.70 0.877 4.40 5248.1 4.43 5182.4 0.09
98 HD 91948∗ 52 064 6.77 0.465 3.99 6606.9 −0.03 2.5 4.09 6449.2 −0.001 2.5 12
99 G58-23∗ 52 958 9.96 0.60 4.40 5540.0 −0.97 5.2 4.37 5464.0 −1.02 5.2 3
100 HD 94028∗ 53 070 8.21 0.498 4.20 5900.6 −1.55 4.223 6062.8 −1.80 1
101 BD-163141 53 174 10.4 0.906 4.21 5011.9 4.507 4812.8 −0.342
102 HD 94771 53 437 7.37 0.752 3.90 5495.4 3.7 3.85 5456.0 −0.04 3.4
103 HD 95272∗ 53 740 4.08 1.079 2.34 4677.4 −0.22 0.4 2.09 4654.8 −0.19 0.3 1
104 HD 95364 53 851 8.62 0.690 4.20 5754.4 4.0 4.08 5628.8 −0.40 4.0
105 HD 95532 53 886 7.58 0.543 4.10 6309.6 3.2 4.24 6306.0 −0.09 3.3
106 HD 96833∗ 54 539 3.00 1.144 2.08 4570.9 −0.13 −0.2 2.03 4524.0 −0.01 −0.2 1
107 HD 97336 54 741 8.15 0.357 4.35 6918.3 3.5 4.37 6698.0 −0.76 3.6
108 HD 97998 55 013 7.36 0.626 4.57 5754.4 5.2 4.45 5798.0 −0.42 4.7
109 HD 98175 55 126 6.85 0.328 4.05 7244.4 2.0 3.98 7127.6 −0.10 2.2
110 HD 98579 55 374 6.68 1.124 2.84 4570.9 1.8 2.69 4640.4 −0.31 1.9
111 HD 100006∗ 56 146 5.54 1.056 2.41 4677.4 +0.02 0.5 2.42 4702.4 −0.18 0.3 1
112 HD 101165 56 795 9.18 0.615 4.34 6025.6 4.2 4.20 6005.2 −0.29 3.7
113 HD 101501∗ 56 997 5.32 +0.710 4.69 5538.0 0.03 5.4 4.58 5444.4 −0.08 5.0 1
114 HD 102070∗ 57 283 4.72 0.97 2.57 4870.0 −0.11 −0.4 2.28 4879.2 +0.10 −0.5 1
115 HD 102902 57 759 7.36 0.701 3.81 5754.4 2.6 4.01 5851.6 −0.25 3.1
116 HD 103095∗ 57 939 6.45 +0.75 4.50 5000.0 −1.59 4.72 5020.0 −1.52 1
117 HD 104163 58 502 8.48 0.879 3.68 5011.9 3.67 5130.8 −0.39
118 HD 107325 60 170 5.52 1.091 3.04 4677.4 2.1 3.01 4767.2 −0.16 2.1
119 HD 107610 60 305 6.33 1.115 2.61 4570.9 1.4 2.47 4611.2 −0.10 1.4
120 HD 107700∗ 60 351 4.78 0.515 3.14 6309.6 −0.06 0.2 3.25 6498.4 −0.33 0.2 12
121 HD 107752∗ 60 387 10.07 0.75 2.07 4710.0 −2.74 2.18 4760.4 −2.45 3
122 HD 108317∗ 60 719 8.04 3.33 5310.0 −2.27 1.3 3.21 5186.0 −2.30 1.5 3
123 G13-38∗ 60 747 10.51 0.71 4.60 5220.0 −0.96 5.7 4.61 5134.0 −0.98 5.4 3
124 HD 108506 60 813 6.23 0.430 3.64 6606.9 1.4 3.84 6636.8 −0.02 1.3
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Table 1. continued.

