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Chiral Mott insulator with staggered loop currents in the fully frustrated Bose-Hubbard model
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Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an
optical lattice in the presence of a “synthetic” orbital magnetic field, we study the “fully frustrated” Bose-Hubbard
model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and
the density matrix renormalization group method, we show that these kinetically frustrated boson models admit
three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which
spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable
“chiral Mott insulator” (CMI) with staggered loop currents sandwiched between them at intermediate correlation.
We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow
variational wave function which captures its correlations, present results for the boson momentum distribution
across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we
consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the
CMI in weakly coupled ladders.
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I. INTRODUCTION

The effect of frustration in generating unusual states of
matter such as fractional quantum Hall fluids or quantum spin
liquids is an important and recurring theme in the physics of
condensed matter systems.1,2 Recently, research in the field
of ultracold atomic gases has begun to explore this area,
spurred on by the creation of artificial gauge fields using
Raman transitions in systems of cold atoms.3,4 These gauge
fields can be used to thread fluxes through the plaquettes of
optical lattices giving rise to “kinetic frustration” by producing
multiple minima in the band dispersion and frustrating simple
Bose condensation into a single nondegenerate minimum.
Similarly, time-dependent shaking of the optical lattice5,6 or
populating higher bands of an optical lattice7 can be used
to control the sign of the hopping amplitude in an optical
lattice, again leading to such “kinetic frustration.” For bosonic
atoms with weak repulsion, such kinetic frustration gets
resolved in a manner such that the resulting superfluid state
can have a broken symmetry corresponding to picking out
a particular linear combination of the different minima.7–11

Increasing the strength of the interactions at commensurate
filling can be expected to eventually yield a Mott insulator
(MI) with the motion of the bosons quenched, which thus
renders the kinetic frustration ineffective. In a synthetic flux
and at strong coupling, the fully gapped MI is identical to the
one expected for the same lattice without a frustrating flux
per plaquette;12 this simply means that at strong coupling,
we can adiabatically remove the flux without encountering a
quantum phase transition. However, there could exist a state
intermediate to the superfluid and the MI described above for
which charge motion has been suppressed enough to open
up a gap but not restore the broken symmetry associated
with frustration. Such a state is stabilized by virtual boson

fluctuations which can “sense” the local flux on a plaquette.
In a recent paper, we have found numerical evidence for the
existence of such a remarkable intermediate state in frustrated
two-leg ladders of bosons for the so-called fully frustrated
Bose-Hubbard (FFBH) model which has half a flux quantum
per plaquette. We call this state a “chiral Mott insulator” (CMI)
since it is fully gapped due to boson-boson interactions, exactly
like an ordinary Mott insulator, and in addition possesses chiral
order associated with the spontaneously broken time-reversal
symmetry arising from resolving the kinetic frustration. The
superfluid state of this system also possesses this chiral order
and we thus dub it a chiral superfluid (CSF).13 Other recent
studies have also focused on various such exotic bosonic states
driven by “ring-exchange” interactions,14–19 which again arise
due to virtual charge fluctuations in a Mott insulator.

In this paper, we discuss further details of our work on this
FFBH ladder model and its close cousin, the fully frustrated
quantum XY model, to which it reduces at high filling factors.
We also discuss how one might stabilize such a Mott insulator
in higher dimensions. Such a CMI may also be viewed as a
bosonic Mott-insulating version of the staggered loop current
states20–22 studied in the context of high-temperature cuprate
superconductivity.

Classical analogs of the CMI and CSF states have been
studied in the past.9–11 The simplest classical model displaying
analogous phases is the fully frustrated XY model in two
dimensions.23,24 At small but finite temperature, this model
has a phase with algebraic U (1) order for the spins along with
a staggered pattern of vorticity associated with each plaquette
corresponding to broken Z2 symmetry. This is the analog of
the CSF phase. As the temperature is increased, the U (1)
symmetry is restored while the Z2 symmetry continues to be
broken in a state that is the analog of the CMI. Upon further
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increasing the temperature, the Z2 order is restored yielding
a completely disordered state, which is the analog of the
featureless CMI. These phases have also been found in another
classical models, most notably in one with two XY planes with
a frustrated coupling between them which as we will show is
a direct classical analog of the quantum model we study.

The CSF phase has been studied in a variety of frustrated
quantum models of bosons but without the strong correlations
required to obtain the CMI phase.25–28 The effect of correla-
tions in conjunction with frustration has been investigated for
models of fermions and quantum spins.20,22,29–36 In both cases,
analogs of the CSF state are obtained as staggered current (for
fermions) or gapless chiral (for spins) states. An analog of the
CMI state has been found for fermions in a ladder model.21

For spins, the analog of the CMI would be a spin gapped
state with vector chiral order, which has been proposed for
easy-plane frustrated magnets.37 Studies on microscopic spin
models for a CMI-like state suggest that it coexists with either
dimer order (for half-integer spin) or topological order (for
integer spin).38,39

In this paper, we study the Bose-Hubbard ladder of Ref. 13
using a variety of different techniques to elucidate the nature
and properties of the CSF and CMI. We employ mean-field
theory, mapping onto an effective classical model and a
variational Monte Carlo method for this purpose. We also
provide physical pictures for the CMI phase as a supersolid of
vortices and a condensate of neutral excitons. The outline of
the paper is as follows: In Sec. II, we introduce the microscopic
model with a summary of results obtained from numerics
in our previous work. In Sec. III, we perform a mean-field
calculation which provides a good description of CSF phase
but is unable to describe the CMI phase. Then in Sec. IV, we
write down a rotor model for our Hamiltonian which allows us
to map it onto a model, which can be studied using classical
Monte Carlo simulations. Numerics on this model have been
performed in Ref. 13 and show the existence of the CMI. This
resulting model can be used for comparison to the classical
frustrated models mentioned earlier. In Sec. V, we provide
details of our density matrix renormalization group (DMRG)
studies on the Bose-Hubbard model, which also reveals a CMI
phase. In Sec. VI, we provide physical pictures of the CMI as
a supersolid of vortices or a condensate of neutral excitons
while in Sec. VII we perform a variational Monte Carlo
study of a candidate Jastrow wave function for the CMI state,
showing that it correctly captures the essential correlations of
the CMI state. Section VIII provides a short description of
experiments that can be performed to detect the CMI state in
Josephson junction arrays or cold-atom systems. Section IX
discusses generalizations to a staggered flux model and to
higher dimensions, and we conclude in Sec. X with a summary.

II. MODEL AND PHASE DIAGRAM

The Hamiltonian for the frustrated ladder as shown in Fig. 1
can be written as

H = −t
∑

x

(a†
xax+1 + a

†
x+1ax) + t

∑
x

(b†xbx+1 + b
†
x+1bx)

− t⊥
∑

x

(a†
xbx + b†xax) + U

2

∑
x

(
n2

a,x + n2
b,x

)
, (1)

FIG. 1. (Color online) Sketch of the fully frustrated Bose Hubbard
two-leg ladder. The opposite signs of the hopping on the a and
b legs correspond to a π flux threading each square plaquette
and frustrating the boson kinetic energy. Also depicted at the
spontaneously generated staggered loop currents generated in the
superfluid and chiral Mott insulator phases of this ladder model.

where ax and bx are bosonic operators on each of the two
legs of the ladder whose sites are labeled by x. na,x and nb,x

are the corresponding occupation numbers. t⊥ is the hopping
amplitude between the legs and U is the on-site two-body
interaction strength.

