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Abstract

This thesis aims to develop methods to solve radiative transfer (RT) problems in several
astrophysical contexts. A major part of the thesis is devoted to develop an understanding
of the effects of multi- dimensional (multi-D) RT on the polarized line formation. We
consider partial frequency redistribution (PRD) of line radiation in the presence/absence
of external magnetic fields. The thesis consists of three parts. In the first part we develop
modern numerical methods to solve the line RT equation in one-dimensional (1D) planar
and spherical media. In the second part, we formulate and solve the problem of polarized
line RT equation in multi-D media. In the third part we focus our attention on realistic
modeling of the spectro-polarimetric observations of the linearly polarized spectrum of the

Sun (the well known second solar spectrum).

In Chapter 1 we give a general introduction. Chapters 2 and 3 deal with Part-I of
the thesis. Chapters 4-8 are devoted to the Part-II. Chapters 9 and 10 concern Part-III.
Chapter 11 presents future outlook on the work presented in this thesis. The mathematical
details are given in the form of Appendices. A detailed list of references are given in the
bibliography. A glossary of mathematical symbols used in the thesis are given at the end

of the thesis, for convenience.

Part-I of the Thesis: Advanced numerical methods to solve line radiative trans-

fer equation in 1D media

In this part we consider two examples. (Ia) concerns the polarized line formation in
magneto-turbulent scattering media. (Ib) aims to devise a new and fast numerical method

of solving the line RT equation in spherical media.

(Ia) A study of the origin of turbulent weak magnetic fields in the solar atmosphere through

XV



observations of linear polarization suggests that the scale of variation of the magnetic fields
is small compared to the mean free path of the photons, and hence ‘micro-turbulence’ is
a good approximation. This allows us to replace the magnetic field dependent physical
variables by their turbulent averages over the magnetic field vector probability density
function (PDF). The line scattering on atomic bound states produces linearly polarized
line radiation (called resonance scattering). The magnetic field modification of this phe-
nomenon is called Hanle effect. We develop numerical techniques to solve the line RT
equation in the presence of a weak turbulent magnetic field. It can handle a general situ-
ation of magneto-turbulence in scattering media (called turbulent Hanle effect), of which
the micro- and macro-turbulence are the limiting cases. We undertake a study of the effect
of PDFs on the shapes and magnitudes of the linearly polarized emergent Stokes profiles.
We show that the linear polarization is very sensitive to the choice of the PDF (the nature
of turbulence). Therefore the turbulent Hanle effect can be used as a sensitive diagnostic
tool to measure weak small scale fields on the Sun. The necessary theoretical framework

for this purpose is presented in Chapter 2.

(Ib) The solution of polarized line RT equation is computationally expensive for real-
istic mechanisms of scattering, and for multi-D geometries. As a first step towards devis-
ing modern techniques which are even more efficient than the existing iterative methods
(which are already very fast), we develop a new method called Stabilized preconditioned
Bi-Conjugate Gradient (Pre-BiCG -STAB). We consider the example of line transfer in
1D spherical media. It is also an iterative method, based on the construction of a set
of bi-orthogonal vectors. We show that this method is quite versatile compared to the
traditional iterative methods like Jacobi, Gauss-Seidel and successive over-relaxation. The
theory of this numerical method, the computing algorithm, and the bench-mark tests are
presented in Chapter 3. This method is also applied to multi-D RT described in later
chapters.

Part-II of the Thesis: Polarized line formation in multi-dimensional media

This problem is theoretically complex and computationally very expensive. Due to this the
topic has rarely been addressed in the past, although clearly the polarization diagnostics
is the most sensitive to explore the finite dimensional structures. With the high spatial
resolution polarimetric observations which have now become available from ground based
and space platforms, it is imperative that we keep pace with the observations, by developing
necessary theoretical knowledge. In six chapters of this thesis, we formulate and solve

some of the most complex problems in multi-D geometries (Chapters 4-8). This covers the

xXvi



formulation of the transfer equation in terms of irreducible spherical tensors (instead of
the traditional Stokes parameters); the solution of these equations in two-dimensional (2D)
and three-dimensional (3D) geometries using the efficient Pre-BiCG-STAB method, for
problems involving PRD and Hanle effect; developing the Fourier decomposition technique
to solve the formidable problem of polarized multi-D transfer with angle-dependent PRD.
All these topics are covered in Chapters 4— 8.

Part-111I of the Thesis: Realistic modeling of the spectro-polarimetric observa-

tions of the second solar spectrum

To model the second solar spectrum, one needs to solve the polarized RT equation. For
strong resonance lines the PRD effects must be accounted for. To explore the weak solar
magnetic fields (both turbulent and oriented), we have to formulate and solve the polarized
RT equation that includes Hanle effect. It has been a tradition in spectro-polarimetry of
scattering polarization, to conduct observations near the solar limb positions, and model
them. After modeling such limb observations (through a case study of Ca 1 4227 A line in
non-magnetic quiet Sun observations), we venture to model the observations of ‘forward
scattering Hanle effect’- which opens up an entirely new and interesting possibility to
study the weak oriented magnetic fields near the solar disk center. In Chapters 9 and 10
we describe in detail the modeling of limb and near disk center observations of the Ca 1
4227 A line scattering polarization. The experience gained in 1D modeling of the actual
observations would be useful later when we apply the same modeling techniques in future,
to the observations of finite dimensional structures of the solar atmospheres, which clearly
require the techniques of multi-D transfer developed in Chapters 4-8. The goals achieved

in this thesis and the possibilities for future work are described in Chapter 11.

XVvii



XVviii



Contents

Acknowledgments i
List of Publications xi
Abstract XV
1 General introduction 1
1.1 Polarization of light and its representation . . . . . . . .. ... ... ... 2
1.1.1 Polarization ellipse . . . . . . . . . . .. ... 3

1.1.2  Representation of polarized light . . . . . .. ... ... ... ... 3

1.2 The polarized light in stellar atmospheres . . . . . . . . . .. .. ... ... 4
1.2.1 Resonance scattering in spectral lines . . . . . .. .. .. ... ... 4

1.2.2 The Hanle effect . . . . . . ... ... ... ... . 6

1.2.3  The second solar spectrum . . . . . . . . ... ... 7

1.2.4 Polarization phase matrices . . . . . . .. .. ... ... .. ... 7

1.2.5  Irreducible spherical tensors TQK .................... 7

1.3 Partial frequency redistribution in line scattering . . . . . . . .. .. ... 8
1.3.1 Angle-averaged redistribution functions . . . . . .. ... . ... .. 10

1.3.2 Complete frequency redistribution function . . . . . . . . . .. . .. 11

1.4 The polarized redistribution matrices . . . . . . . . ... .. .. ... ... 11

Xix



XX Contents
1.5 Line radiative transfer equation and its solution . . . . . .. .. ... ... 12
1.5.1  Multi-D radiative transfer . . . . . . ... ..o 12
1.5.2  Methods to solve radiative transfer equation . . . . . . .. .. ... 13
1.5.3 Applications of multi-D radiative transfer . . . . . . .. .. ... .. 21
1.6 Modeling of the second solar spectrum . . . . . . ... ... ... ... .. 22
1.7 Outline of the thesis . . . . . . . .. .. ... 23
1.7.1  Outline on part-I of the thesis . . . . . .. ... ... ... ..... 23
1.7.2  Outline on part-II of the thesis . . . . . .. .. ... ... ..... 24
1.7.3 Outline on part-III of the thesis . . . . . . .. ... ... ... ... 27