Sl No Star HIP Vmag (B − V) Literature ANN Ref.
log g Teff [Fe/H] Mv log g Teff [Fe/H] Mv

125 HD 109358∗ 61 317 4.26 +0.59 4.52 5879.0 −0.19 4.6 4.45 5971.6 −0.19 4.6 1
126 HD 109379∗ 61 359 2.65 +0.89 2.20 5125.0 0.27 −0.5 2.38 5150.0 0.12 −0.4 1
127 G59-27∗ 61 545 10.86 +0.425 3.50 6150.0 −2.20 4.173 6072.0 −2.27 19
128 HD 110317J∗ 61 910 5.17 0.432 3.34 6606.9 0.00 0.5 3.57 6626.4 0.15 0.4 1
129 HD 110646 62 103 5.91 0.850 3.23 5248.1 1.7 3.35 5191.6 −0.19 2.0
130 G60-46∗ 11.00 4.59 5300.0 −1.19 4.58 5289.2 −1.19 3
131 HD 113226∗ 63 608 2.83 +0.94 2.97 5060.0 0.15 2.908 5063.2 0.025 1
132 HD 114435 64 332 5.78 0.521 3.34 6309.6 0.9 2.865 6673.6 0.12 0.7
133 HD 115772∗ 65 047 9.63 0.84 2.56 4930.0 −0.70 2.48 4933.6 −0.63 3
134 HD 118253 66 381 7.58 0.875 3.47 5011.9 2.9 3.44 5116.8 −0.56 2.9
135 HD 121370∗ 67 927 2.68 0.59 3.83 6068.0 0.19 2.4 3.73 5943.6 −0.02 2.3 1
136 HD 122167 68 367 8.67 0.570 4.41 6025.6 4.20 5906.4 −0.36
137 HD 121930 68 375 7.58 1.199 3.10 4570.9 2.7 3.03 4628.4 −0.23 2.7
138 G64-37∗ 68 592 11.149 0.359 4.20 6377.0 −3.0 4.22 6477.0 −2.792
139 HD 122563∗ 68 594 6.20 0.90 1.61 4687.0 −2.46 −0.9 1.76 4668.0 −2.44 −1.0 3
140 BD+092870∗ 69 746 9.45 1.62 4672.0 −2.39 1.2 2.47 4865.0 −2.14 1.1 3
141 HD 126053a∗ 70 319 6.30 0.60 4.50 5662.0 −0.45 +5.07 4.31 5683.2 −0.435
142 HD 126354 70 576 4.33 0.434 3.01 6606.9 −0.6 2.92 6524.8 −0.41 −0.6
143 HD 127665 71 053 3.58 1.29 2.22 4260.0 −0.17 2.194 4384.0 −0.039 1
144 HD 127739∗ 71 115 5.91 0.391 4.02 6918.3 0.08 2.3 4.05 6980.8 0.06 2.1 13
145 HD 129401 72 041 8.68 0.607 4.26 6025.6 3.8 4.20 6003.2 −0.09 3.8
146 HD 130169 72 455 7.13 0.521 3.93 6309.6 2.7 4.15 6258.8 −0.22 3.2
147 BD+452224 72 504 10.7 1.110 3.96 4570.9 3.91 4549.2 −0.69
148 HD 132047 73 065 7.66 1.060 3.38 4677.4 3.5 3.50 4731.6 −0.19 3.3
149 G99-40∗ 9.19 0.61 4.08 5970.0 −0.35 4.26 5994.0 −0.348
150 HD 132475∗ 73 385 8.57 0.59 3.76 5550.0 −1.70 3.7 3.83 5594.4 −1.71 4.1 3
151 HD 134440 74 234 9.44 0.85 4.70 4790.0 −1.43 4.64 4834.4 −1.43 1
152 HD 136202∗ 74 975 5.10 0.54 4.07 6077.0 −0.15 3.921 6223.6 −0.191 1
153 HD 147397 80 163 8.35 1.323 3.81 4786.9 3.60 4681.6 −0.15
154 HD 148408 80 630 9.62 0.71 4.55.0 5200.0 −0.8 3.925 4933.2 −1.40 3
155 HD 149996∗ 81 461 8.49 0.62 4.1 5600.0 −0.65 4.3 4.17 5566.8 −0.56 4.3 1
156 HD 153210∗ 83 000 3.20 1.16 2.62 4560.0 −0.13 1.0 2.455 4592.0 0.12 1.0 1
157 BD+173248∗ 85 487 9.37 0.66 2.94 4995.0 −2.03 2.2 3.247 5170.0 −2.09 2.3 3
158 HD 161096∗ 86 742 2.77 1.16 1.70 4475.0 0.00 2.225 4507.2 0.061 1
159 HD 161797∗ 86 974 3.41 0.75 3.70 5520.0 0.04 3.8 3.99 5563.2 0.12 4.0 1
160 HD 165195∗ 88 527 7.34 1.29 1.45 4507.0 −2.18 −0.9 2.044 4724.0 −1.91 −0.8 1
161 HD 166161∗ 88 977 8.16 0.98 1.84 5125.0 −1.22 0.7 2.0 5148.4 −1.15 0.5 3
162 G141-19∗ 90 957 10.55 0.64 4.00 5400.0 −2.30 3.87 5396.4 −2.5 1
163 HD 185144 96 100 4.70 0.79 4.40 5143.0 −0.25 4.41 5588.0 −0.429 6
164 HD 188512∗ 98 036 3.71 0.86 3.60 5100.0 −0.30 3.525 5017.2 −0.35 1
165 BD-185550∗ 98 339 9.35 0.92 1.87 4785.0 −2.89 0.7 1.86 4783.6 −2.62 0.7 3
166 CS22877-1∗ 1.00 4500.0 −2.80 1.02 4512.0 −2.648
167 CS22169-35∗ 12.9 1.50 5000.0 −2.80 1.38 5017.0 −2.778

