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The Forces which go to determine the
Motions of the Moon in Space.

By taE Revp. A. C. RIi)SDALE, M.A.

The problem of the forces which go to determine the Moon’s
motions in space involves many very elaborate and difficult
mathematical calculations, The unique genius of Newton,
who was the first to open up this new path of enquiry and
the greatest mathematicians since his time, such as Laplace,
Lagrange, Huler, Clairant, Adams, Airy and Leverrier,
have all been at work upon the “ Lunar Theory,” and yet
the problem is not even to this day completely solved. I will
try and make my paper as clear and as little technical as
- possible, but the subject-matter is a difficult ome, and in
the nature of things it cannot be made so easy and obvious
ag, for example, a treatise upon purely pictorial or obser-
vational astronomy. I may remind you that the study
of the celestial motions, involving as it does the study.of
so many of the mightiest and most universal forces in God’s
creation, is by far the most important branch of our science.
An earnest amatewr astronomer will scarcely be able to
satisfy all his curiosity regarding the celestial sphere by
merely gazing through his telescope again and again at the
well-worn craters of the Moon, or the mere dozen or so
objects in the skies; that have any interest for the possessor
of only a moderate sized instrument. He will want to know,
not only what the celestial objects look like through a
telescope, but how they really move, and how fast and at
what relative distance, etc., and above all the reason why.
To possess a clear understanding and thorough grasp of the
main principles which determine the motions of the Moon
is of the utmost value to the earnest student of Astronomy,
inasmuch as the Moon’s orbital motions are, so far as we
know at present, typical of all the other celestial motions
throughout this TUniverse. Moreover the study of the
various motions of the Moon has incidentelly yielded most
veluable information, such as, for example, the form of the
Earth, the vicissitudes of the tides, the distance of the Sun,
and consequently the magnitude of the whole solar system.
But above sll the Moon’s motions and still more her irre-
gularities have taught wus the universality of the law of
gravitational attraction. The motions of the Moon are
moreover of the very highest importance practically to the
navigator and geographer, since measurements of lunar
distances and occultations of stars afford the most acourate
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determinations of longitude. I will begin by reminding
you of two very important laws in regard to bodies moving
in space. The first is, that in the case of a body moving
undisturbed along a straight line, the radius vectors joined
from any point arbitrarily chosen outside that line to points
along it, will always describe equal triangular areas in equal
periods of time. The second law which should be remem-
bered, is that any force applied along the line of the radius
veotor so as to deflect that body from its original motion
in a straight line (such, for example, as the Earth’s attrac-
tion on the Moon, regarded as the sole occupants of space),
will not interfere with its sweeping out these equal areas in
equal periods, and retaining the same orbital plane. Hence
in all cases in which a body is moving under the influence
of a central force, and under no other, we can deduce the
following laws of motion :(—

Firsily—The areal velocity, or square miles per second,
swept through by the radius vector, will always be constant
at all parts of the orbit, or in other words, the radius vector
will describe areas proportional to the time.

Secondly.—The linear velocity, or miles per second, will
vary inversely as the distance at which the body will happen
to be at any given moment from the central attracting force
(the angular velocity varying inversely as the square of that
distance).

These all important laws in regard to celestial motions
were discovered as plain facts by Kepler, from his exami-
nation of Tycho’s observational records. But it was Newton
who first proved them to be the mathematically necessary
and universal laws of motion. Newton further proved that
if a body be moving in an ellipse, having a centre of force
at one of its foci, then the force of attraction at different
points in the orbit will vary inversely as the square of the
distance from that centre. And this was an epoch-making
discovery of vast importance in the science of Astronomy,
as being the bagis of the universal principle of gravitation.
Newton was able to prove that it is the attraction of the
Earth, which determines the main motion of the Moon in
her elliptical orbit, and that this attraction is comparable
with the amount of attraction or gravity at the %arth’s
surface. For at the Earth’s surface, that is at the distance
of the Earth’s circumference from its centre, a body falls a
little more than 16 feet, or 193 inches in one second. And -
since the Moon is sixty times further away from the Earth’s
centre than is a body at the Earth’s surface, therefore a
body at the distance of the Moon should fall according to
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this law only one-sixtieth squared as far; per second as it
would do at the Earth’s surface. It ought then to fall 193