In our previous work we studied the ground state of Eq. (1)
using two independent numerical methods such as classical
Monte Carlo techniques13 and density matrix renormalization
group (DMRG). The complete phase diagram of this model
is shown in Figs. 2 and 3 and described in detail in the
corresponding sections. The important results obtained by the
above two analyses are qualitatively similar. As a result of the
competition between the on-site interaction (U ), intrachain
hopping (t), and interchain hopping (t⊥), we obtain three
different quantum phases: the CSF, the CMI, and a regular
MI. When the Hubbard repulsion (U ) is small the system
exhibits a gapless SF phase with a finite loop current order
in each plaquette. For intermediate values of U the system
undergoes a transition from CSF to CMI phase which pos-
sesses finite charge gap and also exhibits staggered loop current
and spontaneously breaks time-reversal symmetry. A further
increase of the value of U breaks the loop current order in the
system and the system undergoes a transition to the regular MI
phase. Using different scaling properties of the observables
obtained by the numerical simulations we found that the SF
to CMI phase transition is of Berezinskii-Kosterlitz-Thouless
(BKT)40 universality class and the transition from CMI to MI

0.75 0.8 0.85 0.9 0.95
1/Jτ

0

1

2

3

4

5

J ⊥

CSF

CMI

MI

BKT Transition

Ising Transition

FIG. 2. (Color online) Phase diagram of the effective classical
model obtained in Ref. 13 from classical Monte Carlo simulations of
Eq. (24), which is shown in with J‖ = Jτ , obtained from variational
Monte Carlo simulations.
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FIG. 3. (Color online) Phase diagram of the FFBH model in
Eq. (1) obtained using DMRG in Ref. 13. Both the classical and
quantum models exhibit a chiral Mott insulator (CMI) at intermediate
correlations, intervening between a chiral superfluid (CSF) and an
ordinary Mott insulator (MI).

is of Ising universality class. Apart from the numerical analysis
of this model we analyze the system using several analytical
methods. We explain the numerical and analytical methods
used to understand the ground-state properties of Eq. (1) in the
following sections.

III. APPROXIMATE ANALYSES OF THE FFBH
LADDER MODEL

A. Single-particle condensate wave function

We begin by motivating the form of the single-particle
condensate wave function for our system in the weakly
interacting limit. To do this we first consider the single-particle
dispersion obtained from Eq. (1), i.e., setting U = 0. If we also
set t⊥ = 0, the dispersion is as shown in the upper panel of
Fig. 4 with two bands inverted with respect to each other and
intersecting at k = ±π . The band with a minimum at k = 0
corresponds to the a leg while the one with a maximum at
k = 0 corresponds to the b leg. With t⊥ �= 0, the degeneracies
at the points of intersection are lifted resulting in two bands
with a gap as shown in the lower panel of Fig. 4. The
two minima at k = 0 and k = π originate from the bands
corresponding to each of the two legs with the k = 0 minimum
corresponding to bosons localized in the a leg and k = π

minimum to bosons in the b leg. A single-particle condensate
wave function for U = 0 can thus be any linear superposition
of the states at the two minima.

For U > 0 at a filling of one boson per site, the wave
function has the form

|�〉 = 1√
2
eiθ (|k = 0〉 + eiφ|k = π〉), (2)

where |k = 0〉 and |k = π〉 correspond to the states at the
minima k = 0 and k = π respectively and θ and φ are phases.
This form of |�〉 comes about because the on-site repulsion
discourages double occupancy so that with one boson per site,
the system favors distributing the bosons equally over both
legs. Thus, the single-particle condensate wave function has
equal amplitude in the states |k = 0〉 and |k = π〉 with relative

FIG. 4. (Color online) (a) The single-particle dispersion obtained
from Eq. (1) with t⊥ = 0. The two legs are now completely decoupled
from each other. For t > 0, the lower (upper) band corresponds to the
bosons being in the a (b) leg as is shown by the solid (dashed)
line. The two bands are degenerate at k = ±π/2. (b) For t⊥ �= 0, the
degeneracies between the bands are lifted resulting in a gap between
the two bands. There are now two minima in the lower band at k = 0
and π . The k = 0 (π ) minimum originates from the lower (upper)
band of the two decoupled chains and thus corresponds to the particles
being localized mostly in the a (b) legs.

phase φ and global phase θ . Minimizing the energy of states
of the form given in Eq. (2) yields φ = ±π/2. Thus, the form
of the single-particle wave function is

|�〉 = 1√
2
eiθ (|k = 0〉 + e±iπ/2|k = π〉), (3)

which has a global U (1) symmetry corresponding to θ , which
acts as the superfluid parameter and a Z2 symmetry due to
the ± sign in the relative phase corresponding to a particular
pattern of staggered current loops (chirality). In 1 + 1 D,
like for our system, there is no long-range U (1) order but
at best algebraically decaying correlations corresponding to
quasi-long-range order of the superfluid. However, there can
exist true long-range Ising order. The state with coexisting
algebraic superfluid order and long-range chiral order is the
chiral superfluid. The chiral Mott insulator corresponds to
short-range superfluid correlations (accompanied by a charge
gap) existing along with long-range chiral order whereas in the
Mott insulator both superfluid and chiral order are completely
absent.

B. Mean-field theory of the chiral superfluid

In this section we refine the above discussion and present
the mean-field theory description of the chiral superfluid
phase in (1). Ignoring the interaction term U , we obtain the
single-particle dispersion ±Ek with Ek =

√
t2
⊥ + (2t cos k)2 ,

and introducing a chemical potential μ, we see that the two
bands have dispersion ±Ek − μ. Of these, the lower band
(with dispersion −Ek − μ) has two minima at k = 0,π . The
eigenvector for this band (uk,vk)T is

uk = 1√
1 + g2

k

=
√

1

2

(
1 + 2t cos k

Ek

)
, (4)
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vk = gk√
1 + g2

k

=
√

1

2

(
1 − 2t cos k

Ek

)
, (5)

ukvk = t⊥
2Ek

, (6)

where gk = (Ek − 2t)/t⊥. Note that we can set uk+π = vk

and vk+π = uk which means, in particular, that uπ = v0 and
vπ = u0.

We can rotate to a new basis, where α
†
k (β†

k ) creates
quasiparticles in the lower (higher) band at momentum k, via(

ak

bk

)
=

(
uk −vk

vk uk

)(
αk

βk

)
, (7)

in which the single-particle Hamiltonian is diagonal and given
by

Hkin =
∑

k

[(−Ek − μ)α†
kαk + (Ek − μ)β†

kβk]. (8)

Reintroducing the local repulsive interaction Hint = U
2 (n2

a +
n2

b) at each site, which is responsible for eventually driving
the 2-leg ladder into a Mott-insulator state, we get back the
Hamiltonian in Eq. (1). We focus on the low-energy physics
and thus ignore any effects of the upper band. Further, at the
mean-field level we can focus only on the lowest energy k =
0,π modes in the low-energy band, and write the Hamiltonian
in terms of these modes. This leads to

H
proj
low = (−E0 − μ)

∑
i=0,π

α
†
i αi + U

(
u4

0 + v4
0

)
×

∑
i=0,π

α
†
i α

†
i αiαi + 8Uu2

0v
2
0α

†
0α

†
παπα0

+ 2Uu2
0v

2
0(α†

0α
†
0απαπ + α†

πα†
πα0α0). (9)

If we were to condense the αi bosons with 〈αi〉 = ϕi (where
i = 0,π ), we get the mean-field energy

Emft
low = (−E0 − μ)

