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Abstract

We show that the Hall dust magnetohydrodynamic equations admit a non-
stationary dust-Alfvénic shock solution in dusty plasmas. The dust-Alfvénic
shocklet (DAS) occurs on a long temporal (dust gyroperiod) and spatial (dust skin
depth) scales. The present result can have relevance to acceleration of charged
grains by the DAS in space dusty plasmas.

Space dusty plasmas are usually embedded in an external
magnetic field. Dusty magnetoplasmas support a great variety of
low-frequency electrostatic and electromagnetic waves [1–6]. The
latter include shear and compressional dust Alfvén waves whose
linear properties have been discussed in detail [5, 6].

Our objective here is to discuss the nonlinear properties of
perpendicularly propagating (with respect to the magnetic field
direction) compressional dust Alfvén waves in complex (dusty)
plasmas. We consider an electron-ion-dust (EID) plasma in an
external magnetic field B0ẑ, where B0 is the magnitude of the
external magnetic field and ẑ is the unit vector along the z

axis. At equilibrium, we have ene − qdnd0 = eni0, where e is
the magnitude of the electron charge, nj0 is the unperturbed
particle number density of the particle species j (j equals e for
electrons, i for ions, and d for dust grains), and qd is the dust
charge. For negatively (positively) charged dust grains, we have
qd = −eZd (eZd), where Zd is the number of charges residing
on the dust grain surface. The electric and magnetic fields, E and
B, in an EID plasma associated with the dust Alfvén waves are
governed by Faraday’s law

�B

�t
= −c∇ × E, (1)

and Ampère’s law

∇ × B = 4�e

c
J , (2)

where Jp = enivi − eneve + qdndvd is the plasma current density,
nj is the total density, vj is the fluid velocity, and c is the speed
of light in vacuum. We have neglected the displacement current
in (2), since the phase velocity of the dust Alfvén waves is much
smaller than the speed of light.

The electric field in our cold dusty plasma is obtained by adding
the inertialess electron and ion momentum equations, and using
the equilibrium quasi-neutrality condition. The result is

E = −vd × B

c
+ Jp × B

ndqd

, (3)
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which can be inserted into (1) to obtain

�tB = ∇ ×
[(

vd − c∇ × B

4�ndqd

)
× B

]
. (4)

We note that the second term in the parenthesis on the right-hand
side of (4) represents the dust Hall effect in complex plasmas.

We now need an equation relating the dust fluid velocity, the
dust number density, and the magnetic field. For this purpose,
we substitute (3) into the dust momentum equation and use (2)
to obtain

�tvd + vd · ∇vd = (∇ × B) × B

4��d

, (5)

where �d = ndmd is the dust mass density, which is determined
from the dust continuity equation

�t�d + ∇ · (�dvd) = 0, (6)

where md is the dust mass.
Equations (4), (5) and (6) govern the dynamics of three-

dimensional nonlinear dust Alfvén waves (DAWs). These
equations are useful for studying the turbulence properties of
fully developed dust Alfvén wave turbulence as well as coherent
nonlinear structures in dusty magnetofluids. In the following, we
focus on the particular case in which vd = x̂u(x, t), ∇ = x̂�x

and B = ẑBz(x, t), where x̂ is the unit vector along the x axis.
Equations (4)–(6) can then be put in the form

��H + U��H + H��U = 0, (7)

��U + U��U + 1

2�
��H

2 = 0, (8)

and

�t� + U��� + ���U = 0, (9)

where H = Bz/B0, U = u/VdA, � = �d/�0, �0 = mdnd0, � =
�cdt and � = x/�d . Here VdA = B0/

√
4��0 is the dust Alfvén

speed, �cd = |qd |B0/mdc is the dust gyrofrequency, �d = c/�pd

is the dust skin depth, and �pd = (4�q2
dnd0/md)1/2 is the dust

plasma frequency, A comparison of (7) and (9) shows that H = �,
which is the frozen-field relation for a magnetized dusty plasma.
Hence, Eq. (8) becomes

��U + U��U + ��H = 0, (10)

Our coupled equations (7) and (10) are similar to (2b) and (2a) of
Stenflo et al. [7] who investigated the shock wave formation in a
magnetized electron-ion plasma without dust.

Following Stenflo et al. [7], we now discuss possible non-
stationary solutions of (7) and (10). By comparing the latter
equations, we have

H =
(

D + 1

2
U

)2

, (11)
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where D is an arbitrary constant. Accordingly, (10) can be
written as

��U + D��U + 3��U
2 = 0, (12)

which is an inviscid Burgers equation. A possible solution of
(12) is [7]

U(�, �) = U0 − U(�, �)

[
� −

(
3U(�, �)

2
+ 1

)
�

]2

, (13)

where U0 is a constant. Equation (13) describes the nonlinear
evolution of the initial dust velocity perturbation

U(�, � = 0) = U0

1 + �2
. (14)

It turns out that U(�, �) develops into a shock whose profile has
been depicted in Ref. [7].

In summary, we have considered the nonlinear propagation
of compressive dust Alfvén waves in a uniform dusty
magnetoplasma. It has been shown that the nonlinear dust Alfvén
wave dynamics is governed by the dust Hall-MHD equations. The
latter admit non-stationary dust Alfvénic shock structures across
the external magnetic field direction. Dust Alfvénic shocklets
represent a new class of discontinuities in dusty plasmas and

they can serve the purpose of accelerating charges dust grains in
space dusty plasmas.
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