inches diminished in the ratio of 1 to 3,600 or -11—9 inch

per second. And —115 inch is just about the amount which

the Moon is actually deflected towards the Earth in each
second. It was from the satisfactory proof of the Earth’s
attraction on the Moon that Newton was led on to his great
discovery of the wuniversality of the law of reciprocal attrac-
tion between all the bodies in space. Hence each body is
& centre of attraction extending infinitely into space,
and hence results the almost infinite complexity of
the celestial motions. He further proved by very subtle
and beautiful calculations, that any body moving under
the influence of & central mass, must describe some kind
of conic. A conic section is the curve traced out by a point
which moves in such a manner that its distance from a given
fixed point celled the focus continually bears the same ratio
to its distance from & given imaginary fixed line called the
directrix. When this ratio is unity the curve will be a
parabola, when more than wunity an hyperbola, when less
than unity an ellipse. As then the curve must be a conic,
it must be either an ellipse (a eircle is only one form of an
ellipse) or & parabola or else a hyperbola. What the parti-
cular conic would sactually be in eny given cage, would
depend upon the original or primitive velocity and direction
imparted to the circulating boedy. It may be as well to
remind you of the principal practical characteristics of these
three kinds of curves called conic sections which are traced
out by celestial bodies. And these curves are called conic
sections, because, when & xight circular come (not eny
oone) is intersected by & plane surface, the boundary of the
seotion 8o formed will ke one or other of these curves.

Thus firstly, the ellipse is a plane of section which cuts
completely across & right cone, coming out at both slanting
sides, but lower down on one side than on the other. A
parabola is a plane which cuts a right cone parallel to its
opposite slant-side (that is at an angle equal to the constant
angle which the generating line forms with the axis) but
does not come out at both sides, and is such that its two
extremities . or legs continually approach each other but
never meet, whereas the legs of an hyperbola (which cuts
a cone otherwise thun parallel to one of its slant-sides)
diverge practically to infinity. ,

Now as the Moon does not fly away from, but goes round
and round the Earth, it is -obvious from the definitions we
heve given of the parabola and the hyperbola that she gen.
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not be moving in a parabolic nor an hyperbolic curve. She
must then move in an ellipse. To be more precise, however,
both the Earth and the Moon describe similar ellipses (the
Moon’s path being eighty times greater than that of the Earth,
because its mass is eighty times less) around their common
centre of gravity. However, in treating of the motion of
the Moon around the Earth, it is convenient in all mathe-
matical calculations to reduce the motion of the Earth to
zero, and the mass of the Moon to zero, ascribing the whole
mass of the two bodies to the Earth, and all the motion to
the Moon. Thus we can place the centre of gravity of the
two bodies, not as it really is at about o of the Moon’s
distance, or about 3,000 miles from the Earth’s centre, but
immediately at the Earth’s centre.

Now we will first examine what would be the motion
of the Moon around the Earth regarded as its fixed centre
of gravity, if there were no Sun or planets to disturb her
in her orbit. She would move round and round the Eerth,
for ever describing exactly the same ellipse, exactly obeying
the mathematical laws of motion of two bodies in space,
which I have mentioned. The Moon’s motion in this ellipse
is brought about in the foliowing manner.

When the Moon is at apogee or at the point which is farthest
from the Eawth, the Earth’s attraction then overcomes her
velocity, and brings her towards itself with such an accelerated
moticn that she at length overcomes the Earth’s attraction
and shoots past the Earth as it were, her velocity at perigee
prevailing over the Earth’s stiraction. She then gradually
decreages in velocity until she again arrives at apogee, where
the Earth’s attraction again prevails over her velocity, This
process, if the Moon were undisturbed in her crbit, would
repeat itself indefinitely. Thus the radii vectores would for
ever sweep oubt equak areas in equal periods of time; her
lineal velocity would be always proportional to her momentary
distance from the Earth, her anguler velocity being propor-
tional to the square of that distance ; or stating the case in less
mathematical language, if we compare the Moon at perigee
and apogee; then at perigee the radius vector would sweep out
a precisely equal ares at perigee as at apogee, but the
Moon’s velocity would be greater than at apogee exactly in
proportion as its radins vector would be shorter, and’ her
angular velocity would be greater as the square of this propor-
tion. Thus, supposing for simplicity’s sake, that the Moon were.
twice as near the Earth at perigee as at apogee, then her linear
velocity would .be: twice as great.and her angular. velocity
four times as great at perigee as at apogee. The true amount
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of her ellipticity can be.calculated from the variation of her
dpparent diameter, which ranges from 294 minutes to 33}
minutes of arc, which points to her ellipticity being about
Ath—over three times as great as the ellipticity of the Earth’s
i)resent orbit. In order to predict the Moon’s position in her
ellipse, or in other words to form lunar tables, we must be
acquainted with what are called the ““ elements * of an elhpt?-
cal orbit. We must know, that is to say, the greater axis
of the orbit, the ratio of eccentricity, which is the ratio of half
the lesser axis to half the greater axis, the longitude of her
perigee, and that of the ascending node, the inclinatiqn or
the angular projection of her orbit to the plane of the ecliptic,
and lastly the longitude of her epoch, or the starting point as
it were for our calculations. The first two ° elements”
determine the nature of the Moon’s orbit, the three follow-
ing its position in space, and the last is the relation of her
present position to what it was at a given point of time.
The average distance of the Moon, found from its parallax,
being about 60 x radius of the Earth, or 239,000 miles, and
her ellipticity being known to be g;th, it can easily be calculated
that her distance from the Earth must vary from about 221,000
miles at perigee to about 253,000 miles at apogee, & difference
of 32,000 miles. The number of miles which the Moon has
to travel in each lunation, being = x mean radius (regarding
her orbit as circular) is therefore 6:2882 x 289,000 miles, or
about 1} million-of miles, or on the average 55,000 miles a
day, or 2,300 miles or rather more than her own diameter
in one hour, or 1,183 yards in one second. From the Moon’s
mean velocity per second (or what her velocity would be if
she moved in & circle instead of an ellipse) can easily be found
what her true velocity really is at any given moment by apply-
ing what is called the “ Equation of the centre,” thereby
reducing her imaginary circular motion to her true motion in
an orbit of 055, or about &:th ellipticity. Incidentally I may
remind you that the true form of the Moon’s orbit with
reference to the Sun, is not any series of ellipses nor looped
spirals nor cycloids nor even trochoids, but it is nothing
else than the orbit of the Earth, with very slight depressions
and elevations of its concavity towards the Sun at each New
and Full Moon. The Moon’s orbit (contrary to what is often
imagined) is always concave towards the Sun, even when at
the point nearest to the Sun. She will then only be about
% x distance from the Earth towards the centre of the chord,
which joins the two points where she crosses the HKarth’s
path at Quadratures.