Part-I Advanced numerical methods to solve line radiative transfer
equation in one-dimensional media 29
2 The Hanle effect in a random magnetic field 31
2.1 Introduction . . . . . . . .. 31
2.2 Assumptions . . . . ... 32
2.3 The transfer problem . . . . . . . ... ... 35
2.3.1 Transfer equation for the conditional mean Stokes parameters . . . 36
2.3.2 Integral equation for S(7|B) . . . . . . .. ... oL 37
2.4 A PALI type numerical method of solution . . . . . ... .. ... ... .. 38
2.5 A choice of magnetic field vector PDFs . . . . . . .. ... ... ... ... 41
2.6 Dependence of the polarization on the correlation length . . . . . . .. .. 44
2.7 A series expansion for the calculation of the polarization . . . . .. .. .. 45
2.7.1 Construction of the expansion . . . . . . . ... ... ... ... .. 45
2.7.2 Numerical results . . . . . . . . ... L 50

2.7.3 Magnetic field with a finite correlation length . . . . . . .. .. .. 54



Contents xxi

2.8 Dependence of the polarization on the magnetic field vector PDF . . . . . 55
2.9 Concluding remarks . . . . . .. ... 58
3 Bi-Conjugate Gradient methods for radiative transfer 61
3.1 Introduction . . . . . . . ... 61
3.2 Radiative transfer in a spherical medium . . . . . . ... ... ... ... 63
3.2.1 The transfer equation . . . . . . . . ... ... L. 63
3.2.2  The constant impact parameter approach . . . . . . . . . ... ... 65
3.2.3 Benchmark models . . . . . .. ... ... 00 67
3.2.4 Tterative methods of ALI type for a spherical medium . . . . . . . . 68
3.3 Preconditioned BiCG method for a spherical medium . . . . . .. ... .. 71
3.3.1 The Preconditioned BiCG Algorithm . . . . . ... ... ... ... 72
3.4 Transpose free variant - Pre-BiCG-STAB . . . . . . . . ... .. ... ... 75
3.4.1 Pre-BiCG-STAB algorithm . . . . .. ... ... .. ... ..... 76
3.5 Comparison of ALI and Pre-BiCG methods . . . . ... ... ... .... 7
3.5.1 The behaviour of the maximum relative change (MRC) . . . . . .. 7
3.5.2 A study of the True Exror . . . . . .. ... ... ... ....... 80

3.5.3 A theoretical upper bound on the number of iterations for conver-
gence in the Pre-BiCG method . . . . . . ... ... ... ..... 81
3.6 Results and discussions . . . . . .. ... oL 82
3.7 Concluding remarks . . . . . . . ... 84
Part-I1 _Polarized line formation in multi-dimensional media 87
4 Decomposition of Stokes parameters in multi-D media 89
4.1 Introduction . . . . . . . .. L 89

4.2 Polarized radiative transfer in a 3D medium — Stokes vector basis . . . . . 92



xxii Contents
4.3 Decomposition of Stokes vectors for multi-D transfer . . . . . . . . .. .. 95
4.3.1 A multipolar expansion of the Stokes source vector and the Stokes

intensity vector in a 3D medium . . . . . .. ... 95
4.3.2 Polarized radiative transfer equation for the real irreducible intensity
vector in a 3D medium . . . .. ..o 102
4.4 The Numerical Method of Solution . . . . . ... ... .. .. ... ..., 105
4.4.1 The formal solution in 3D geometry . . . . . . .. .. .. ... ... 105
4.5 Results and Discussions . . . . . . .. ... oL 108
4.5.1 A validation test for the 3D polarized radiative transfer solution . . 108
4.5.2 The nature of irreducible intensity components Z in a 3D medium . 108
4.5.3 Linear polarization in 3D medium of finite optical depths . . . . . . 111
4.5.4 The effect of collisional redistribution on the Stokes parameters in a
3D medium . . . ... 113
4.6 Concluding remarks . . . . . . . . .. L 115
5 Solution of partial redistribution problems in multi-D media 119
5.1 Introduction . . . . . . ... 119
5.2 The Polarized transfer equation in a 2D medium . . . . . . . . . .. .. .. 121
5.3 A short characteristics method for 2D radiative transfer . . . . . . . . . .. 126
5.4 Computational details . . . . . . . ... ... ... 129
5.4.1 The angle quadrature in 2D/3D geometries . . . . . . . . . ... .. 129
5.4.2  The spatial and frequency griding . . . . . . .. .. ... ... ... 131
5.5 A Preconditioned BiCG-STAB method . . . . . .. ... ... ... .... 131
5.6 Results and Discussions . . . . . . .. ..o 137
5.7 Concluding remarks . . . . . . . .. .. Lo 142

6 Hanle effect with partial redistribution in multi-D media 145



Contents xxiii

6.1
6.2

6.3

6.4

6.5

6.6

Introduction . . . . . . .. 145
The polarized radiative transfer in a magnetized multi-D media . . . . . . 146
Decomposition of S and I in a magnetized multi-D media . . . . . . . .. 149

6.3.1 The irreducible transfer equation in multi-D geometry for the Hanle

scattering problem . . . . .. ..o 154
A 3D formal solver based on the short characteristics approach . . . . . . . 155
Numerical method of solution . . . . . . .. ... ... ... ... ..., 156
6.5.1 The Preconditioner matrix . . . . . . .. .. .. ... .. ... .. 158
6.5.2 Computational details . . . . . . .. ... ... 00 158
Results and discussions . . . . . . . . ... L L 159

6.6.1 The Stokes profiles formed due to resonance scattering in 2D and 3D
media . ... 159

6.6.2 The Stokes profiles in 2D and 3D media in the presence of a magnetic

fleld . . . .. 164

6.6.3 The spatial variation of emergent (Q/I,U/I) in a 3D medium . . . 168

6.7 Concluding remarks . . . . . . . . .. 172
7 Angle-dependent PRD in multi-D media: Formulation 177
7.1 Introduction . . . . . . ... 177
7.2 Transfer equation in terms of Stokes parameters . . . . . . . . .. ... .. 179
7.3 Transfer equation in terms of irreducible spherical tensors . . . . . . . . .. 183
7.4 Transfer equation in terms of irreducible Fourier coefficients . . . . . . . . 185
7.4.1 Symmetry properties of the irreducible Fourier coefficients . . . . . 189

7.5 Numerical considerations . . . . . . . . ... oo 192
7.6 Concluding remarks . . . . . . . ... o 193

8 Angle-dependent PRD in multi-D media: Radiative transfer 195



XXiV Contents
8.1 Introduction . . . . . . . ... 195
8.2 Polarized transfer equation in a multi-D medium . . . . . . . ... ... .. 196

8.2.1 The radiative transfer equation in terms of irreducible spherical tensors197
8.2.2 A Fourier decomposition technique for domain based PRD . . . . . 203
8.3 Numerical method of solution . . . . . . . .. .. ... ... ... ..., 209
8.4 Results and Discussions . . . . . . . . ..o 211
8.4.1 Nature of the components of Z and i(k) ............... 213
8.4.2 Emergent Stokes Profiles . . . . . .. . ... ... ... .. ... .. 217
8.4.3 Radiation anisotropy in 2D media—Stokes source vectors . . . . . . 221
8.5 Conclusions . . . . . . . .. 222

Part-III  Realistic modeling of the spectropolarimetric observations

of the second solar spectrum 225

9 Last scattering approximation: Case study with Ca 1 4227 A 227

9.1 Imtroduction . . . . . . . . ... 227

9.2 The Radiative Transfer (RT) approach . . . . ... ... ... ... .... 229

9.3 The details of observations and solar model atmospheres . . . . . . .. .. 233
9.3.1 The observation of (I,Q/I) in the

