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Abstract. The standard big bang models of classical cosmology are known
to possess three defects. The oldest known defect is the spacetime singularity
whose existence seems inevitable within the classical framework. The second
defect is the existence of a particle horizon which severely limits communica-
tions across the distant parts of the universe whose observed homogeneity
therefore becomes inexplicable. Recently a third defect has been highlighted,
viz., the required fine tuning of the early universe close to the flat spatial
model in order to account for the present range of its mean density.

We show here that the injection of quantum ideas holds out hope of a cure
for all the three ailments described above. Using a simple path integral
formalism for quantum cosmology we present arguments which suggest that
(i) it is extremely unlikely that the universe evolved to the present state from
quantum states of singularity and particle horizon; (ii) of all the possible
Robertson-Walker models that could evolve out of quantum fluctuations of
the empty Minkowski universe the flat model is overwhelmingly probable.
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1. Introduction

While the discovery of the microwave background, the work on primordial nucleo-
synthesis and the recent applications of grand unified theories to the early universe
have given a boost to the standard big bang cosmology, serious difficulties with this
picture are also being increasingly emphasized. Here we discuss three problems
commonly associated with the early universe, viz. (i) spacetime singularity; (ii) the
small particle horizon; and (iii) the apparent flatness of the spatial sections of the
universe. Our discussion is limited to homogeneous isotropic universes which com-
monly form the basis of standard cosmology.
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In the comoving spherical polar coordinates (r, 0, ¢) and cosmic time ¢, a homo-
geneous isotropic spacetime is described by the Robertson-Walker line element

ds® = di* — S%(t) [lf—’zrz + r¥(d9? + sin?0 dg?) ] (1)

Here S(¢) is the scale factor for the universe and k(= 0, -t 1) denotes the sign of
the curvature of the spatial sections.

We first note that with one trivial exception this line element describes a singular
spacetime provided S — 0 at some epoch. The exception is that of the flat spacetime
givenby S = 1, k = —1.

The actual behaviour of S(¢) is of course determined by Einstein’s equations.
However, it is well known that for a wide variety of equations of state for matter
(which are physically reasonable) S(¢) goes to zero at some finite moment in the past
(Hawking & Ellis 1973). It is virtually impossible to avoid this geometrical singu-
larity within the domain of classical physics.

This existence of singularity leads to a beginning for the universe, which is usually
taken to be at t = 0. At any cosmic time 7, a typical observer at r = 0 can receive
signals only from within r = r(¢) where,

r(t) d t P
/g u
Ve sw=eeo -
0 0

In physically reasonable models for the universe O(¢, 0) is a finite quantity, implying
a finite—and, in fact, small—horizon size at the earliest epochs. For example at the
redshift of a thousand when the radiation background decoupled from matter, the
universe consisted of nearly 90 causally disconnected bits all of which were in the
same physical condition. The observed high degree of isotropy of the background
radiation therefore implies highly special initial conditions—a problem that is com-
monly known as the horizon problem. It is worth noting that the smallness of
Q(t, 0) arises because we were prevented from extending the time coordinate to
values less than zero, the epoch of singularity. This fact is partly responsible for
the existence of the horizon problem.

The flatness problem (Dicke & Peebles 1979; Guth 1981) also concerns itself with
the special choice of the initial conditions. It turns out that the expansion rate and
the density of our universe would have to be extremely fine tuned to account for
their relationship observed at present. For example, the fine tuning needed is to
one part in 108 if the conditions were fixed at the epoch of baryosynthesis.

Recently, various types of inflationary scenarios were suggested as a possible
explanation to two of the three above mentioned problems. However, all the models
currently available in literature seem to either (i) run into serious difficulties of their
own or (ii) invoke fine tuning at some other level (Barrow & Turner 1982). Besides,
none of these models address themselves to the all important question of cosmologi-
cal singularity, which is taken for granted.