of 600 grooves mm−1 and a camera of 1500 mm focal length,
the spectrograph gives an average dispersion of 2.6 Å per pixel.
During the extended period of several years, over 200 medium-
resolution spectra were obtained. The spectral coverage is
3800–6000 Å. The spectra were recorded on a 1K × 1K CCD
(with Thomson TH77883) with a pixel size of 24 µ. The setup
gave a two-pixel resolution of 1200.

The reduction and analysis of the spectroscopic data were
performed using the standard spectroscopic packages in IRAF.
All CCD frames were bias-corrected, response-calibrated us-
ing dome-flat spectra, and cleaned for cosmic rays. Even before
converting them to wavelength scale, the extracted spectra were
aligned accurately using a script to ensure that a given spectral
feature fell on the same pixel number in all spectra. This pro-
cedure has the disadvantage that radial velocity information is
not retrieved. No absolute flux calibration was performed. For
fainter stars 2−3 exposures were combined to attain an S/N of at
least 50. For the continuum-fitting we adopted a procedure sim-
ilar to that given in Snider et al. (2001). The spectra exhibiting

emission lines were excluded from the sample. The spectra were
trimmed such that all spectra (700 pixels) covered exactly the
same spectral region. The alignment of the spectra is crucial to
obtain the desired accuracy. Figure 1 shows representative stars
from our sample; the stars with near-solar metallicity arranged in
decreasing temperature sequence from top to bottom. We super-
posed the spectra of metal-poor stars with similar temperature
and show their atmospheric parameters Teff , log g, and [Fe/H]
within parenthesis.

4. Atmospheric parameters of the training set

Table 1 lists the atmospheric parameters [Fe/H], Teff, and log g
compiled from the literature and adopted for each star in our
study. We took particular care to select stars that span a wide
range in [Fe/H], Teff , and log g; these values were used to train
the ANNs; the reference for [Fe/H] is given in the last column
of Table 1. These [Fe/H] are estimated using high-resolution
spectra and model atmospheres, hence their accuracy probably
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Fig. 1. Spectra of a selected sample of stars with near-solar metallicity displayed in decreasing temperature sequence from top to bottom. The
spectra of a few metal-poor stars are superposed on solar-metallicity stars of similar temperatures. The atmospheric parameters Teff , log g, and
[Fe/H] for each star are given in parenthesis.

is about ±0.2 dex. The stars used for metallicity correction
(with known [Fe/H], Teff, and log g) are indicated by an as-
terisk following the star name. We used the back-propagation
ANN code developed by B.D. Ripley (see Ripley 1993, 1994).
The ANN configuration is same as that employed in our ear-
lier work (Giridhar et al. 2006). Separate ANNs were trained for
each parameter.