Cat1d4227 A line . ... ... .. ... .. 233

9.3.2 The smearing effect . . . . . . ... oL 235

9.3.3 The model atmosphere and the model atom . . . .. ... .. ... 235

9.4 The anisotropy factor kg(A, ft, Ta) -« « « « o o oo 235

9.5 The Last Scattering Approximations (LSA) . . ... ... ... ... ... 237

9.5.1 LSA-3 . . . . 239



Contents

XXV
9.5.3 LSA-1: semi-empirical approach . . . . . . ... ... ... ... .. 243

9.6 Results and Discussions . . . . . . . . . ... o 245
9.6.1 Theoretical validation of the LSA approaches . . . . .. .. .. .. 245
9.6.2 Observational validation of the LSA-3 and the RT approaches 246

9.7 Concluding remarks . . . . . .. ... 249
10 Forward scattering Hanle effect in Ca 1 4227 A line 255
10.1 Introduction . . . . . . . . .. 255
10.2 The Radiative Transfer (RT) formulation . . . . . .. ... ... ... ... 258
10.2.1 Radiative transfer with the Hanle effect . . . . . . . .. .. ... .. 258
10.2.2 Radiative transfer with the Zeeman effect . . . . . . .. .. .. .. 263

10.3 Polarization observations of Ca 14227 A line . .. . ... ... ... ... 265
10.4 Modeling procedure . . . . . . . ... 267
10.4.1 The model atmosphere and the model atom . . . . . .. ... ... 269
10.4.2 Step 1. Polarization profiles for V/I . . . . . . ... ... ... ... 270
10.4.3 Step 2. Polarization diagrams for /I and U/I at line center . . . . 270
10.4.4 Step 3. Polarization profiles for /I and U/I . . . . ... ... .. 270

10.5 Results and Discussions . . . . . . . .. ... L0000 271
10.5.1 V/I profiles from the Zeeman effect . . . . . .. ... ... ... .. 271
10.5.2 Polarization diagrams from the Hanle effect . . . . . . . . . .. .. 272
10.5.3 @Q/I and U/I profiles from the Hanle effect . . . . . . . ... .. .. 273
10.5.4 The effect of model atmospheres . . . . . . . . . ... ... ... .. 275
10.5.5 The role of collisions . . . . . . . ... ... ... ... 276
10.5.6 The role of a filling factor . . . . . . ... ... ... .. ... ... 277

10.6 Concluding remarks . . . . . . . . . . .. 280



XXVi Contents

11 Conclusions and future outlook 283
11.1 Summary of the thesis . . . . . . . ... .. .. oo 283
11.2 Future Outlook . . . . . . . . . . . . . . 288

Appendices 291

A Integral equations for the components of the source vector 291

B Exact expressions of the mean coefficient (M3,) 294

C Construction of A matrix and Preconditioner matrix M 296

D A core-wing method for the 3D polarized line transfer 300

E Expansion of Stokes parameters into irreducible components in non-

magnetic 2D media 303
F Symmetry of polarized radiation field in 2D geometries 304
G Expansion of Stokes parameters into the irreducible components 309

H The magnetic redistribution matrices in the irreducible tensorial form 310

I The magnetic redistribution matrices in the matrix form 313
J The reduced scattering phase matrix in real form 315
K The magnetic redistribution matrices in the matrix form 317
L Symmetry breaking properties of the angle-dependent PRD 320

M The non-magnetic redistribution matrices 323



Contents xxvii

N The magnetic redistribution matrices 327

O The Zeeman radiative transfer in the atmospheric reference frame 331

Bibliography 333



xxviii Contents




Chapter 1

General introduction

Analysis of the spectra of the Sun and stars requires calculation of the radiation emerging
from these objects. Such a quantitative information can be obtained through a solution
of the radiative transfer (RT) equation, which describes the interaction of radiation with
matter through micro-physical processes like the absorption, emission and scattering of
radiation on atoms and molecules. These processes cause the energy to be removed from
or added to the radiation field. They are characterized by macroscopic coefficients specified
by atomic cross-sections and occupation numbers of energy levels of the material that the
stellar atmosphere is made up of. In the macro-physical level, the transfer of radiation
is governed by quantities such as geometrical shape, the physical extent of the stellar
atmosphere, and the presence of external magnetic fields. For example the diffuse radiation
field in a planar or spherical medium is quite different from what prevails in a 3D structure.
These aspects are studied by representation of the atmosphere by proper idealizations, by

taking care to include essential characteristics of the medium.

The polarization of the radiation gives a much deeper insight into the physical processes
taking place in the stellar atmosphere. The inclusion of polarization states in the transfer
equation brings in an increased level of complexity. For this reason the ‘polarized RT
equation’ is formulated and subsequently solved only in the past six decades starting with
the seminal papers by S. Chandrasekhar (see Chandrasekhar 1950). This fundamental
work established the path to be taken when formulating the polarized RT equation for
new astrophysical problems. This thesis concerns the polarization of radiation arising due
to scattering of anisotropic radiation on atomic bound states. Scattering polarization in

the presence or absence of an external magnetic fields is also considered in detail.

The thesis consists of three parts. In the first part we develop advanced numerical
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methods of solving the line RT equation in one-dimensional (1D) media. The second part is
devoted to the polarized line formation studies in multi-dimensional (multi-D) geometries.
In the third part of the thesis the emphasis is on application of the polarized line formation

theory to model the actual polarimetric observations.

1.1 Polarization of light and its representation

The vectorial nature of light is called polarization. A ray of light can be represented by
an electro-magnetic wave which has three independent oscillations E(r,t), Ey(r,t) and
E,(r,t). Correspondingly, three independent wave equations are required to describe the

propagation of these oscillations (see Collett 1993) namely
1 82EZ (’I", t)
2 o2

where ¢ is the velocity of propagation of the oscillation and r = r(x,y,z). In Cartesian

V2E(r,t) = i =X,Y,2, (1.1)

system the components Ey(r,t) and Ey(r,t) are said to be transverse components and
E,(r,t), the longitudinal component. From solution of Equation (1.1) we obtain radiation
field components to be

E(r,t) = Epxcos(wt — k - r + 0y), (1.2)
E,(r,t) = Eyy cos(wt —k -1+ dy), (1.3)
E,(r,t) = Ey,cos(wt — k- r +6,), (1.4)

where Eyy, Eoy, Ey, are the maximum amplitudes, dx, dy, 6, are arbitrary phases, and k
is the wave vector. After many experiments it was found that longitudinal component in
Equation (1.4) does not exist for light, i.e., light consisted only of the transverse components
represented by Equations (1.2) and (1.3). If we take the direction of propagation to be the

z-direction then the radiation field in free space must be

Ey(z,t) = FEox cos(wt — k,z + dx), (1.5)

Ey(z,t) = Eyy cos(wt — k,z + dy). (1.6)

Later, by solution of the Maxwell’s equations it was proved that in free space only transverse
components arose, there was no longitudinal component. Equations (1.5) and (1.6) are

called polarization components of the radiation field.
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Figure 1.1: The polarization ellipse in a plane transverse to the propagation

direction.

1.1.1 Polarization ellipse

As the electric field propagates Ey(z,t) and Ey(z,t) give rise to a resultant vector. This
vector describes a locus of points in space and the curve generated by those points is an

ellipse. This ellipse is called as the polarization ellipse (see Figure 1.1) and is given by

E? E} 2E.E, cosé
+ L - =
EZ. Eg, EoxEoy

sin? g, (1.7)

where 0 = d, — dx is the phase difference.