∑
i=0,π

|ϕi |2 + U
(
u4

0 + v4
0

) ∑
i=0,π

|ϕi |4

+ 8Uu2
0v

2
0 |ϕ0|2|ϕπ |2 + 2Uu2

0v
2
0

(
ϕ∗2

0 ϕ2
π + ϕ∗2

π ϕ2
0

)
,

(10)

where the final term describes “umklapp effects” which
transfer a pair of bosons from one minimum to the other.
Minimizing the interaction energy with respect to the phase
difference between ϕ0 and ϕπ gives a value of ±π/2 phase for
this quantity. Minimizing with respect to the amplitude of the
two condensates we find it to be the same for both, which we
call ψ . This gives us up to a global phase rotation,

〈ax〉 = ψ[u0 ± iv0(−1)x], (11)

〈bx〉 = ψ[v0 ± iu0(−1)x]. (12)

This leads to a spatially uniform boson density and bond
energy, but to a spatially varying bond current density which
forms a staggered pattern, much like a vortex-antivortex

crystal. Specifically, the bond currents are given by

ja
x,x+1 = −it〈a†

xax+1 − a†
xax+1〉

= ∓4tψ2u0v0(−1)x, (13)

jb
x,x+1 = +it〈b†xbx+1 − b†xbx+1〉

= ±4tψ2u0v0(−1)x, (14)

jab
x = −it⊥〈a†

xbx − b†xax〉
= ∓2t⊥ψ2

(
u2

0 − v2
0

)
(−1)x. (15)

Note that current conservation at each lattice point works out
if we use the fact, coming from the single-particle dispersion
analysis, that 4tu0v0 = t⊥(u2

0 − v2
0). The two possible choices

for the sign of each bond current correspond to two distinct
current order patterns which are related to one another by time
reversal or by a unit translation.

C. Mean-field theory of the Mott transition

We next turn to the Mott-insulating state induced by strong
repulsion in the CSF state. We describe here the mean-field
theory of this Mott transition, which we then argue to be
inadequate to describe the physics. To obtain the mean-field
CSF-to-insulator phase boundary, we consider the single-site
Hamiltonian (motivated by our previous discussion of the
CSF),

H
single
mf (a) = −2tψ[(u0 − iv0)a† + (u0 + iv0)a]

− t⊥ψ[(v0 + iu0)a† + (v0 − iu0)a]

+ U

2
a†a†aa − μa†a. (16)

Setting t and t⊥ to 0 we obtain a single-site Hamiltonian, whose
ground state is a true number state |n〉 given by U (n − 1) <

μ < Un. Turning on a small nonzero ψ leads to the first-order
corrected wave function

|ñ(1)〉 = |n〉 + ψ(r − is)
√

n + 1

Un − μ
|n + 1〉

+ ψ(r + is)
√

n

μ − U (n − 1)
|n − 1〉, (17)

where

r ≡ (2tu0 + t⊥v0), (18)

s ≡ (2tv0 − t⊥u0). (19)

The resulting linearized self-consistent equation for ψ leads
to the phase boundary

1√
4t2 + t2

⊥
= n

μ − U (n − 1)
+ n + 1

Un − μ
(20)

with U (n − 1) < μ < Un.
This result for the SF-MI phase boundary is exactly the

same as in the usual mean-field SF-MI phase diagram provided
we replace zt →

√
4t2 + t2

⊥ in the conventional result (where z

is the coordination number), so that the Mott transition happens
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when

Uπ−flux
c,ladder√

4t2 + t2
⊥

= g∗, (21)

where g∗ ≈ 5.83 at a filling of one boson per site.
We end by noting that this mean-field theory does not

have explicit current density wave and superfluidity as two
independent order parameters, since the current is simply
a product of the Bose condensate at two different sites.
Thus the superfluidity and any time-reversal breaking orders
vanish together at a single SF-MI transition. However, such
a vanishing of two completely different orders at a single
continuous Mott transition is not expected to be generic and
is Landau-forbidden. This encourages us to pursue careful
numerical studies of this model which enable us to go beyond
this simple mean-field theory.

IV. CLASSICAL XY MODEL

As noted above, mean-field theory fails to give us the
complete picture of the FFBH model. In order to go beyond
this approach, we map the quantum FFXY model (which is a
good description of the FFBH model at large integer filling)
to an effective classical model on a space-time lattice by
stacking of ladders atop each other in the imaginary space
time. To do this we construct a rotor model from the fully
frustrated Bose-Hubbard model in Eq. (1)—such a rotor model
ignores amplitude fluctuations and is expected to be a valid
effective description at large fillings. Setting ax ∼ exp(−iϕa

x )
and bx ∼ exp(−iϕb

x ) and replacing the number operators na,b

by angular momentum operatorsLa,b which cause fluctuations
in the phases (angles) ϕa,b we obtain the partition function in
terms of the classical action in one higher dimension as

Z =
∑

{{ϕx,τ }}
e−S1+1

cl [ϕ], (22)

where

S1+1
cl =−

∑
xτ

[
J‖ cos

(
ϕa

x+1,τ − ϕa
x,τ

)− J‖ cos
(
ϕb

x+1,τ − ϕb
x,τ

)
+ J⊥ cos

(
ϕa

x,τ − ϕb
x,τ

)] − Jτ

∑
xτ

[
cos

(
ϕa

x,τ+1 − ϕa
x,τ

)
+ cos

(
ϕb

x,τ+1 − ϕb
x,τ

)]
, (23)

with 2εt̃ = J‖, 2εt̃⊥ = J⊥, and 1/εU = Jτ (see Appendices
for details). We see that this has the form of an XY model,

HXY = −
∑
i,δ

Jδ cos (ϕi − ϕi+δ) . (24)

Here the classical variable ϕi corresponds to the boson phases
and (i,i + δ) are the nearest neighbors along the space-time
direction δ. The couplings Jδ take the values ±J‖ on the two
legs, J⊥ on the rungs linking the two layers, and Jτ in the
imaginary-time direction. In order to get the properties of the
quantum model at a fixed inverse temperature βt̃ , we must
take the “time”-continuum limit of ε → 0, sending J‖ → 0,
J⊥ → 0, and Jτ → ∞, while keeping fixed J⊥/J‖ = t̃⊥/t̃ and
JτJ‖ = 2t̃/U . The inverse temperature βt̃ is then given by
εt̃Lτ and thus depends on the chosen value of εt̃ (which must

be taken to be very small) and the size of the simulation cell
in the “time”-direction. We set ε = 1/

√
2Ut̃ which leads to

J‖ = Jτ = √
2t̃/U .

This effective square lattice bilayer XY Hamiltonian for the
FFBH model can be simulated using a classical Monte Carlo
algorithm. The Monte Carlo simulation was performed using
the Metropolis algorithm with selective energy conserving
moves to increase the acceptance rates at large coupling. About
106–107 steps were used to calculate the equilibrium values of
the various quantities at the largest system sizes.

The ordinary Mott insulator of the FFBH model corre-
sponds to a fully disordered paramagnetic state of the effective
bilayer classical XY model. Starting from the superfluid phase
at small 1/Jτ , we detect the vanishing of superfluidity in
this model by calculating the helicity modulus 
, which
corresponds to a response to an infinitesimal phase twist in
the spatial direction. Explicitly,


 = 1

2

∂2F

∂�2

∣∣∣∣
�→0

, (25)

where the free energy

F = − log10

∑
{ϕx,τ }

e−S1+1
cl , (26)

and � is the flux twist along the ‖ direction.
The critical points for the BKT transition is obtained by the

finite-size scaling of the 
 as described in Ref. 13. This method
has been used to successfully locate the thermal BKT transition
for a single-layer XY model, with24 or without frustration,41

and has also been used to detect non-BKT thermal transitions
driven by half vortices (which yield A = 8/π ) in spinor
condensates.42 Using this technique for several values of J⊥
we obtain the boundary for the CSF-CMI transition as shown
in Fig. 2.