5. ANN atmospheric parameter results

5.1. Metallicity, [Fe/H]

The top panel in Fig. 2 shows a plot of the [Fe/H] residuals ob-
tained using the ANN for the 73 stars against their [Fe/H] taken
from the literature and given in Table 1. The [Fe/H] metallicities
range from −3.0 dex to 0.3 dex, and the reduced mean scatter
about the line of unity is 0.15 dex. The [Fe/H] estimates quoted
in the literature often have uncertainties in the range 0.2−0.4 dex.
To test the goodness of the ANN, we divided the sample into two
parts and trained the network separately on each part. Then the
weights of ANN trained for part 1 were used to estimate [Fe/H]
for the stars in part 2. The middle and bottom panels of Fig. 2
show an rms error of 0.31 and 0.22, which is indicative of the
accuracy with which the ANN can predict the metallicity of a
given star within the trained metallicity range.

Using the weights from the ANN trained for the sample
of calibrated stars, the metallicity of the candidate metal-poor
stars could be estimated. These estimates were subjected to in-
dependent tests to avoid higher temperature – low-metallicity
degeneracy, but they were still useful in segregating the stars of
near-solar metallicity ([Fe/H] in −0.5 to +0.3 dex range) from
significantly metal-poor objects with [Fe/H] < −0.5 dex.

5.2. Temperature and surface gravity

The literature contains a larger number of stars with good es-
timates of Teff and log g values compared with those with

Fig. 2. [Fe/H]ANN − [Fe/H]Cat versus their catalog values, [Fe/H]Cat for
all calibrated stars (top panel). The middle panel shows the result for
part 1 obtained using weights from the ANN trained for part 2. In the
bottom panel the weights from part 2 are applied to part 1. The rms error
for the full sample (top panel) is 0.15 dex, for part 1 (middle panel) it
is 0.31 dex, and for part 2 (bottom panel) it is 0.22 dex.

[Fe/H] values. For stars with near-solar metallicity we used
temperatures and gravities given in Allende Prieto & Lambert
(1999) and Gray et al. (2001) for temperature and calibration.
For metal-poor stars Teff and log g were mostly taken from
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Fig. 3. Comparison of Teff and log g values for stars common between Allende Prieto & Lambert (1999) and Gray et al. (2001).

Snider et al. (2001). In Fig. 3 we plotted these parameters for
the common stars to estimate systematic differences between the
two works. We found that the Teff values obtained by Gray et al.
(2001) are systematically higher by about 1.5% and for log g
the systematic difference is 3% to 4%. Hence we believe that
our compiled calibrating set is not affected by large systematic
errors.

On the other hand, it should be noted that the metal-poor
stars do not have strong features in their spectra because of
their lack of metals, while hotter stars lack strong metallic fea-
tures in their spectra because of ionization. To ensure that the
ANN does not become confused by this, we divided the stars into
solar metallicity ([Fe/H] > −0.5 dex) and metal-poor ([Fe/H] <
−0.5 dex) groups.

We estimated the [Fe/H] for the sample stars in Table 1 with
known Teff and log g using the ANN trained for [Fe/H] as
explained in Sect. 5.1. We have spectra of 110 calibrated stars
with near-solar metallicity and spectra of 33 metal-poor stars.
We trained the temperature ANN separately for each metallicity
group.

The solar-metallicity stars were separated into two random
groups of 55, and a sanity check similar to that demonstrated in
Fig. 2 was performed. The rms about the line of unity was found
to be 150 K for both groups. As the temperatures found in the
literature have errors that can be as high as 200 K, this is not
surprising.

We trained two ANNs for log g, one ANN with stars with
[Fe/H] < −0.5 dex, and the other with [Fe/H] > −0.5 dex. A
procedure similar to that given for Teff was adopted. The accu-
racy of the log g estimate is in the range 0.3 to 0.5.