We describe here a scenario based on quantum gravity which seems to be capable
of tackling all the three ailments of classical cosmology. The formalism that we
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shall use has been discussed by us in earlier papers (¢f. Narlikar 1979, 1981;
Padmanabhan & Narlikar 1982; Padmanabhan 1982) and is first outlined below.

2. Quantum cosmology via path integrals

Consider a spacetime sandwich bounded by spacelike hypersurfaces 2, and Z,. Let
J denote the total Einstein-Hilbert action and suppose, that boundary conditions are
specified in suitable way on X, and %, (for details see Misner ef at. 1973; Isenberg &
Wheeler 1979). The classical solutions of Einstein’s equations may be looked upon
as a time development of 3-geometries starting from X, and ending on I, with the

prescribed conditions. This time development we denote by a path . Any other

time development with the same prescribed conditions, we denote by I'. T is obtain-
ed by the stationary principle 8J = 0.
In quantum gravity we replace the classical prescription by the propagator

K[2; 1] = | exp [iJ(T)/5] 9T. . ..(3)

The functional integral in equation (3) poses many conceptual and technical difficul-
ties. However, if we make the reasonable assumption that in our quantization scheme
we shall restrict I' to all geometries which preserve the lightcone structure and causal

connections existing in the classical Einstein geometry T, we are able to make pro-
gress with the evaluation of the integral (3). For, if the classical metric tensor for

T'is gig, a typical non-classical I' will have the metric given by

8ik = Qzéik (4)

where Q is a function of the spacetime coordinates. It may (and will) happen that
a conformal transformation like equation (4) can allow us to extend an existing
manifold. If so, we will include such extensions also.

If we are interested in homogeneous isotropic models only, then our task is further

simplified. We denote by T' the classical standard model 9 given by
- - 2
ds* = dt? — S%(¢) [ﬂw + r2(de® + sin’quSz)] ..(5)
and consider I" to be a general, nonclassical model . with
ds = Q(¢t) ds, S@t) = Q(r) S@). ..(6)
If we redefine a new time coordinate © by
dx = Q1) dt, (7

our line element is again of the form (1) with = replacing .

We can label the surfaces =,, 3, by t = 1, ¢, respectively. Since we are interested
in speculating about the initial states of the universe from which it came to the final
present state we will phrase our quantum cosmological problem in the following
way. Define ¢(¢) = Q(¢) — 1 as the quantum conformal fluctuation (QCF) from
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the classical solution. The present value of ¢ = ¢, at ¢t = ¢, is small whereas the
past values of ¢ at ¢t = #; < f; may have been considerably larger (than unity). Let
us denote the state of the universe at #,(¢,) by a wavefunction ;(é,) [{.(#,)] and write

$1(d1) = § Klda, ta; d1, 11] bo(ds) dbs. ---(8)

Given ¢,, our problem is to evaluate ;.

In equation (8), the propagator K is to be determined by evaluating the path
integral (3) and the integral (8) tells us how to calculate the initial state ¢, from the
prescribed present state {¢,. Detailed calculation shows that (c¢f. Narlikar &
Padmanabhan 1983)

2
K[, ta; ¢y, 1] = a(ty, t3) €Xp ) pX . iBapdadn ...(9)
where «, Bs are known functions determined by the classical solution S(t).

3. Did the universe have a singular origin ?

Let us denote by (s the class of all such Robertson-Walker manifolds %, given by
equations (6) for which singularity at ¢ = 0 is noz removed by the conformal trans-
formation, i.e., for which QS — 0 as¢ — 0. Since the present state of the universe

is almost classical we can approximate ¢, by a wavepacket centred on the classical
value ¢, = 1:

b6 = Crotre exp | — 2 | .(10)

We use equations (8) and (9) to evaluate {,(¢,). The quadratic form in the
exponential makes the calculation easy. The answer is that the initial state at ¢,
was also describable by a wavepacket centred on the classical value ¢, = 1 but with
a dispersion which behaves as

Ay ~ a/S(ty) as t,— 0. ' ..(11)

Thus we find that the QCFs diverge at the classical singularity thereby rendering the
classical average solution of doubtful validity. In fact we now show that amongst
the full range of nonclassical solution C, those belonging to the singular set (s occur
with vanishing probability