The Ising transition requires a different method for its
detection. Since the chiral order is truly long ranged, we can
use the method of Binder cumulants to accurately locate the
transition as described in Ref. 13. For an order parameter m,
the Binder cumulant is defined as

BL =
(

1 − 〈m4〉L
3〈m2〉2

L

)
. (27)

For our system, the order parameter is given by

m = 1

L2

∑
iτ

(−1)i Jiτ , (28)

where Jiτ is the current around a plaquette normal to the time
direction. i and τ are respectively the coordinates in the ‖ and
time directions. If a(i,τ ), a(i + 1,τ ), b(i + 1,τ ), and b(i,τ )
are the vertices of the plaquette going around clockwise,

Jiτ = J‖
[
sin

(
ϕa

i+1,τ − ϕa
i,τ

) + sin
(
ϕb

i,τ − ϕb
i+1,τ

)]
+ J⊥

[
sin

(
ϕb

i+1,τ − ϕa
i+1,τ

) + sin
(
ϕa

i,τ − ϕb
i,τ

)]
. (29)

The order parameter given by Eqs. (28) and (29) is like
a staggered magnetization generated by the loop currents.
Since the current in a given loop can be clockwise or
counterclockwise, this order parameter is of the Ising type.
The values of BL calculated for different L are equal only
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at the fixed points of the system. In addition to the low and
high temperature fixed point, they will be equal at the location
of a continuous transition separating an ordered phase from a
disordered phase.

In the previous studies of HXY it has been shown that
there exists only one transition when J⊥ = J‖ and for large
anisotropy the system exhibits two separate transitions.43,44 In
our study, we find the CMI phase at the fully symmetric point
J⊥ = J‖ = Jτ indicating two transitions. The absence of the
second phase transition in the previous study could be due to
the small system sizes considered.

V. DENSITY MATRIX RENORMALIZATION
GROUP STUDY

We have performed a finite-size density matrix renormal-
ization group (FS-DMRG) study on the model described by
Eq. (1) to understand different quantum phase transitions and
compute an accurate phase diagram.45,46 In our FS-DMRG
calculation we have mapped the 2-leg Bose ladder into a
single chain with appropriate hopping elements. Calculations
were performed up to a system length of 200 sites (which
is equivalent to 100 rungs of the ladder system) at a filling
one boson per site. We keep six states per site and retain 200
density matrix states in our calculation. The error due to the
weight of the discarded states is expected to be less than 10−5.
By calculating different relevant physical quantities we obtain
an accurate ground-state phase diagram of Eq. (1) as explained
below.

We analyze the CSF-CMI and CMI-MI transitions using
a finite-size analysis of the momentum distribution function
and the rung current structure factor, respectively. These are
defined as

n(k) = 1

L

∑
x,x ′

eik(x−x ′)[〈a†
xax ′ 〉 + 〈b†xbx ′ 〉] (30)

and

Sj (k) = 1

L2

∑
x,x ′

eik(x−x ′)〈jxjx ′ 〉, (31)

where jx = i(a†
xbx − b

†
xax).

At a BKT transition,

〈a†
xax ′ 〉 = 〈b†xbx ′ 〉 ∼ 1/|x − x ′|1/4, (32)

so n(0)L−α with α = 3/4 is independent of the system length
L. Thus curves of n(0)L−3/4 as functions of the tuning
parameter for different L will intersect at a point which we
have used to locate the transition as shown in Fig. 5. In the
top panel of Fig. 5 we plot n(k = 0)L−3/4 versus U/t with
t⊥ = t . The curves for different L intersect at Uc1/t ≈ 3.98(1)
showing the CSF-CMI transition. The inset shows that the
charge gap in the insulator also becomes nonzero at this point,
thus providing a nontrivial consistency check that we have
correctly located the superfluid-to-insulator transition.

In order to see that such a intersection is not obtained for
α < 3/4 (corresponding to real-space correlations decaying
with a power law faster than 1/|x − x ′|1/4), we plot, in
the bottom left panel of Fig. 5, n(0)L−α with α = 0.6 and
find that the crossing point of these curves for different
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FIG. 5. (Color online) Top panel: n(0)L−3/4 as a function of U/t

for different system sizes, showing a crossing point at Uc,1/t =
3.98(2) which we identify as the CSF-CMI transition point which
is in the BKT universality class. The inset shows the charge gap
opening up at this transition into the insulator. Bottom panel: n(0)L−α

as a function of U/t for three different values of α = 0.6 (left), 0.75
(middle), and 0.8 (right) and different system sizes. The curves can
be seen to cross sharply for α = 0.75 and 0.8 whereas they do not for
α = 0.6.

system sizes drifts significantly instead of coinciding. For
example, the crossing point between L = 70 and L = 90
is at U/t = 4.040, where it shifts to U/t = 4.048 between
L = 60 and L = 70. Within the CSF state, however, we expect
real-space correlations to decay slower than 1/|x − x ′|1/4, so
that curves of n(0)L−α with α > 3/4 are simply expected to
cross at smaller U (i.e., deeper into the CSF and away from the
CSF-CMI transition). This is also shown in the bottom panels
of Fig. 5, where the crossing point is much better defined for
α = 0.75 (bottom middle panel, critical point) and α = 0.8
(bottom right panel, CSF state).

To summarize, the study of the momentum distribution
shows that the ground state of the FFBH model has critical
superfluid correlations, with α > 3/4, but that there is no such
critical superfluid for α < 3/4, suggesting that α = 3/4 is
the end point of a line of critical points. Finally, the CSF-
CMI transition located in this manner from the momentum
distribution completely agrees with the superfluid-to-insulator
transition inferred from the onset of a charge gap shown in the
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FIG. 6. (Color online) Momentum distribution n(k), defined in
Eq. (30), computed using DMRG, plotted in the CSF, CMI, and MI
regimes of the phase diagram showing symmetric peaks at k = 0 and
k = π . While the CSF exhibits sharp peaks which grow with system
size, the CMI and MI phases have finite peaks which do not scale
with system size.

inset of Fig. 5. Such a careful analysis thus unambiguously
shows that CSF-CMI transition is of the usual BKT type.

Having located the CSF-CMI transition, we next turn to
the CMI-MI transition. Based on the classical model study,
the CMI-MI transition is expected to be an Ising transition.
In order to locate this transition for the FFBH model using
DMRG, we use the scaling form of the rung current structure
factor Sj (π ) as explicitly shown in Ref. 13. The phase diagram
obtained using the above techniques is shown in Fig. 3.

Finally, in order to show that the CMI is a charge gapped
state of bosonic matter, we have computed the charge gap for
t = t⊥ = 1. The thermodynamic extrapolation of this charge
gap is shown in the inset of the top panel in Fig. 5. The error
on the gap is ≈0.01. Again, this unambiguously points to a
gapless CSF state for U < Uc1, while the states identified as
CMI and MI have a nonzero charge gap.

Using DMRG, we have mapped out the momentum
distribution in the various phases—CSF, CMI, and MI. In all
cases, we find two peaks at k = 0,π , as seen from Fig. 6. While
the two peaks in the CSF phase are sharp and grow rapidly with
system size, a careful scaling analysis shows that the peaks in
the momentum distribution do not grow with system size in
the CMI and MI. While this is hard to detect by eye in the
CMI, which shows a sharp peak even for L = 100, the two
peaks are clearly extremely broad in the MI.