As to the. Moon’s rotatory motion, I need only remind you,
that owing probably to the Earth’s attraction on some slight



DEC. 1913.] FORCES TO DETEBMINE MOTIONS OF MOON. 40

protuberance on the Moon’s surface (analogous to a fixed
tidal wave) she.always presents to the Earth the same face,
and therefore she rotates synodically once in rather less than
27} days. In other words, the Moon rotates absolutely 13}
‘times in a year, and relatlvely to the Sun and Earth 12} times,
The actual rotatory motion therefore of & point on her equator

would be about 10 miles an hour or gy x the corresponding

rotatory velocity at the equator of the Earth. As the Moon’s
orbital velocity is variable, and her rotatory velocity is invari-
able, we consequently see from the Earth’s surface sometimes
a little in front of her so to speak and sometimes a little behind.
This * libration in longitude ” amounts to about 7%° either
way. Thus we can see about 15° more of her surface
longitudinally than if her orbital velocity were invariable,
besides another degree in longitude, by reason of other
inequalities in her orbital motion, which we are about to
mention, as due to the Sun’s disturbing influence. And as
her polar axis is inclined 1}° to the plane of her orbit, and
that again is inclined about 5° to the plane of the echptlc,
we can therefore see 5° + 1}° or 63° beyond either pole accord-
ing as the Moon is at one side or the other of her path around
the Earth. Thus her * libration in latitude ” is about twice
63° or 18°. The net result of the Moon’s librations in longi-
tude and latitude is that we are enabled to see at one time
or another § x her whole surface instead of only § of it. So
far we have been treating of the Moon’s motion as a simple
ellipse around the Earth. We must now consider the far
more difficult and complicated problems connected with the
‘ disturbances >’ or ¢ inequalities ”” of this original elliptical
motion produced by the Sun’s action. .These perturbations
or inequalities are in the nature of a superposition of small
motions upon the main or normal elliptical motion of the
Moon regarded simply as revolving about the Earth as its
fixed focus. By acting unequally upon Earth and Moon
the Sun destroys the mathematical exactness of the Moon’s
elliptical motion. Thus owing to the Sun’s disturbances
the Moon does not in fact move in any known or symmetrical
curve, but in a path which sometimes approaches to and-
sometimes recedes from the true elliptical form, and her radii
vectores do not sweep out equal areas in equal times. And
the amount of the disturbing forces upon the Moon’s orbit
can be judged from the extent of her deviation from true
elliptical motion. Although many of these perturbations
are very small in themselves in each lunation, yet in the lapse
of ages some of them accumulate so as to become very consi- .
derable, and may so modify the Moon’s motions after long
periods of time, as to render the original elements of her orbit
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quite inadequate. It is utterly beyond the scope of a short
paper like this, to describe any but the largest and most
important of these inequalities. Over fifty of them are taken
into account in astronomical ephemerides in longitude, and
over twenty in latitude. To account for all the Moon’s inequali-
ties which are almost infinite in rumber, is even beyond the
present power of mathematics to accomplish. We will con-
tent ourselves with trying to get a clear idea of some of
the most importent (because tko largest) of these inequalities
in the motions of the Moon. Now when twe bodies revolve
round their common cenire of gravity, and a third body is
present to modify or distnrb their motions by its attraction,
if this third body is very iar away (or very smaill), 1ts action
upon the two former is callec a “ disturbance ” or pertur-
’batmn,” and this third body is called the  disturbing force.”
Thus in the case of the Earth Moon and Sun, the Sun is the
far away dlsturbmg force, the u&ruh is the fixed central body
and the Moon is the Gistnrked body. Now it must be
thoroughly grasped and understcod at the outset, that the
disturbing power of the third body depends, not upon its
force of attraction absolutely but wpon the difference (whether
this difference be in amount or direction or both) of its attrac-
tion upen the two bodies that it disturbs. The mean difference
or overplus of attraction by the Su.n upon Earth and Moon,
does not amount to more than gshs x gravity at the Earth’s
surface. And this disturbing force is continually varying
according to the temiporery conﬁgu.ratmn of the three bodies.
As the Sun is about 400 times more remote than the Moon,
the Moon is therefore a,lternately a5 part nearer and g, part
farther from the Sun at Mew Moon and Full Moon respec-
tively. And it is from these unequal distances and there-
fore unequal attracting forces' that the Sun’s disturbing
influence is dus. If the Sun'z attraction on the Earth and
on the Moon were always egual and in parallel directions,
then this disturbing fores. woulti be nil. Thus although the
Sun’s- absolute attracticn i5 1a¢xe than double that which the
_Earth exerts on the Moowm (for his attraction on the Moon
+ Earth’s attrection multiplied by his mass and divided by