6. ANN absolute magnitude results

A large portion of the stars observed by us have parallax esti-
mates. Combining the V-magnitudes with the Hipparcos paral-
laxes and absolute V-magnitudes, the MV could be calculated.
Stars with a parallax error greater than 20% were excluded.
Since most of the sample stars are nearby bright stars, the ef-
fect of interstellar reddening in most cases will be weak or even
negligible. We therefore excluded this correction from our MV

calculations. Our spectral region contains many luminosity-
sensitive features such as wings of hydrogen lines, lines of
Fe ii, Ti ii, Mg i lines at 5172−83 Å, and for later spec-
tral types G-band blends of MgH, TiO, VO, etc. However,
the same features cannot serve the whole range of spectral
types; hence, we divided the sample stars into two groups
based upon their temperatures. Group I had stars in the tem-
perature range 4300−6300 K labeled Vc and group II those in
the 6600−8000 K range labeled Vh. Yet another group, group III,
which contains metal-poor stars Vm, was handled separately.
The stars in this group have temperatures in a range similar to
that of group I.

Figure 4 illustrates the errors associated with these three
groups. The ANN trained for group I (with 76 stars labeled Vc in
Fig. 4) could predict MV with an accuracy of 0.22 mag, while the
ANN for group II (with 39 stars) attained an accuracy of 0.18.
The group III of metal-poor stars had a very few stars (14)
and could predict MV with an accuracy of only 0.29. An error
of 0.3 mag in luminosity would result in an error of 150 parsec
in distance at a distance of 1 kpc. One likely reason for MV er-
ror could be that luminosity sensitive features like lines of the
Fe ii, Ti ii, and Mg i lines at 5172−83 Å are also metallicity de-
pendent. Furthermore, the number of metal-poor stars with good
parallaxes is woefully small. The large systematic error for low-
luminosity objects with MV of 5 deserves to be analysed with
additional data. Another possible solution is the usage of line ra-
tios appropriate for metal-poor stars, as suggested by Corbally
(1987) and Gray (1989).

7. Stellar parameters for the candidate metal-poor
stars

The metallicity distribution of the calibrated sample is presented
in the top panel of Fig. 5. The figure shows the distribution of the
stars with [Fe/H] taken from the literature with a thick continu-
ous line. An additional 110 stars with well-determined Teff and
log gwere lacking good [Fe/H] estimates. We determined [Fe/H]
for these objects using the ANN, and their metallicity distribu-
tion is presented with a dotted line. The distribution shows that
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Fig. 4. MV ANN − MV Par versus Mv (parallax). The subset of cool
stars (Vc) is plotted in the top; the middle panel contains the results
for hot stars (Vh), and the bottom panel the results for metal-poor
stars (Vm).

we had a good coverage of training stars in different metallicity
bins.

We observed candidate metal-poor stars from the objective
prism surveys of Beers et al. (1992) (BPS), the Edinburgh −
Cape blue-object survey (EC) by Stobie et al. (1997), and the
high tangential velocity objects listed by Lee-Sang (1984). We
also included some unexplored high proper motion field stars.
Using three separate ANNs, we estimated atmospheric param-
eters for the candidate metal-poor stars. At first, the metallicity
was estimated using an ANN trained for metallicity. This helped
us in separating the metal-poor stars from those of near-solar
metallicity or moderately metal-poor objects. A separate ANN
trained for these two groups was employed to estimate the Teff
and log g for these stars. The estimated atmospheric parameters
are presented in Table 2. A few stars had more than one spectrum
and the small differences between the parameters estimated from
each spectrum are indicative of internal errors. The (B − V) col-
ors were available in SIMBAD for many of them, which were
used to verify the temperatures estimated by the ANN. We used
the calibration tables of Schmidt-Kaler (1982) to estimate the
photometric temperatures. We tabulated the difference between
Teff(ANN) and Teff(photometric) in Table 2. We obtained sur-
prisingly high residuals for EC 11175-3214, EC 11260-2413,
EC 13506-1845, and G 149-34. While the observed spectrum
strongly supports the Teff estimated from the ANN, a misidenti-
fication cannot be ruled out. Excluding these exceptions, residu-
als indicate an rms error of 265 K. Many metal-poor candidate
stars were near the faint limit, hence the S/N was in the range
of 40–50, while most of the calibrated star spectra had an S/N
higher than 100.