VI. PHYSICAL PICTURES FOR THE CMI

Having identified the remarkable intermediate CMI state
using careful numerical studies, we next turn to simple physical
pictures for this state. We first describe the CMI as an exciton
condensate approaching it from the Mott insulator. Next,
we argue, from the superfluid side, that the CMI may be
alternatively viewed as a vortex supersolid.

A. Exciton condensate

Consider the regular Mott-insulator state with an integer
n0 � 1 number of bosons at each site at strong repulsion

U � t,t⊥. The low-energy excitations about this state corre-
spond to “doublons,” obtained by having an extra particle at a
particular site leading to an occupancy n0 + 1, and “holes,”
obtained by removing a particle leading to an occupancy
n0 − 1. The energy cost of a creating a doublon is Un0 − μ,
while the energy cost to create a hole is μ − U (n0 − 1). Once
we have a single doublon or hole, this can move around by
boson hopping—the relevant hopping matrix element for these
particles can be shown to be just the bare boson hopping
amplitude (±t , or t⊥) enhanced by a factor of (n0 + 1) for
doublons and n0 for holes. The resulting low-energy bands of
doublons and holes thus have energies

εd (k) = Un0 − μ − (n0 + 1)Ek, (33)

εh(k) = μ − U (n0 − 1) − n0Ek, (34)

where −Ek is the lowest band dispersion of a free single
particle on the ladder, given by −Ek ≡ −

√
(2t cos k)2 + t2

⊥ ,
which has degenerate minima at k = 0,π . We can pick μ

such that we have particle-hole symmetry in the sense that the
energy required to create the lowest energy hole (at k = 0,π )
is the same as that required to create the lowest energy doublon
(at k = 0,π ). This leads to μ = U (n0 − 1/2) − E0/2, and

εd (0/π ) = εh(0/π ) = U

2
−

(
n0 + 1

2

)
E0. (35)

At large U � t,t⊥, this energy is positive, so that doublons
and holes are suppressed in the Mott-insulating ground state.
A crude estimate of the transition from the Mott insulator to
a superfluid phase is given by demanding that εd,h(0/π ) = 0,
which yields Uc(n0) = (2n0 + 1)

√
4t2 + t2

⊥ , which for t⊥/t =
1 and n0 = 1 yields Uc = 6.7t , within a factor of 2 of the
numerical DMRG result. More importantly, this calculation
shows that the excitations of the regular Mott insulator are
similar to gapped particles and holes in a semiconductor,
and the Mott insulator to superfluid transition is similar to
metallizing a semiconductor by reducing its gap. This suggests
the possibility of forming doublon-hole bound states, akin to
excitons, in the vicinity of the insulator-to-superfluid transition
where the gap is small. Since our “Mott semiconductor” has
multiple minima in its band dispersion, both “direct excitons”
and “indirect excitons” are possible depending on whether the
doublon and the hole are at the same momentum (both at k = 0
or both at k = π ), or are at different momenta (one at k = 0
and the other at k = π ).

Insight into the nature of the CMI is obtained by noting that
the rung current operator jab(x) = −it⊥(a†

xbx − b
†
xax) can be

reexpressed in the Mott regime as

jab(x)|Mott〉 = −it⊥
√

n0(n0 + 1)[d†
a(x)h†

b(x)

− d
†
b(x)h†

a(x)]|Mott〉, (36)

where the operators d
†
a/b(x) and h

†
a/b(x) create doublons or

holes on leg a/b on the rung labeled by x, and |Mott〉
denotes a caricature of a Mott state with precisely n0 bosons
at each site. Focusing on the low-energy doublon and hole
modes amounts to projecting these creation operators to the
lowest dispersing band, and to the vicinity of k = 0,π . This
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yields

h†
a(x) = u0h̃

†
0(x) + v0(−1)xh̃†

π (x), (37)

h
†
b(x) = v0h̃

†
0(x) + u0(−1)xh̃†

π (x), (38)

d†
a(x) = u0d̃

†
0(x) + v0(−1)x d̃†

π (x), (39)

d
†
b(x) = v0d̃

†
0(x) + u0(−1)x d̃†

π (x), (40)

where h̃†,d̃† are the low-energy creation operators in the
vicinity of the indicated momenta. In terms of these, the rung
current operator acting on the Mott state becomes

jab(x)|Mott〉 = −it⊥
(
u2

0 − v2
0

)
(−1)x(d̃†

0 h̃
†
π − d̃†

π h̃
†
0)|Mott〉.

(41)

This shows that the current operator behaves as a composite
operator that creates an “indirect exciton.” It suggests that the
CMI state, in which the current operator on the rungs has
long-range staggered order, may be viewed as an “indirect
exciton” condensate,47 obtained by condensing this composite
operator to yield 〈d̃†

0 h̃
†
π − d̃†

π h̃
†
0〉 ∼ i� in the absence of any

doublon/hole condensation, i.e., with 〈d̃†
0/π 〉 = 〈h̃†

0/π 〉 = 0.
Since the number of excitations at each momentum (k = 0
or k = π ) is not a conserved quantity but can change due
to umklapp processes which scatter a boson pair from one
valley to the other while conserving crystal momentum, the
exciton condensate only breaks a discrete symmetry associated
with the parity of the boson number in each valley. The
exciton condensed CMI state, obtained by superpositions
of states with different valley parities and hence different
crystal momenta, also breaks the discrete lattice translational
symmetry.50 We note that the preceding physical insight into
the CMI phase does not yield a simple energetic reason for
why there should be such an intermediate phase between the
regular Mott insulator and the chiral superfluid. An alternative
scenario, within Landau theory, is that the combined presence
of soft hole/doublon modes and such low-energy excitons
might render the transition first order with no intervening CMI
state.

B. Vortex supersolid

The CSF which possesses staggered loop currents can be
understood as a vortex-antivortex crystal. In such a situation,
the vortices and antivortices are generated due to the effect
of frustration, and due to the repulsion between them, they
arrange themselves in an antiferromagnetic order. When U is
large, the vortices delocalize to form a vortex superfluid. The
interesting thing happens when there exist a small number
of delocalized and coherent defects (vacancies or interstitials)
in the vortex crystal. These can destroy the superfluidity but
while preserving the underlying vortex crystal structure. The
resulting state can be regarded as a vortex supersolid, and it is
equivalent to the CMI in our model.

VII. VARIATIONAL WAVE FUNCTION FOR THE CMI

In order to go beyond mean-field theory within a wave
function approach, one can incorporate Jastrow factors which
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FIG. 7. (Color online) Boson correlator G(2)(x − x ′) = 〈a†
xax′ 〉

computed using variational Monte Carlo method for (i) the mean-field
CSF state (circles) with off-diagonal long-range order, (ii) a correlated
CSF with a Gutzwiller factor (squares), and (iii) the CMI state with
a long-range Jastrow (triangles) which leads to an exponential decay
of G(2)(x − x ′). The oscillations stem from low-energy boson modes
at momenta k = 0 and k = π . Inset: Nonzero staggered current order
(−1)x〈J�(x)〉 in the mean-field CSF and in the CMI.

build in interparticle correlations. Such Jastrow wave functions
for an N-boson system take the form

�(r1,r2, . . . ,rN ) = e− ∑
i,j ṽ(ri−rj )�MF (r1,r2, . . . ,rN ). (42)

The simplest example of such a state is the Gutzwiller wave
function for which ṽ(ri − rj ) is nonzero and positive for
ri = rj and is zero if ri �= rj . Such a Gutzwiller factor builds
in correlation effects by suppressing those configurations
in which multiple bosons occupy the same site. Such a
Gutzwiller wave function is however inadequate to describe
superfluid and insulating states of bosons. The reason is that
such short-range Jastrow factors do not correctly encode the
small momentum behavior of the equal time density structure
factor. For a superfluid which supports a linearly dispersing
sound mode at low momentum, we need to have the Fourier-
transformed Jastrow factor v(q → 0) ∼ 1/q, while a gapped
insulator in 1D should have v(q → 0) ∼ 1/q2, as discussed in
Ref. 26.