1.1.2 Representation of polarized light

To describe an arbitrarily polarized radiation field four parameters are sufficient, which
will give the “intensity”, “degree of polarization”, “plane” of polarization and “ellipticity”
of the radiation at each point in any given direction. To include such diverse quantities
which represent energy, a ratio, an angle and a pure number in a self-consistent manner
into the RT equation, the Stokes parameters were introduced (see Chandrasekhar 1950).
Denoting by [; = E2_and I, = Egy,
light in two mutually perpendicular directions (I and r) the Stokes parameters I, @, U and

which are the components of intensity of a beam of
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V are defined as

I=1+1,=E} +Eg, (1.8)

Q=1 -1 = E; — Ej, (1.9)

U = (I, — I,) tan 2x = 2E Eqy cos 0, (1.10)

V = (I, — I,) tan 2 sec 2x = 2EnFpy sin 6, (1.11)

where x is the angle between the direction [ and the semi-major axis (a) of the ellipse
and tan 3 is the ratio of semi-major to semi-minor axis (b) of the ellipse. The vector I =

(1,Q,U,V) is called as the Stokes vector. The polarization ellipse is shown in Figure 1.1.

1.2 The polarized light in stellar atmospheres

In general, light gets polarized due to (i) coherent scattering and (ii) the external magnetic
fields. An example of scattering polarization is that of Rayleigh’s scattering in which the
light gets partially polarized in the ratio of intensities 1 : cos®> © (© is the angle between
the incident and the scattered beam) in directions perpendicular and parallel to the plane
of scattering (the plane containing the incident and scattered beams of light). The diffuse
(multiply scattered) radiation field in a scattering atmosphere must therefore be partially
polarized (see Chandrasekhar 1950). Magnetic fields produce polarization of light through
(a) Zeeman effect and (b) the Hanle effect. In this thesis we emphasize on studies of

polarization of light through scattering and Hanle effect which are described below.
1.2.1 Resonance scattering in spectral lines

The following events are considered as typical examples of scattering processes. (i) A
photon traveling in direction €2’ and with frequency ¢/, is incident on an atom in bound
state a leading to the excitation to a higher energy bound state b, with the photon’s energy
being converted to the internal excitation energy of the atom, followed by a radiative decay
back to state a with the emission of a photon, that travels in a different direction €2 and
has a slightly different frequency v. Further, the lower and upper states a and b of the
atom will not be perfectly sharp, but have finite energy widths arising due to finite lifetime
of each state caused by radiative de-excitation (natural broadening), or the broadening
caused by collisions with other particles. The scattering of incident radiation on atoms and
molecules, in the vicinity of the energy gap between their bound states, is called resonance
scattering. The process involved is nothing but the well known Rayleigh (dipole) scattering,

but on the bound states of the atoms and molecules — producing polarized spectral lines.
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(ii) scattering of photons involving atomic and molecular bound — free states (and its
inverse processes) is also called Rayleigh scattering, producing weakly polarized continuum
spectrum. Note that scattering of photons by free electrons (Thompson scattering) has an
identical angular distribution as the Rayleigh scattering process and produces a polarized
continuous spectrum. In this thesis we consider scattering processes of the type (i) and (ii)

mentioned above.

Following Landi Degl’Innocenti & Landolfi (2004, hereafter LL04), here we qualitatively
describe the resonance scattering polarization and its magnetic analogue — the Hanle effect.
In Figure 1.2 we show a 90° scattering event in the absence of an external magnetic field.
We assume that the incident radiation field is unpolarized. The scattering atom is assumed
to be consisting of three linear oscillators x, y and z, oscillating with frequency, say 1. The
electric field of the incident radiation can be decomposed into its x- and z-components,
which do not have any phase relation between them (incoherence), owing to the unpolarized
nature of the incident beam. This in-coherency is transfered to the oscillators of the
atom and thus the x-component of the electric field vector excites x-oscillator and the
z-component excites the z-oscillator. We assume that y is the direction of propagation
of the incident radiation beam, and therefore there is no component of the electric field
in y-direction. Thus the y-oscillator is not excited. All of the oscillators decay with a
damped motion as they emit in any given direction, a radiation beam polarized according
to the classical dipole scattering (see e.g., Jackson 1962). On viewing the beam scattered
along the z-direction, one cannot see the oscillation that is along the z-direction. There
is no oscillation excited along y-direction as well, and therefore I, = 0. The x-oscillator
produces a radiation beam that is linearly polarized along the x-direction, which we denote
by I;. This means that Q/I = (I;/I;) x 100 = 100 % (see Figure 1.2). Thus the radiation
scattered along z-direction is 100 % linearly polarized perpendicular to the scattering plane.
The same scattering event can be understood by considering the atom to be consisting of a
linear z-oscillator and two circular oscillators denoted by ¢, and o_ laying in the xy plane
(equivalent to the linear x-oscillator). In this picture, the z-component of the electric field
of the incident beam still excites the z-oscillator (oscillations of which cannot however
be seen, when viewed along the z-direction), but the x-oscillator excites the o, and o_
circular oscillators. These two circular oscillators are in a well-defined phase relation, so

as to produce the resulting motion of the electric charge in the x-direction.
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Figure 1.2: (a) Illustration of a 90° resonance scattering in the absence of magnetic

Observing direction

fields. (b) The electron motion is confined to the x-direction.

1.2.2 The Hanle effect

The Hanle effect is the magnetic field modification of the resonance scattering polarization
described above. We schematically illustrate this in Figure 1.3. We now assume that we
have a weak magnetic field oriented along the z-direction. While the linear z-oscillator
continues to oscillate with the frequency 1y, the frequencies of the o, and o_ circular
oscillators get modified as 1y + vy and vy — vy, respectively, with vy being the Larmour
frequency. This causes the loss of the phase relation produced by the exciting electric
field, during the damped decay process. Therefore the electric charge describes a so-called
“rossett” pattern in the xy plane. Thus, the linear polarization of the scattered beam —
which actually represents the weighted time average of this rossett pattern — is decreased
and rotated with respect to the direction of the non-magnetic regime. This effect on the
resonance scattered linear polarization caused by the weak magnetic field, which relaxes
the phase relations or the coherences between the o, and o_ oscillators of the resonance
scattering, is called as the Hanle effect. The Hanle effect was discovered in Gottingen in
1923 by Wilhelm Hanle (see Hanle 1923, 1924). The diagnostic potential of the Hanle

effect to estimate weak solar magnetic fields was pioneered by Stenflo (1982).
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1.2.3 The second solar spectrum

The linearly polarized spectrum of the Sun formed due to coherent scattering processes
is called the second solar spectrum. Because of its enormous structural difference when
compared to the intensity spectrum (first solar spectrum), it was named as the second solar
spectrum by Ivanov (1991). The first investigation of the second solar spectrum was carried
out by Stenflo et al. (1983a, 1983b). The invention of high precision polarimeters such
as ZIMPOL (Povel 1995, 2001) made the faint structural details in the linearly polarized
spectrum possible to be detected and explored. A comprehensive atlas of the second
solar spectrum in the wavelength regime 3160-6995 A was recorded in three volumes by
Gandorfer (2000, 2002, 2005).

1.2.4 Polarization phase matrices

A polarization phase matrix ]5(52, Q') is a matrix that describes the probability that a
photon incident from direction €’ will be scattered into direction £2. The phase matrix
is a 4x4 matrix because it transforms the polarization state (I’,Q’",U’, V') of the incident
photon, which is a 4-component vector into another 4-component vector (I,Q,U, V') that
represents the polarization state of the scattered photon. Each element of the phase matrix
depends on Q' and . The expressions for the phase matrix elements can be found in
Chandrasekhar (1950) for resonance scattering and in Stenflo (1994) for the Hanle effect.