Within our modest sample of stars, a good fraction
(about 20%) are significantly metal-poor with [Fe/H] in −1.0
to −2.5 range. We find that 33% of the BPS stars and 21% of the
EC stars belong to the [Fe/H] range of −1.0 to −2.5. A few high
proper motion Giclas objects studied also contain metal-poor
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Fig. 5. Metallicity distribution for the calibrated sample and candidate
metal-poor stars.

stars, but the number studied is currently very small, therefore
we do not offer statistics.

The bottom panel of Fig. 5 shows the metallicity distribution
of candidate metal-poor stars, which shows that our candidate
sample has a large portion of moderately metal-poor stars, but
the fraction of significantly metal-poor star is also encouraging.

We have plotted in Fig. 6, a newly identified metal-poor star,
BS 16474-0054 along with a near-solar-metalicity star of similar
temperature to substantiate our findings.

With these encouraging results (notwithstanding the small
sample) we propose to extend this work to a much larger sample
of candidate metal-poor stars from surveys such as the HK II
decribed in Beers & Christlieb (2005).

With the help of the estimated Teff and MV , we are able to
place the program stars in the H-R diagram, as shown in Fig. 7.
The luminosity-calibration stars with MV taken from the liter-
ature are shown by open circles; their MV estimated from the
ANN is shown by a filled circle. The difference between the two
is indicative of internal errors. In both cases the Teff is the cat-
alog value. It should be noted that our calibrated stars do not
represent the local neighborhood alone since the objects were
taken from different sources to encompass the required range of
stellar parameters (metallicity in particular). Hence the Teff and
MV diagram has a large scatter even for the calibrated stars.

A good fraction of candidate metal-poor stars are dwarfs or
subgiants (which possibly are slowly evolving low-mass stars)
although the calibrated stars in Table 1 also contain several gi-
ants among the significantly metal-poor stars.

7.1. Limitation of our approach and future strategy

We are aware of the problems caused by degeneracies in certain
parameter domains. We avoided these sources of inaccuracies
by incorporating a branching procedure that resulted in the seg-
regation of data into meaningful subgroups. This additional step
considerably improved the accuracies of the derived parameters
compared with our earlier work (Giridhar et al. 2006).
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Table 2. Estimated atmospheric parameters for candidate metal-poor stars.

Star log g [Fe/H] Teff (B − V) Teff (ANN)− Mv
[ANN] [ANN] [ANN] Teff[B − V]