In order to describe the chiral Mott insulator, we therefore
fix �MF to be the mean-field chiral superfluid, and choose
the Jastrow factor to have two pieces, a short-range (on-
site) Gutzwiller piece vSR and a long-range part vLR . We
parametrize the on-site Gutzwiller factor to have strength gS ,
and choose the long-range Jastrow factor to have a Fourier
transform, vLR(q) = 1/(1 − cos q), and with a strength gL.
Using this parametrization, we have computed the properties
of the resulting variational wave function using standard Monte
Carlo sampling, averaging over 106–107 boson configurations
on the two-leg ladder for system sizes up to L = 500.

Figure 7 shows the computed 2-point correlation function
G(2)(x − x ′) = 〈a†

xax ′ 〉 for different choices of gS and gL. For
gS = gL = 0, we find the mean-field result where G(2)(r)
saturates to a nonzero value, while exhibiting oscillations
which correspond to the fact that there are boson modes at
both momenta k = 0 and k = π making up the condensate
wave function. For gS = 1 and gL = 0, the local Gutzwiller
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FIG. 8. (Color online) Behavior of the density structure factor
S(q) in the chiral Mott state with both short and long range Jastrow
factors, showing S(q) ∼ q2 at small momenta. Inset depicts the
singular long-range Jastrow factor vLR ∼ 1/q2 which is necessary
to obtain this insulating phase.

factor suppresses multiple occupancy—this weakens but does
not destroy the off-diagonal long-range order present in the
mean-field state. For gS = 1 and gL = 0.1, we find a rapid
exponential decay of G(2)(x − x ′) (shown in Fig. 8), with a
correlation length ξ ∼ 25 lattice spacings obtained from a fit to
the numerical data. This state thus has exponentially decaying
boson correlations indicating a gapped ground state.

This is in agreement with the behavior of the boson density
structure factor S(q). For gS = 1 and gL = 0.1, we find, as
shown in Fig. 8, that the structure factor exhibits a ∼ q2

behavior at small momentum which suggests, within the
Feynman single-mode approximation, a gapped ground state.
From the inset of Fig. 8, we find that this state nevertheless
has an average nonzero staggered current in each plaquette
which is inherited from the mean-field state, although it is
slightly suppressed due to the on-site Gutzwiller correlations.
This Jastrow correlated state thus provides a simple variational
ansatz for the chiral Mott insulator ground state.

VIII. EXPERIMENTAL DETECTION

How might the CMI be realized in experiments and
detected? One possibility would to try to realize it in a
Josephson junction ladder with a flux of hc/4e per plaquette.
The detection of this phase would then involve a measurement
of the resistivity to verify that it is an insulator along with a
measurement of local magnetic moments to detect the pattern
of staggered moments generated by the circulating currents.
An estimate shows that junctions with a coupling of about 1 K
and lattice parameter of 10 μm could produce staggered fields
of about 1 nT resulting from the staggered moments, which
can be measured by high-precision supercondcuting quantum
interference device (SQUID) microscopy.

Another possibility is to use synthetic magnetic fields to
generate the π flux in a system of cold atoms in an optical
lattice. The π flux will then produce twin peaks in the
single-particle momentum distribution, which will be sharp
in the CSF and get broadened by the interaction in the CMI
and MI. There are two possible ways to distinguish between

the CMI and the MI experimentally. (1) Intermode coherence
can be tested for by Bragg reinterference of the k = 0 and
k = π peaks.48 The CMI will display coherence between the
two modes while the MI will not. (2) The presence of staggered
current patterns can be detected directly using a quench
experiment.49 The staggered currents exist on bonds of a lattice
circulating in a particular way (clockwise or anticlockwise)
around the plaquettes. If the hopping on certain bonds (say
those between the legs of the ladder) were to be suddenly
turned off by a quench, the current loops would be broken
resulting in charge accumulation and depletion at lattice sites at
later times, resulting in a time-dependent staggered modulation
of the local charge density. This density modulation can then
be used to back out the original pattern of currents flowing
on the bonds of the lattice. Such modulations would also be
present in the CSF state, where the density modulations and
oscillations would be likely to persist for longer, whereas they
would be short lived in the CMI due to heating effects from
the quench-induced nonequilibrium currents. The observation
of such quench-induced density dynamics (albeit short lived)
together with a charge gap would be an unambiguous signature
of an intermediate CMI state.

IX. GENERALIZATIONS

We next discuss potential generalizations of our work
along various directions; although we do not have, at this
stage, detailed numerical studies on these examples, they are
sufficiently well motivated physically and worth examining in
more detail in the future. We begin by noting the generalization
to the case of staggered flux on the ladder, where we have
alternating fluxes �, − � with 0 < � < π . We then discuss a
possible generalization of the FFBH model to 2D.

A. Staggered flux on a 2-leg ladder

Instead of a uniform π flux per plaquette, let us imagine
having staggered fluxes �, − � on the two-leg ladder, with
0 < � < π . The resulting band dispersion of noninteracting
particles exhibits a single nondegenerate minimum at k = 0.
Condensing into this minimum leads to a superfluid with a
unique current pattern, which alternates from plaquette to
plaquette but whose sense is entirely locked to the underlying
flux pattern since the Hamiltonian itself breaks time-reversal
symmetry. In this sense, moving away from the fully frustrated
limit towards a staggered flux state is like turning on a
“magnetic field” which couples to the underlying Ising order
associated with loop currents. Thus, the staggered loop
currents survive to arbitrarily large U/t , in much the same
way as the paramagnetic phase of the usual Ising ferromagnet
acquires a nonzero magnetization in a uniform magnetic
field at any finite temperature. Turning to the quantum phase
diagram of the staggered flux Bose-Hubbard or quantum XY
models, we lose the distinction between the CMI and the MI,
so the Ising transition associated with this distinction will be
replaced by a crossover. We thus expect to have a single BKT
transition from a superfluid to an insulator, with nonvanishing
staggered loop currents at all values of U/t . Numerical studies
confirming this prediction would be valuable.
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FIG. 9. (Color online) Left panel: Sketch of a staggered loop
current state in a 2D CMI state in a fully frustrated Bose-Hubbard
model of weakly coupled two-leg ladders with π flux per plaquette.
Right panel: Sketch of the [11] edge depicting edge current along
such a 2D CMI state.