1.2.5 Irreducible spherical tensors TQK

The irreducible spherical tensors 7'QK (7,€2) are mathematical entities introduced to po-
larimetry by Landi Degl'Innocenti (1984). The index i = 0, 1,2, 3 refers to four Stokes
parameters I, (), U and V and €2 is the direction of the scattered photon. The indices
K and @ arise from the multi-polar expansion of the density matrix elements in terms of
irreducible spherical tensors. K takes values 0,1, and 2. For each value of K, we have
—K <@ < +K. The values K = 0 and 2 correspond to the the terms generating linear
polarization components and K = 1 to the circular polarization components. The tensors
TQK(Z', Q) are purely geometrical quantities which enable factorization of the elements of
the phase matrix P(€2,€2'). In other words we can express the elements of the phase ma-
trix as a sum of the product of terms which depend separately on € and €'. This is an
important property that helps to simplify the polarized RT problems to a great extent. A
major part of this thesis is built upon the idea of decomposing the Stokes parameters in

terms of these irreducible spherical tensors. A complete description of properties of these
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Figure 1.3: (a) Illustration of a 90° resonance scattering in the presence of a weak
magnetic field leading to the Hanle effect. (b) the bound electron executes a rossett

motion in the xy-plane.

tensors is given in LLO4.

1.3 Partial frequency redistribution in line scattering

As discussed above, the process of scattering which leads to polarized spectral lines is the
one in which an atom is excited from a bound state to another by absorbing a photon,
immediately followed by a radiative de-excitation to the original state by emitting a photon.
Often the frequency and direction of the scattered photon is different from those of the
incident photon. In other words there is a “redistribution” of the angle and frequency of
the incident photon. This redistribution process is represented by elegant mathematical
functions called redistribution functions, derived originally by Hummer (1962). Specifically,

a redistribution function
R(v, V', Q, Q) dv dv' (dQ/4m) (dY /4x), (1.12)

gives the joint probability that a photon will be scattered from incident direction €2 within
a solid angle d€? and in the frequency interval (v, 1" 4+ dv’) into a solid angle d€2 around

the direction © and in the frequency interval (v,v + dv). The functional form of this
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redistribution function in two important categories are widely used. These functions are
derived with the assumption that the transition is represented by only two energy levels
with no coupling to other levels. In both the cases discussed below, it is assumed that in
the atomic rest frame the lower state is perfectly sharp. (i) In the first case, the upper
state is assumed to have a finite width arising due to finite life time of the excited state
of the atom, against radiative decay back to the lower state. Further, it is assumed that
no additional perturbations occur while the atom is in the upper state. (ii) In the second
case, the upper state is assumed to be broadened because frequent collisions in the medium
cause a random reshuffling of the atom in the upper state, before the emission of a photon.
Note that in this case the width of the upper state is due to radiative plus collisional
processes. The redistribution functions are derived first in the atom’s rest frame. Then
Doppler redistribution in frequency produced by atom’s random motion are considered,
recognizing that what is actually observed in a stellar atmosphere is an ensemble of atoms

moving with a thermal velocity distribution (assumed to be Maxwellian).

The functional form of type-II redistribution function that describes the case (i) is

1 1
rn(x, 2, Q, Q) = exp {——(x —2')? esc? 5@

7 sin © 2

1 .1 1
x H (asec 5@,§(x+as') sec 5@) : (1.13)

Here frequencies are measured in units of the Doppler width. The incident and scattered
frequencies are respectively ' and x. The scattering angle (angle between incident and
scattered beams) is given by

© = cos {2 Q'}. (1.14)
H is the well known Voigt profile function and a is the total width of the upper state is

expressed in terms of line the Doppler width.

The functional form of type-III redistribution function that describes the case (ii) is
ri(z, 2, Q, Q) = ;/Jroo due’“Qé
MRS 2™ 2sine a? + (' — u)?
a T —ucosO
xH . 1.15
(sin ©’ sin® ) (1.15)

The functions given in Equations (1.13) and (1.15) contain the full information on the

“correlation” between incident and scattered angles and frequencies. They are known
as “angle-dependent” partial frequency redistribution (PRD) functions in the laboratory
frame. They form the mathematical basis functions in terms of which more complex (for

instance polarized) ‘redistribution matrices’” are constructed.
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Figure 1.4: ZIMPOL observations of Ca 1 4227 A line taken at IRSOL,
Switzerland. This is a strong resonance line, formed in the mid chromosphere.

The wing peaks of this line are formed due to PRD effects. Important features

of the line are marked.

1.3.1 Angle-averaged redistribution functions

It is often difficult to treat RT problems in the degree of generality contained in the angle-
dependent redistribution functions. A level of simplification is achieved, yet retaining the
information on frequency correlations, by averaging over the entire range of incident and
scattered directions. This approximation is useful when one is primarily interested in corre-
lations in frequency, not in angles. The angle-averaged type-II and type-III redistribution

functions are given by

1 iy
r(x, 2’) = 5/ ri(x, ', Q, Q) sin © dO, (1.16)
0
and
1 iy
rm(r,2’) = 5/ rim(z, 2, Q, Q) sin © dO. (1.17)
0

For detailed discussions on redistribution theory in line scattering one can refer to Hummer
(1962) and Mihalas (1978).
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1.3.2 Complete frequency redistribution function

When there is a complete reshuffling of atoms in their excited state in such a way that there
is no correlation between the frequencies of incoming and scattered photons, then both have
frequencies independently distributed over the absorption profile. This situation is referred
to as “complete frequency redistribution (CRD)” and is represented mathematically by

o(z) ¢(x'), where ¢ is the absorption profile function.

1.4 The polarized redistribution matrices

As we have seen in previous sections, (i) phase matrices represent the probability dis-
tribution of angularly anisotropic scattering which determines the polarization state of
the scattered photon, and (ii) redistribution functions represent the probability distribu-
tions of angular and frequency correlations, which determine the frequency and direction
of the scattered photons. Actually to understand the polarization observed in spectral
lines we must implement in the RT equation, both the effects described above in (i) and
(ii). The combined effects constitute the scattering redistribution matrices denoted by

R(z, 2,2, €), which are basically linear combination of the unpolarized redistribution

functions 7 and the polarization phase matrices P.

In this thesis we use two types of redistribution matrices: non-magnetic redistribution
matrix with collisions derived for resonance scattering by Domke & Hubeny (1988) and
magnetic redistribution matrix derived for the case of Hanle effect by Bommier (1997a,
1997b). In chapters 2 and 3 we use the approximation of CRD in line scattering. In
chapters 4, 5 and 9 we use non-magnetic redistribution matrices. In chapters 6 and 10 we
use the magnetic redistribution matrices with angle-averaged redistribution functions. In
chapters 7 and 8 we consider the magnetic redistribution matrices with angle-dependent
redistribution functions. The functional forms of these matrices are given in respective

chapters and further details in the appendices.

An example of the PRD scattering in polarized line formation is presented in Figure 1.4
where we show the @/I profile in the Ca 14227 A line observed near the limb of the Sun.
This line is formed in the mid-chromosphere and has maximum linear polarization in the
visible region of the spectrum. The two peaks on either sides of the line center are formed
due to the PRD scattering mechanism. We have taken up modeling of this line in chapters 9
and 10.