EC 00451-2737 4.4 −1.97 6278.4 – – 4.1
EC 01374-3243 4.5 −1.35 5890.0 – – 5.4
EC 03531-5111 3.3 −0.43 7164.8 – – 4.1
EC 04555-1409 3.3 −0.32 5862.0 – – −0.3
EC 05148-2731 4.7 −0.58 7934.0 – – 5.6∗
EC 09523-1259 4.4 −1.37 6572.4 +0.47 159.4 5.4∗
EC 10004-1405a 3.9 −1.19 5864.0 – – 3.5
EC 10004-1405b 3.9 −1.02 5702.0 – – 4.2
EC 10262-1217 4.6 −1.16 6636.0 +0.38 −187 4.5
EC 10292-0956 4.5 −0.46 6260.4 +0.58 291.4 4.4
EC 10488-1244 4.1 −0.33 6507.2 +0.50 222.2 2.7
EC 11091-3239 4.4 0.09 5957.2 +0.54 −164.8 3.7
EC 11175-3214 4.7 −1.40 7702.4 +0.43 1112.4 5.6∗
EC 11260-2413 4.7 −0.96 7523.2 +0.39 748.2 5.4∗
EC 11553-2731a 4.4 −0.44 6374.8 – – 3.7
EC 11553-2731b 4.2 −0.35 6501.6 – – 3.5
EC 12245-2211 4.1 −0.34 6140.4 +0.50 −144.6 2.6
EC 12418-3240 4.1 −0.34 6129.2 +0.66 440.2 3.1
EC 12473-1945a 4.0 −0.15 6246.4 – – 3.0
EC 12473-1945b 4.0 −0.10 6138.4 – – 2.8
EC 12477-1711 4.4 −0.31 6527.2 – – 3.5
EC 12477-1724a 4.2 −0.24 6517.6 – – 2.6
EC 12477-1724b 4.5 −0.26 6497.6 – – 3.1
EC 12493-2149 4.8 −0.37 6145.6 +0.65 423.6 5.2
EC 13042-2740 4.6 −1.85 6405.6 +0.52 202.6 5.5∗
EC 13390-2246 4.8 −0.36 6408.8 – – 3.9
EC 13478-2052a 4.1 −0.61 5420.4 – – 5.3
EC 13478-2052b 4.3 −0.57 5234.4 – – 5.2
EC 13499-2204 4.4 −0.65 6345.2 +0.51 102.2 5.6∗
EC 13501-1758 4.2 −0.15 5847.6 +0.72 343.6 4.4
EC 13506-1845 4.5 −0.58 6664.4 +0.56 620.4 4.9∗
EC 13564-2249 4.2 −0.68 5903.2 +0.58 −65.8 4.7
EC 13567-2235 4.0 −0.24 6341.6 +0.53 179.6 2.9
EC 14017-1750 4.5 −1.07 6073.6 +0.63 283.6 5.4
EC 16477-0096 3.6 −2.14 4843.6 – – 5.6
EC 22874-0038 4.0 −2.41 5416.0 – – 3.4
BS 16473-0045 4.4 −0.93 5356.4 – – 5.3
BS 16926-0070 4.2 −1.96 5995.6 – – 5.3
BS 16469-0074 4.5 −0.44 6351.2 – – 3.4
BS 16474-0054 4.2 −2.09 5570.8 – – 4.9
BS 16085-0018 3.0 −1.61 5554.0 – – 2.2
BS 16085-0004 3.7 −2.11 4644.0 – – 5.6
BS 16085-0056 4.8 −0.32 5220.8 – – 5.3
BS 16543-0114 3.9 0.19 4735.2 – – 4.7
BS 16479-0031 4.3 −0.22 5254.8 – – 4.0
BS 16543-0054a 4.4 −0.39 5747.2 – – 4.7
BS 16543-0054b 4.5 −0.30 5736.8 – – 5.1
BS 16477-0078 4.6 −0.11 5623.6 – – 5.5
BS 16559-0066 4.5 −0.81 4656.4 – – 5.7
BS 16551-0015 4.8 −0.55 7972.0 – – 1.2
BS 16084-0019 4.5 −1.21 5998.8 – – 4.2
BS 16084-0042 4.5 −0.86 7359.2 – – 5.3∗
BS 16087-0004 4.7 −0.63 6692.4 – – 5.4∗
CS 22884-0005 4.0 −1.65 5558.8 +0.67 −98.2 4.1
G 195-28 4.6 −1.45 4698.8 +0.93 −290.2 5.3
G 53-24 4.3 −0.32 5281.6 +0.94 316.6 5.1
G 96-14 4.4 −2.17 4562.8 +1.0 −277.2 5.6
G 108-33 3.8 −1.71 6226.0 – – 0.3
G 115-1 4.1 −0.37 5510.0 +0.90 457 4.8
G 149-34 4.9 0.32 6885.6 +0.90 1832.6 0.7
HD 31964 1.5 −0.11 6108.8 +0.55 43.8 −0.2
HD 41704 4.3 −0.74 5669.2 +0.50 −615.8 5.0
SAO 61681 4.4 0.28 5761.6 +0.652 45.6 4.8
HD 65934 3.0 −0.04 5056.4 +0.93 67.4 2.8
HD 89025 3.4 0.06 7255.2 +0.30 −14.8 −1.1
HD 90861a 2.4 −0.06 4732.8 +1.15 292.8 1.4
HD 90861b 2.0 −0.32 4572.0 +1.15 132 0.9
HD 90861c 2.4 −0.13 4712.0 +1.15 272 1.4
HD 92588 3.5 0.08 5140.4 +0.90 120.4 3.8

Notes. For a few objects more than one spectrum was available as indicated by symbols a, b, and c, the difference in estimated values is indicative
of the internal error. (∗) The MV for hot metal-poor stars is uncertain because we did not have good calibrators covering that temperature and
metallicity range.