B. 2D analog of the bosonic CMI state

The 2-leg ladder FFBH model we have studied here
provides a nice example of an unusual weak Mott-insulator
state which supports loop currents since the virtual boson
number fluctuations permit the bosons to “sense” the flux
on each plaquette even though they are insulating at longer
length scales. Imagine weakly coupling many such ladders
lying next to each other to form an anisotropic version of the 2D
FFBH model, where each square plaquette still has π flux, but
where the boson hopping takes on intrachain values ±t along
alternate chains, with a modulated interchain hopping which
takes on a value t⊥ within a ladder (intraladder rung hopping)
and t ′⊥ between adjacent ladders (interladder hopping). The
sketch of this model is shown in Fig. 9 (left panel). When
t ′⊥ = 0, we get a set of decoupled FFBH ladders which support
a fully gapped CMI state. We thus expect that this phase will
be stable so long as the gap in the CMI state is much larger
than the interladder hopping t ′⊥. The charge gap in the CMI
would render this stable against Bose condensation into a 2D
superfluid. Similarly, the Ising gap associated with the broken
Z2 time-reversal symmetry would render this 2D CMI stable
against disordering of the current loop order for small values of
t ′⊥. Based on the fact that vortices repel each other, and would
prefer a global (π,π ) antiferromagnetic ordering pattern in
2D, we expect the current loops on the different ladders to
phase lock in-step producing a fully gapped 2D CMI state
with staggered loop currents as shown in the left panel of
Fig. 9. Such a CMI state would lead to a chiral edge current
along any of the [11] edges of the lattice as shown in the right
panel of Fig. 9. Numerical studies of weakly coupled ladders
within a classical XY model calculation would be valuable to
explore the full phase diagram as a function of U/t , t⊥/t , and
t ′⊥/t .

X. SUMMARY

We have computed the accurate phase diagram of the FFBH
model using two different numerical techniques: Monte Carlo
simulations and the FS-DMRG method. We have consistently
obtained qualitatively similar phase diagrams depicting three
different quantum phases: CSF, CMI, and MI. The CMI
phase is sandwiched between the CSF and the MI phase, and
is a remarkable state of bosonic matter, being an insulator

but with staggered loop currents which spontaneously break
time-reversal symmetry. We have confirmed that the transition
from CSF-CMI is BKT type and the transition from CMI to MI
is of Ising type. We have also shown that the boson momentum
distribution has different properties in these phases. We present
the two different physical pictures for the CMI as an exciton
condensate and the vortex supersolid. A variational wave
function which can explain the CMI phase is discussed.
Finally, we have proposed a possible experimental signature
of different quantum phases which can be realizable in the
experiments involving cold atoms in optical lattices and
Josephson junction arrays, and discussed higher dimensional
realizations of the CMI in a FFBH model.
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APPENDIX A: DERIVATION OF CLASSICAL XY MODEL

We define the new rotor variables to satisfy the following
commutators: [

e−iϕα
x ,Lβ

x ′
] = e−iϕα

x δαβδx,x ′ , (A1)[
e−iϕα

x ,e−iϕ
β

x′
] = 0, (A2)[

Lα
x ,Lβ

x ′
] = 0, (A3)

where α/β = a,b. In terms of these, the Hamiltonian takes the
form

Hrotor = −2t̃
∑

x

cos
(
ϕa

x − ϕa
x+1

) + 2t̃
∑

x

cos
(
ϕb

x − ϕb
x+1

)

− 2t̃⊥
∑

x

cos
(
ϕa

x − ϕb
x

) + U

2

∑
x

[(
La

x

)2 + (
Lb

x

)2)]
−μ

∑
x

(
La

x + Lb
x

)
, (A4)

where we have allowed the rotor hopping to be proportional to
the original boson hopping, with t̃⊥/t̃ = t⊥/t . We expect the
proportionality constant to be such that t̃ = tψ2 ≈ tρ where
ρ is the boson density per site.

At μ = 0, which corresponds to an average of one boson per
site, we can easily go to the path-integral representation. We
start with the partition function Z = Tr(e−βHrotor ) and use Trot-
ter discretization to set exp(−βHrotor) = [exp(−εHrotor)]Lτ ,
with ε = β/Lτ . The partition function then takes the form

Z =
∑

{{ϕx,τ }}
〈{ϕx,0}|e−εHrotor |{ϕx,Lτ −1}〉 . . .

. . . 〈{ϕx,1}|e−εHrotor |{ϕx,0}〉, (A5)

where we have chosen to compute the trace in the angle basis
and intermediate states are also in this basis. Here, single curly
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brackets refer to an angle-configuration at a fixed “time” slice,
while double curly brackets denote angle configurations over
all of space-“time.” Let us consider the matrix element

〈{ϕx,τ }|e−εHrotor |{ϕx,τ−1}〉. (A6)

Since ε → 0, we can set

〈{ϕx,τ }|e−εHrotor |{ϕx,τ−1}〉
≈ 〈{ϕx,τ }|e−εVrotore−εKrotor |{ϕx,τ−1}〉
≈ e−εVrotor({ϕx,τ })〈{ϕx,τ }|e−εKrotor |{ϕx,τ−1}〉, (A7)

where V and K are the potential (ϕ-diagonal) and kinetic
(ϕ-off-diagonal) terms in the rotor Hamiltonian. Explicitly,

Vrotor({ϕx,τ }) = −2t̃
∑

x

cos
(
ϕa

x,τ − ϕa
x+1,τ

)
+ 2t̃

∑
x

cos
(
ϕb

x,τ − ϕb
x+1,τ

)
− 2t̃⊥

∑
x

cos
(
ϕa

x,τ − ϕb
x,τ

)
, (A8)

and

Krotor = − 1

ε2U

∑
x,τ

[
cos

(
ϕa

x,τ − ϕa
x,τ+1

)
+ cos

(
ϕb

x,τ − ϕb
x,τ+1

)]
. (A9)

This gives us the partition function in terms of a classical action
in one higher dimension

Z =
∑

{{ϕx,τ }}
e−S1+1

cl [ϕ], (A10)

where

S1+1
cl = −

∑
xτ

[
J‖ cos

(
ϕa

x+1,τ − ϕa
x,τ

)− J‖ cos
(
ϕb

x+1,τ − ϕb
x,τ

)
+ J⊥ cos

(
ϕa

x,τ −ϕb
x,τ

)] − Jτ

∑
xτ

[
cos

(
ϕa

x,τ+1 −ϕa
x,τ

)
+ cos

(
ϕb

x,τ+1 − ϕb
x,τ

)]
, (A11)

with 2εt̃ = J‖, 2εt̃⊥ = J⊥, and 1/εU = Jτ . We see that this
has the form of an anisotropic XY model. In order to get the
properties of the quantum model at a fixed inverse temperature
βt̃ , we must take the “time”-continuum limit of ε → 0, sending
J‖ → 0, J⊥ → 0, and Jτ → ∞, while keeping fixed J⊥/J‖ =
t̃⊥/t̃ and JτJ‖ = 2t̃/U . The inverse temperature βt̃ is then
given by εt̃Lτ and thus depends on the chosen value of εt̃

(which must be taken to be very small) and the size of the
simulation cell in the “time” direction. We set ε = 1/

√
2Ut̃

which leads to J‖ = Jτ = √
2t̃/U .

APPENDIX B: MOMENTUM DISTRIBUTION

To analytically calculate the momentum distribution in
the CSF on the ladder, we begin by carrying out a classical
minimization of the rotor potential energy in Eq. (A4), which
leads to the equations

t̃
[

sin
(
ϕa

x − ϕa
x+1

) + sin
(
ϕa

x −ϕa
x−1

)]+ t̃⊥ sin
(
ϕa

x − ϕb
x

) = 0,

(B1)

t̃
[

sin
(
ϕb

x − ϕb
x+1

) + sin
(
ϕb

x − ϕb
x−1

)] + t̃⊥ sin
(
ϕa

x − ϕb
x

) = 0.