12 Chapter 1. General introduction

1.5 Line radiative transfer equation and its solution

The polarized line transfer equation for a ray traveling along the direction €2 is given by

dI(r,Q2
ML) v )L, Q) — S 9.2, (1.18)
s
where s is the path length along the ray. Here I = (1,Q,U) is the Stokes vector, ko iS
the total opacity (line plus continuum), r» = (x,y,z) is the position vector of the ray in the
Cartesian co-ordinate system. The Stokes source vector S = (57, Sg, Sy) for a two-level

atom model with unpolarized ground level takes the form

Ki(r)o(x)Si(r, Q, x) + ko(r)S.(r, x)

fitot(ﬁ 513)

S(r,Q,z) =
(1.19)

Here S, is the continuum source vector, k; and k. are the line and continuum opacities, ¢
is the Voigt profile function. The polarized line source vector can be expressed as

+o0

Si(r,Q, 1) = G(r) +/ dz’

—00

~

A R(z, ', Q, )
X}'{ ir o)

I(r,Q,7), (1.20)

where G(r) is the thermal source vector, R(x, ', 2, §') is the redistribution matrix. Actual
functional form of different quantities appearing in the above equations depend on the
problem at hand. Their explicit form and further details specific to the problem will
be given in each of the chapters. Therefore we treat them as abstract quantities in this

introductory chapter, to avoid repetition and confusion.

The spatial derivative in the left-hand-side of Equation (1.18) takes different forms in
different geometries. In this thesis we consider RT in 1D Cartesian geometry in chapters 2,
9 and 10, 1D spherical geometry in chapter 3, and finally multi-D Cartesian geometry in
chapters 4-8. As a major part of the thesis is about multi-D line RT, we discuss below

some of the concepts and historical developments in this field.
1.5.1 Multi-D radiative transfer

With the introduction of high precision spectro-polarimeters such as ZIMPOL, observations
of a wealth of structures are now available for exploration. Figure 1.5 shows the Stokes

images recorded around the core of the Ca 11 K line observed in quiet regions of the Sun.
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The most striking feature is the “high degree of spatial structuring” along the slit length
observed in both @/I and U/I (see Stenflo 2006). A natural explanation of this spatial
structuring is in terms of Hanle effect from spatially varying magnetic fields. This effect is
entangled with the local departure from axial symmetry which causes spatial distribution
of @/I and U/I. In addition, the broad wings of the chormoshperic Ca 11 K line (see
Figure 1.6) have their origin in the PRD scattering mechanism. An attempt to model
this line using two-component 1D model atmospheres has been made in Holzreuter et al.
(2006), Holzreuter & Stenflo (2007a, 2007b). They try to simulate the observed polarization
spectrum by using hot, cool, quiet Sun 1D model atmospheres and finally combinations
of hot and cool 1D model atmospheres. Their studies reveal that even the use of multi-
component 1D model atmospheres are unable to provide a detailed fit to the polarimetric
observations for all the center-to-limb distances simultaneously. This is because, in such
idealized 1D models the hot and cold components are assumed to be optically independent
of each other, which is certainly not the case in realistic geometries of the structures in
the solar atmospheres. They indicate that multi-D RT would be needed for a fully self-

consistent treatment.

Modeling using a simplified geometry serves a purpose in the historical development
of the field, by providing the parameters to be looked for, such as temperature structure,
magnetic fields etc. It is always a necessary to achieve as high a degree of realism as
possible. Detailed 2D and 3D magnetohydrodynamical models of the solar atmosphere
have now become available, with higher sophistication (see Nordlund & Stein 1991 and

references therein).

A successful modeling of the Stokes observations of lines such as Ca 11 K requires
multi-D polarized line RT with a proper treatment of PRD and Hanle effect using magne-
tohydrodynamic simulations of the solar atmospheres. As a first step towards this major
effort, we formulate in this thesis multi-D polarized RT, and develop methods to solve
them. We explore the effects of both PRD and Hanle effect in isothermal slabs and cubes.

We apply these methods in realistic modeling of solar 3D structures in future.

1.5.2 Methods to solve radiative transfer equation
Formal solution methods

Important contributions in the early history of solving NLTE unpolarized multi-D RT
problems are the papers by Cannon (1970) and Cannon & Rees (1971), who considered



Chapter 1. General introduction

Ca II K at ©=0.10 Ca II K at ©=0.96 in weakly magnetic region
- .
I I
60 1
o o
7 7
4 7 404
o <
& 3
201
0
Q/T Q/1
o o
9] 9]
wn n
9] 9]
5 5
& &
Uu/I1 U/I
m o
9] 9]
12 wn
9] 9]
= <
& &
V/I
o o
o a
n n
9] 9]
5 <
& &
3931 3932 3933 3934 3935 3936 3931 3932 3933 3934 3935 3936
Wavelength (A) Wavelength (&)

Figure 1.5: CCD images of the Ca 11 K line observed in quiet regions of the Sun, using the ZIMPOL
polarimeter at NSO/Kitt Peak in March 2005 (courtesy: J. O. Stenflo).
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Figure 1.6: The observed linear polarization (Q/I) profile taken from Holzreuter et al. (2006).
The broad wings of the K line around the line center (at 3933 A) are due to PRD effects. Top
panel: observed intensity spectrum. Second panel: linearly polarized spectrum using a warm
FALC model (thin solid, smooth line), the cold FALX model (dotted), the two-component model
with FALC and FALX (thick solid), and observations (solid, noisy).

the problem of solving unpolarized 2D RT equation for a two-level atom model. A further
step ahead was taken by Mihalas et al. (1978) who introduced the method of “short char-
acteristics” for the formal solution of the multi-D RT equation. Kunasz & Auer (1988)
developed an improved short characteristics method where the idea of direct integration of
source terms over short stencils along the ray combined with the use of parabolic interpola-
tion of the source terms were introduced. Here the authors considered the formal solution
with a known source term. Kunasz & Olson (1988) solved the NLTE unpolarized 2D RT
problem for a two-level model atom was solved using the method developed in Kunasz &
Auer (1988). An improvement in the numerical stability was achieved by the introduc-
tion of monotonic interpolation in Auer & Paletou (1994). Auer et al. (1994) generalized
the method to the case of 2D RT with horizontal periodic boundary conditions, including
multi-level atoms. This method was generalized to the 3D case by Fabiani Bendicho &
Trujillo Bueno (1999). A remarkable contributions to the field is by van Noort et al. (2002)
who developed efficient formal solvers for unpolarized multi-D RT problems in Cartesian,

cylindrical and spherical co-ordinate systems.

The idea of short characteristics is presented in Figure 1.7. A ray traveling in the
atmosphere is shown. MOP is a short three-point stencil along the ray. Source terms

at these three points are assumed to fit a parabola. A direct analytical integration of
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the source terms with exponential attenuation terms is carried out to obtain a formal

expression for the solution of RT equation. This solution is expressed in terms the values

of source terms at points M, O and P and the value of intensity (or Stokes vector in

general), at the upwind point M. This process is continued

until one reaches the outer

boundary (piece wise integration). In the case of multi-D RT the short characteristics

stencil has more surrounding points unlike 1D, and the source terms at points M and P

are in general non-grid points (see Figure 1.8). This requires

the source terms at M and

P and the value of the upwind radiation field (intensity or the Stokes vector) at M to be

interpolated using their respective values at the surrounding points.

The short characteristics method is numerically very efficient and has paved the way

for obtaining reliable solutions of the line RT equations.
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For simplicity, formal solution methods based on linear differencing techniques were
successfully used by few authors in the past (see e.g., Adam 1990 and Folini 1998). Al-
though linear differencing techniques give accurate solutions with the use of sufficiently
fine spatial grids to represent the depth integration, the short characteristics method is

superior in several aspects.
Iterative methods

The formal solution of the RT equation requires specification of the source terms along the
ray path. In NLTE RT problems (both unpolarized and polarized) the source term im-
plicitly depends on the radiation field, and hence the RT equation is an integro-differential
equation. The degree of non-locality enhances in the case of multi-D RT. For this reason,
solving multi-D, self-consistent, NLTE radiation hydrodynamics problems was considered
to be a formidable task until recent years. The inclusion of polarization increases the level

of complexity much more.