To sce this result construct the unit Gaussian variable x = ¢,/A,, for the pro-
bability function | ¢, |2, and note that for the singular class, the value of x is
given by

o St) — S(t)

4 -0 as >0 ...(12)

since both S(¢;) and S(t,) tend to zero as t; - 0. Thus, given the. full range of
nonclassical solutions available at = ¢, =~ 0, the probability that our present state
evolved out of a singular state becomes vanishingly small.
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4. Horizon-free cosmologies

We now show that particle horizons can be eliminated for all those Robertson-
Walker cosmologies which are non-singular at¢ = 0. First note that the past
lightcone from any ¢ > 0 back to ¢ = 0 is invariant under the conformal transfor-
mation. The value of the t-coordinate which corresponds to ¢ = 0 is given by
equation (7) as

T = T — é Q(t) dt ..(13)

where © = =, at t = t,. For nonsingular models Q(t) S(£)—> b > 0 so that close
tot =0,

L L
f Q) dt ~ b j %—) ~ BO(t,, 0), ..(14)
0 0

and r, as defined above is finite. Hence unlike for the classical solution the light-

cone can be continued to the past of t = 1, and thus the particle horizon eliminated
(Such extension is not possible for singular models.)

5. Resolution of the flatness problem

We begin with the assumption that the empty Minkowski spacetime is unstable to
" quantum fluctuations. (For explicit demonstrations of such instabilities see
Padmanabhan 1983; Lindley 1981; Atkatz & Pagels 1982; Brout ef al. 1980). The
path integral technique described above can be used to compute the probability of
transition from the Minkowski spacetime to Robertson-Walker spacetimes. Our
results will show that the probability is the highest for & = 0 model and makes it
overwhelmingly probable.

Robertson-Walker spacetimes are conformally flat. Infeld & Schild (1945) have
given an explicit transformation of equation (1) to the form

ds® = Q2 [di* — dx® — dy?® — d2?). ...(15)

The function Q, depends on ¢ and r = (x, y, z) except in the special case of k = 0
when it depends on ¢ only. We consider the propagator which describes transition
from Q, = Q,atr =1,t0oQ = Q, at ¢ = 1,, for the Hilbert action for empty

spacetime. In this case the classical Einstein metric is g—n{ = ik, the Minkowski
metric. The path integral (3) over Q becomes

K[Q, ty; Qy, 1,] = I exp {—&i—iﬁ E Q&‘a”‘x} 29, ..(16)
0

where Q; = Q,;.
Suppose our initial state wavefunctional {,(Q,) is strongly peaked at Q, = 1. Let

the final state wavefunctional be strongly peaked at Q, = Qo. The transition pro-
bability is then found to be
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[l P =N e (= o) an
2 | Y1 8nh
where N is a normalizing constant and
W — I X 1190(1'1) : Zzgoz(rz) d3l_1d3l.2- (].8)
B

It is clear from equations (17) and (18) that the probability is the highest and W
the least when Q, does not depend on space coordinates, i.e., when k = 0. Since for
W £ 0 (for k £ 0), the exponent W/8znh > 1, the probability for £k = 41 comes
out to be vanishingly small.

Hence if the universe evolved out of the flat Minkowski spacetime through QCEF,
then it is most likely to have made a transition to the k = 0 Robertson-Walker
model. Note that in the above analysis our assumption of the initial state to be the.
Minkowski spacetime is dictated by the requirement of simplicity. Since all Robert-
son-Walker models are conformally flat, any such model could have arisen from the
initial state by QCF. It is the dynamics which determines that the models with
k = 41.occur with very low probabilities.

6. Conclusion

The three outstanding ailments of the standard classical cosmology—singularity,
horizon and flatness—therefore receive natural cures from quantum cosmology.
Although our work is limited to homogeneous isotropic universes and our approach
confined to conformal fluctuations, the results achieved above hold out hope for
further generalizations.
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