(B2)

It is straightforward to check that we satisfy these equa-
tions by substituting cos ϕa

x = u0, cos ϕb
x = v0, sin ϕa

x =
±v0(−1)x , and sin ϕb

x = ±u0(−1)x , where u0,v0 are defined
via Eqs. (4), (5). For now, let us stick with the “ + ”
solution. We can write this solution as ϕa

x = (−1)x�, ϕb
x =

(−1)x(π/2 − �), where cos � = u0 and sin � = v0. To take
small fluctuations into account, we must set

ϕa
x = (−1)x� + φ̃a

x , (B3)

ϕb
x = (−1)x(π/2 − �) + φ̃b

x . (B4)

Using the above minimization condition, we find the Hamil-
tonian for small fluctuations,

H small
rotor = t̃ cos(2�)

∑
x

[(
φ̃a

x − φ̃a
x+1

)2 + (
φ̃b

x − φ̃b
x+1

)2]
+ t̃⊥ sin(2�)

∑
x

(
φ̃a

x − φ̃b
x

)2

+ U

2

∑
x

[(
La

x

)2 + (
Lb

x

)2)] − μ
∑

x

(
La

x + Lb
x

)
.

(B5)

Further, for small fluctuations, we must set exp(−iφ̃) ≈ 1 −
iφ̃, so that the full commutation relations are replaced by[

φ̃α
x ,Lβ

x ′
] = iδαβδx,x ′ , (B6)[

φ̃α
x ,φ̃

β

x ′
] = 0, (B7)[

Lα
x ,Lβ

x ′
] = 0, (B8)

so that φ̃ and L have exactly the same commutation relations
as position/momentum variables. Let us now define a shifted
angular momentum L̃α

x = Lα
x − μ/U to absorb the chemical

potential term, which leads to the Hamiltonian (up to an
additive constant we will ignore)

H small
rotor = t̃ cos(2�)

∑
x

[(
φ̃a

x − φ̃a
x+1

)2 + (
φ̃b

x − φ̃b
x+1

)2]
+ t̃⊥ sin(2�)

∑
x

(
φ̃a

x − φ̃b
x

)2

+ U

2

∑
x

[(
L̃a

x

)2 + (
L̃b

x

)2]
. (B9)

Fourier transforming, we find

H small
rotor = 1

2

∑
q,α=a,b

[2t̃ cos(2�)(2 − 2 cos q) + 2t̃⊥ sin(2�)]

× φ̃α
q φ̃α

−q − 1

2

∑
q

2t̃⊥ sin(2�)
(
φ̃a

q φ̃b
−q + φ̃a

−q φ̃
b
q

)

+ U

2

∑
q,α

L̃α
q L̃α

−q . (B10)
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This is like a problem of two coupled oscillators for each q,
with each oscillator having a “mass” = 1/U , but with a 2 × 2
spring constant matrix having eigenvalues

K+(q) = 2t̃ cos(2�)(2 − 2 cos q), (B11)

K−(q) = 2t̃ cos(2�)(2 − 2 cos q) + 4t̃⊥ sin(2�). (B12)

This leads to a collective mode spectrum with two branches,
ω± = √

UK±(q), where ω+(q) = cq for small q behaves
like an “acoustic phonon” mode, while ω−(q) is like a
gapped “optical phonon” mode. Using the fact that sin(2�) =
t̃⊥/

√
t̃2
⊥ + 4t̃2 and cos(2�) = 2t̃/

√
t̃2
⊥ + 4t̃2, we find that the

“speed of sound” is

c =
√√√√ 4Ut̃2√

4t̃2 + t̃2
⊥

≈
√√√√ 4Uρt2√

4t2 + t2
⊥

, (B13)

while the minimum gap to the “optical phonon” mode is at
q = 0 and given by

ω−(q = 0) =
√√√√ 4Ut̃2

⊥√
4t̃2 + t̃2

⊥
≈

√√√√ 4Uρt2
⊥√

4t2 + t2
⊥

. (B14)

These should be viewed as analogs of a Bogoliubov theory
result for a 1D system with no Bose condensate (i.e., no off-
diagonal long-range order). The off-diagonal one-body density
matrix may be computed by noting that

〈a†
xay〉 ∼ ρei��−(x,y)

〈
ei(φ̃a

x −φ̃a
y )
〉
, (B15)

where �±(x,y) = (−1)x ± (−1)y . Within the Gaussian
theory, we get

〈a†
xay〉 ∼ ρei��−(x,y)e−(1/2)〈(φ̃a

x −φ̃a
y )2〉. (B16)

The expectation value in the exponential can be evaluated
as

〈(
φ̃a

x − φ̃a
y

)2〉 =
∫ +π

−π

dq

2π

〈
φ̃a

q φ̃a
−q

〉{2 − 2 cos[q(x − y)]}.
(B17)

We find

〈
φ̃a

q φ̃a
−q

〉 = 〈
φ̃b

q φ̃
b
−q

〉 = 1

4

(√
U

K+(q)
+

√
U

K−(q)

)
, (B18)

〈
φ̃a

q φ̃b
−q

〉 = 〈
φ̃b

q φ̃
a
−q

〉 = 1

4

(√
U

K+(q)
−

√
U

K−(q)

)
. (B19)

Since K+(q → 0) ∼ q2, while K−(q → 0) remains nonzero,
the long-wavelength (small q) limit of all such correlations are

given by

〈
φ̃α

q φ̃
β
−q

〉
q→0

≈ 1

4

√
U

K+(q)
. (B20)

Using this, and defining

F (x − y) =
(

1

|x − y|
)−(1/4π )

√
U/2t̃ cos 2�

, (B21)

we find the long-distance behavior of the one-body off-
diagonal density matrix elements is given by

〈a†
xay〉 ∼ ρei��−(x,y)F (x − y), (B22)

〈b†xby〉 ∼ ρe−i��−(x,y)+i(π/2)�−(x,y)F (x − y), (B23)

〈a†
xby〉 ∼ ρei��+(x,y)−i(π/2)(−1)y F (x − y), (B24)

〈b†xay〉 ∼ ρe−i��+(x,y)+i(π/2)(−1)x F (x − y). (B25)

Let us expand

〈a†
xay〉 ∼ ρ[cos2 � + sin2 �(−1)x−y

+ i�−(x,y) sin 2�]F (x − y), (B26)

using which,

naa(k) ≡ 1

L

∑
x,y

〈a†
xay〉eik(x−y) ∼ ρ cos2 �

∑
r

F (r)eikr

+ ρ sin2 �
∑

r

F (r)e−iπreikr , (B27)

where L is the linear system size. We find naa(k → 0) ∼
(ρ cos2 �)|k|−α and naa(k → π ) ∼ (ρ sin2 �)|k − π |−α ,
where

α = 1 − 1

4π

√
U

2t̃ cos 2�
≈ 1 − 1

4π

√√√√U

√
4t2 + t2

⊥
4ρt2

. (B28)

Similarly, nbb(k → 0) ∼ (ρ sin2 �)|k|−α and nbb(k → π ) ∼
(ρ cos2 �)|k − π |−α , so that naa(k) + nbb(k) ∼ ρ(|k|−α +
|k − π |−α). We can also calculate cross correlators such as
nab(k) = 〈a†

kbk〉 and nba(k) = 〈b†kak〉. We find that nab(k) =
nba(k), and that nab(k → 0) ∼ (ρ sin � cos �)|k|−α , while
nab(k → π ) ∼ (ρ sin � cos �)|k − π |−α .

Similarly, two (broad) peaks in the momentum distribution
also appear in the MI, but they need a strong-coupling
expansion to compute as has been done, together with a
collective mode analysis, for the 2D FFBH model.11 Our main
result here is to show that the peaks in the CSF phase of the
ladder model have a nonuniversal power law divergence, with
equal exponents, at k = 0,π . At the BKT transition from the
CSF to CMI, an analysis of which requires going beyond our
harmonic theory, we expect the exponent to take on a universal
value α = 3/4.
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