A dramatic change in the field of solving line RT equations occurred with the advent
of Approximate Lambda Iteration (ALI) methods (see Olson et al. 1986). It involved an
application of the operator splitting methods, well known in applied mathematics, to the
RT problems. Equation (1.18) is a linear differential equation as long as the source term

S is known. We can write its solution formally as
L,(22) = A, (Q)[S]. (1.21)

Here A, (€2) is an integral operator acting on S. The angle integrated A, operator is defined

as

dasy’
47

where f again represents an abstract quantity which depends on the problem at hand.

J, = A,[S]; J, = ]{ I, (1.22)

For the two-level atom system without the lower level polarization considered throughout
this thesis, we can transform the RT problem to be a system of linear equations expressed
in terms of the A, operator. ALI methods consist of splitting the A, operator as A, =
(A, — AX) + A% (this idea was introduced to the RT theory by Cannon 1973). The A}
operator helps to accelerate the convergence of the iterative method. A choice that has
proven optimum is the diagonal A’ of the A, matrix. The first application of the ALI
methods to multi-D RT was done by Kunasz & Olson (1988). The important feature of ALI
methods is that the coupled RT problem is reduced to a set of formal solutions, while the

coupling is taken care through iterations. An excellent review on ALI methods can be found
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in Hubeny (2003). ALI methods are routinely applied to the line formation problems using
the Jacobi iteration scheme. A class of methods that can provide a considerably higher
rate of convergence are Gauss-Seidel and Successive Over Relaxation (SOR) introduced to
RT by Trujillo Bueno & Fabiani Bendicho (1995). These methods were implemented in
the 3D RT by Fabiani Bendicho & Trujillo Bueno (1999).

Another class of iterative methods which are extremely efficient are the projection meth-
ods. In this thesis we have systematically developed one of the most efficient projection
techniques namely Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB)
method to polarized multi-D RT with PRD and Hanle effect. Here we discuss details of
the essential mathematical background based on which the Pre-BiCG-STAB method is
developed in the field of applied mathematics. For a comprehensive description of these
methods one can refer to the e-book Saad (2000).

We can pose the RT problem for a two-level model atom as a system of linear equations

to be solved, symbolically represented as
Ax = b, (1.23)

where A = (aij),i,j =1,2,...,nis an n X n matrix,  and b are the unknown and known
vectors of length n. Iterative methods start with an initial guess, and therefore we have the
residual vector b— Az for each iterate. One example to improve an iterate is to “annihilate
some component” of the residual vector. An ultimate aim of any iterative method is to
make the residual vector go to zero, which means that we have obtained the solution of
Equation (1.23).

Let ) = (ka), §§k), o ,(Zk)) with k being the index of iteration and b = (31, fa, . . ., Bn).
Assuming an initial guess (© we get (") and so on, and after k steps we get **Y. The
Jacobi iteration determines i-th component of the next iterate. That is, at k-th iteration
we determine (k 4 1)-th estimate for . But all the components are considered indepen-
dent. The iteration scheme then determines ¢-th component of the next iterate so as to

“annihilate” the i-th component of the residual vector namely
(b— Az, = 0. (1.24)

Thus the component form of Jacobi iteration can be written as

1 n
gz'(k+1) = [51 - Z Q5 §§k)] ) = 1727 - n, (125>

Qg . .
" J=1; j#
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which can be written in a matrix form as
2* ) = D7E 4+ Fla® + Db, (1.26)

where D is the diagonal of the matrix fl, E is the strict lower part and F' is the strict
upper part of the matrix A.

Similarly a Gauss-Seidel iteration corrects the i-th component of the current approx-
imate solution in the order ¢ = 1,2,...,n again to annihilate the i-th component of the
residual. However this time, approximate solution is updated immediately after the new
component is determined. The newly computed components §§k),i = 1,2,...,n can be
changed within a working vector which is redefined at each relaxation step. The resulting

component form of Gauss-Seidel iteration is

i—1 n
1
k+1 k+1 k -
& ):au b= & =Y ey | i=12.0m, (1.27)
n j=1 j=i+1

which can be written is a matrix form as

A

"D = [D - E]"'b+ [D — E| "' Fa®. (1.28)
The projection methods

The idea of a projection method is to extract an approximate solution to the problem
imposed in Equation (1.23) from a subspace of R". Let K be this subspace which is a
search space for such approximate solutions. In general, m constraints must be imposed to
be able to extract such an approximation. A typical way of describing these constraints is to
impose m independent orthogonality conditions. Specifically the residual vector b — Az is
constrained to be orthogonal to m linearly independent vectors where & is an approximate
solution. This forms another m-dimensional subspace £ which is called as the subspace of
constraints. For instance, if the subspaces £ and K are the same or related to each other

linearly by £ = AK then these projections are called orthogonal projections.

In other words, a projection technique onto the subspace I and orthogonal to £ is a
process which finds an approximate solution & to Equation (1.23) by imposing the condition
that the residual vector b — A% be orthogonal to £. Generally @ is chosen such that
x € xy+ K, with xy being an arbitrary initial guess to the solution. Most standard
techniques use a succession of such projections. A Krylov subspace method is a projection
method for which the subspace K is chosen to be ICm(fl, ro) = (70, flro, e /Almflro) where

r( is the initial residual vector r = b — fla:o.
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Figure 1.9: Illustration of the projection methods. Here r; = AS.

Definition:

A projector or a projection operator P is any linear mapping from the n-dimensional com-
plex space C" to itself such that P? = P. If P is a projector, then so is I — P, where I is
the identity operator.

The result of a projection process can be interpreted in terms of actions of orthogonal

projection operators on the initial residual vector.

Proof:

Let £ = AK. As above let &y be an arbitrary initial guess.

Now impose the condition g = b — Axzy L (orthogonal to) L.

— Choose & € K such that 7o L A8.

Define the operator P such that P(rg) = Ad.

—> P is a projection operator because the quantity Ad is the orthogonal projection of 7
onto the subspace £ = AK.

Generally in Krylov subspace projection methods, next approximate solution is chosen to
be & = xy + 0.

— The residual vector # = b — Az = b — Az, — AS.

Then 7 = rq — P(ry) = (I — P)ro.

Thus, the following proposition is valid:

If & is the approximate solution obtained from a projection process on to K (such as
the Krylov subspace method), orthogonally to £ = AIC, and if 7 = b — AZ denotes the
associated residual, then we have 7 = (I — P)rg, with P being an orthogonal projector of
ro onto the subspace AK. This means that the new residual also is an orthogonal projector

of the initial residual r¢. A projection method is illustrated in Figure 1.9.

In this thesis we have first developed the Pre-BiCG-STAB method for the unpolarized
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RT in spherical geometry (chapter 3). Then we extend this method to polarized multi-D
RT with PRD and Hanle effect in chapters 5 and 6 using angle-averaged PRD. In chapter 7
we further extend the method to handle angle-dependent PRD.

1.5.3 Applications of multi-D radiative transfer

Radiative flux is a crucial ingredient in the construction of model solar and stellar at-
mospheres. Due to computational limitations inclusion of full NLTE RT for constructing
model atmospheres is not yet possible. With approximate description of the radiation
several codes have been developed to construct 3D model atmospheres. Some important
contributions in this field of research are by Nordlund (1982), Stein & Nordlund (1998,
2000), Skartlien (2000), Wedemeyer et al. (2004), i Vogler et al. (2005), Hansteen (2004),
Hansteen et al. (2007), Leenaarts et al. (2007), Hayek (2008), Gudiksen et al. (2011).