A121, page 9 of 11



A&A 556, A121 (2013)

4000 4500 5000 5500

0.5

1

1.5

Fig. 6. Spectra of metal-poor stars compared with stars of similar temperature, gravity, and near-solar composition. The solid line indicates the
metal-poor stars and the dashed line indicates solar-metallicity stars. The atmospheric parameters Teff , log g, and [Fe/H] for each star are given in
parenthesis.

Fig. 7. Mv as a function of Teff for the luminosity-calibration stars and
candidate metal-poor stars.

It should be noted that our ANN-based approach does not al-
low for extrapolation. For example, the [Fe/H] network is trained
for a [Fe/H] range of −3.0 to +0.3 and therefore may not give
reliable results for super-metal-rich stars or Ap-Am stars. This
approach is also not applicable for double-line spectroscopic
binaries.

As mentioned earlier, the ANN procedure adopted here
is not suitable for handling peculiar stars; however, it does

provide a good estimate of Teff , log g, and metallicty for can-
didate metal-poor stars from the surveys mentioned previously.
The Teff estimated here agree with those estimated from (B− V)
within ±265 K for candidate stars with the exception of a few
stars.

Although this maiden effort of estimating MV from spectral
features is quite accurate for solar metallicity objects, the errors
are large particularly in the low-luminosity regime for the metal-
poor stars. In addition to full spectra, we propose to input some
important line ratios and explore near-IR features in our future
work.

8. Summary and conclusions

We have developed an empirical library of stellar spectra for
stars covering a temperature range of 4200 < Teff < 8000 K,
a gravity range 0.5 < log g < 5.0, and a metallicity range
of −3.0 < [Fe/H] < +0.3. With the good spectral coverage
of 3800–6000 Å, several spectral features showing strong sen-
sitivity to the stellar parameters were available, which were used
by the ANN in the learning process.

The procedure of pre-classifying the data and training sep-
arate ANN for each subgroup resulted in a significant in-
crease in accuracies. Now temperatures could be estimated
within ±150 K. Similarly, using of three separate ANNs for
hot, cool, and metal-poor stars yielded a very good accuracy in
MV calibration.

We used these trained networks primarily to detect metal-
poor objects from a modest sample of unexplored objects.
However, the empirical library developed may be useful for
other applications and can be accessed by interested users on
request. We believe that it will be useful in studying stellar pop-
ulation in large samples of galactic stars.

We extended the application of ANN to MV with an accu-
racy of ±0.3 dex. The primary application of MV is in distance
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determination, and the spectroscopic approach based upon the
strength and profiles of the lines is independent of reddening. In
addition, the MV calibration can be used for the quick identifi-
cation of objects of various luminosity types in large databases
containing heterogeneous objects.

Future prospects

With the ANN procedure giving the desired accuracy estab-
lished here, we would like to explore a much larger sample of
candidate metal-poor stars. We also need to extend the empirical
library toward hotter temperatures and also overcome the poor
coverage of low-gravity objects. We also contemplate includ-
ing near-IR O i feature, Ca ii lines, and line ratios suggested by
Corbally (1987) and Gray (1989) for the luminosity calibration
of metal-poor stars. In this preliminary work, we used (for cali-
bration) MV for nearby stars estimated from the parallaxes omit-
ting reddening corrections. Better and enlarged samples of MV
from upcoming surveys or data releases of the ongoing survey
could be used to attain consistent MV accuracy in the full tem-
perature range, which will help in understanding the evolution-
ary status of the candidate stars.

We have an ambitious project of observing an extended sam-
ple of F-G stars covering a broad range in galactocentric distance
to study the metallicity gradient, which is known to exhibit two
slopes and also some wriggles near the spiral arm locations. We
hope to attain the required accuracy in metallicity by carefully
binning the data in a more narrow range in temperatures and
gravities, and also including important line ratios.
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