the square of his distance of 2300, or more tha,n double

that of the Earth), yet his dmuurbmg foroe is only 15 X the
whole force which keeps the Moon in her orbit: Hence at
New Moen the Sun-does not dsprive the Earth of her satellite,
in spite of his attruction: bemgthce as strong as the Earth’s

because the Sun’s attraction on the Moon at Full Moon is only
very shghtly greater than it is on the Earth. Thus in order
to prevent the’ Moon escaping, the Earth has not to ‘exett
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an equal pull with that of the Sun, but only a pull equal 'to
the difference of the amount of the Sun’s pull upon Earth
and Moon at the moment, and this difference of the Sun’s
pulls is always much less than the whole attraction which
the Earth is able to exert upon the Moon. Both Earth and
Moon fall towards the Sun together, this falling motion, of
course, being combined with any other intrinsic motions which
Earth and Moon may possess at the time. When it is New
Moon, she is g5;th nearer the Sun than is the Earth. The
Sun’s disturbing influence then makes the Moon fall towards
himself slightly faster than the Earth, the Earth’s attraction
on the Moon is thus diminished for the time being, and the
Moon’s curvature %owards the FEarth is diminished, and
increased towards tiiz Sun. At half Moon or quadratures,
when Earth and Moon ars &t equal distances from the Sun,
the Sun is pulling the Tarth and Moon towards himself with
equal force indeed but on converging lines, and thereby
reinforcing the Earth’s attraction on the Moon,; rendering
the Moon’s orbit at quedratures rather more curved towards
the Earth, than it weuld have been if there were no
Sun disturbing her true eliiptical orbit. The Earth’s attrac-
tion on the Moon is thus weakened at Syzygies and reinforced
at Quadratures, much in the same way as the tides are drawn
away from the centre of the Earth, when in a line with the
Moon’s attraction (disregarding the effects of friction), and
pulled towards the Earth’s centre when at right angles to
the line of the Moon’s attraction. The force is directed away
from the Earth, or the Earth’s attraction is diminished at Full
Moon as well as New Moon, because the Sun then attracts
the Earth a little mcre than he attracts the Moon, thereby
tending to separate them. Whilst the Sun is the only body
which is able sensibly to disturb the Moon’s elliptical motion
by his direct action the planets do so indirectly, by disturbing
the Earth’s orbit and therefore slightly modifying the ratios
of the distance of Sun, Earth and Moon. But before we
enquire into the effects of the planets’ attraction upon the
Moon’s orbital motions, we will first give our attention to the
disturbances caused by the Sun alone. [To be continued.]

Extracts from Publications.

Planet M. T.

The mean distance of Eros from the Sun is 1,458, that
of Mars 1,524, the mean distance of the Earth from the Sun
being unity. When the small planet M. T. was discovered,
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