However a legitimate question to be asked is whether these realistic simulations really
realistic? Can the results be trusted? The photospheric simulations, there have been some
positive answers by the works of Wedemeyer—Boﬂm & Rouppe van der Voort (2009), Pereira
et al. (2009a, 2009b) who compared unpolarized intensity spectrum and the spectrum

obtained through the model simulations.

For testing 3D chromospheric models one has to solve 3D NLTE RT equation and
the statistical equilibrium equation to obtain the model spectrum and compare with the
observations. To do such studies several numerical codes were developed. Some remarkable
contributions in this field are due to Botnen (1997) who extended the MULTI code of
Carlsson (1986) to 3D, and a general 3D RT solver presented in Hauschildt & Baron
(2006, 2008). Further, Uitenbroek (2001) has developed a general multi-level NLTE RT
code called the RH-code for 1D, 2D and 3D problems, which also solves the statistical
equilibrium equation using the MALI scheme of Rybicki & Hummer (1991, 1992). The

above codes are dedicated to the calculation of the unpolarized intensity spectrum.

The code for the solution of 3D NLTE RT equation based on the works in Auer et
al. (1994), Trujillo Bueno & Fabiani Bendicho (1995), Fabiani Bendicho et al. (1997),
Fabiani Bendicho & Trujillo Bueno (1999) can also compute the linearly polarized profiles
in multi-level systems but under the assumption of CRD. They use the density matrix

theory of Landi Degl’Innocenti and co-workers described in LL04.

Using the RH code for the solutions of unpolarized RT equation and the statistical
equilibrium equations, Fluri et al. (2003a) have developed a code called POLY that solves
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the non-magnetic polarized RT equation with angle-averaged PRD. They consider two-level

atom model to solve the polarization part of the problem.

The NLTE calculations and the analysis of unpolarized intensity spectra using the
unpolarized multi-level RT codes were done by for example, Asplund et al. (2003, 2004),
Cayrel et al. (2007) and Uitenbroek & Criscuoli (2011). Linear polarization analysis using
3D NLTE RT codes is addressed rarely. Few important contributions are those by Trujillo
Bueno et al. (2004), Asensio Ramos & Trujillo Bueno (2005), Trujillo Bueno & Shchukina
(2007, 2009). A detailed review on the hydrodynamics and RT in 3D model atmospheres
can be found in Carlsson (2009).

1.6 Modeling of the second solar spectrum

Realistic modeling of the second solar spectrum using detailed 1D RT calculations were per-
formed for the first time by Faurobert-Scholl (1991, 1992, 1993, 1994). She used both CRD
and PRD in line scattering. The linear polarization was considered in the photospheric line
Sr14607 A and the chromospheric line Ca 14227 A . Several studies using combinations of
RH-code and POLY code were carried out by Fluri et al. (2003a), Holzreuter et al. (2005,
2006, 2007a, 2007b). They considered linear polarization in the chromospheric Ca 1 4227
A, Na1 D2 and Ca 11 K lines. Faurobert et al. (2009) have carried out extensive studies

of linear polarization in the chromospheric Ba 11 D2 line.

Modeling of second solar spectrum using multi-D RT was taken up only very recently
(see e.g., Trujillo Bueno et al. 2004; Asensio Ramos & Trujillo Bueno 2005; Trujillo Bueno
& Shchukina 2007, 2009). They considered the photospheric Sr 14607 A line.

In this thesis we consider modeling the Ca 1 4227 A line observed near the solar limb
(chapter 9) and near the disk center (chapter 10) using 1D model atmospheres. We use
combinations of RH-code and the POLY code. For the studies in chapter 10 we have
extended the POLY code to include the Hanle effect by oriented magnetic fields and a
general PRD theory for the Hanle effect developed by Bommier (1997a, 1997b).

Our ultimate goal is to develop methods which can be used to solve 3D NLTE polarized
RT equation to compute linear polarization profiles using PRD scattering and realistic 3D
model atmospheres. This can be done with an extension of the methods developed in this
thesis to handle realistic model atmospheres combined with the RH-code of Uitenbroek
(2001).
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1.7 Outline of the thesis

In this thesis we have developed new and efficient methods to solve the NUTE RT problems
(both unpolarized and polarized) in the contexts of astrophysical applications. We have
tested these methods by comparing the results with well established benchmarks solutions
and limiting cases. In some cases we have formulated the RT problem and provided the
first solutions and analyzed the results. We have presented details of the formulations and
conducted extensive studies on the solutions to prove their correctness. Finally we have

carried out analysis of polarimetric observational data, and model them.

We have divided the thesis into three parts. In Chapter 1 we give a general introduction.
Chapters 2 and 3 deal with Part-I of the thesis. Here we develop advanced numerical
methods for the solution of RT problems in the case of 1D planar and spherical media.
Chapters 4-8 are devoted to the Part-II. In this part we formulate and solve the polarized
RT problems for non-magnetic and magnetic multi-D atmospheres with PRD scattering
and Hanle effect using elegant and modern mathematical techniques. Chapters 9 and 10
constitute Part-1I1. In this part we analyze spectro-polarimetric data of the second solar
spectrum, and model them using the standard 1D model solar atmospheres. Chapter 11

presents future outlook on the work described in this thesis.
1.7.1 Owutline on part—I of the thesis

In chapter 2 we consider studies on the turbulent Hanle effect. The Hanle effect is used
to determine weak turbulent magnetic fields in the solar atmosphere, usually assuming
that the angular distribution is isotropic, the magnetic field strength is constant and that
micro-turbulence holds, i.e., that the magnetic field correlation length is much smaller than
a photon mean free path. In order to examine the sensitivity of turbulent magnetic field
measurements to these assumptions, we study the dependence of Hanle effect on the mag-
netic field correlation length, its angular and strength distributions. We introduce a fairly
general random magnetic field model characterized by a correlation length and a magnetic
field vector distribution. Micro-turbulence is recovered when the correlation length goes to
zero and macro-turbulence when it goes to infinity. RT equations are established for the
calculation of the mean Stokes parameters and they are solved numerically by a Polarized
Approximate Lambda Iteration (PALI) method. We show that optically thin spectral lines
and optically very thick ones are insensitive to the correlation length of the magnetic field
while spectral lines with intermediate optical depths (around 10-100) show some sensitiv-

ity to this parameter. The result is interpreted in terms of the mean number of scattering
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events needed to create the surface polarization. It is shown that the single-scattering
approximation holds good for thin and thick lines, but may fail for lines with intermediate
thickness. The dependence of the polarization on the magnetic field vector probability
density function (PDF) is examined in the micro-turbulent limit. A few PDFs with dif-
ferent angular and strength distributions, but equal mean value of the magnetic field, are
considered. It is found that the polarization is in general quite sensitive to the shape of the
magnetic field strength PDF and also somewhat to the angular distribution. The mean
field derived from Hanle effect analysis of polarimetric data strongly depends on the choice
of the field strength distribution used in the analysis. It is shown that micro-turbulence
is in general a safe approximation. Some mathematical details related to chapter 2 are

presented in Appendices A and B.

In chapter 3 we embark on developing a new and robust numerical technique called the
Pre-BiCG-STAB method for the solution of RT equation in spherically symmetric media.
This method is one of the best methods in applied mathematics for the solution of systems
of linear equations. This method belongs to the class of iterative methods called projection
methods. This method in particular is based on the construction of a set of bi-orthogonal
vectors. The application of Pre-BiCG-STAB method in some benchmark tests shows that
it is quite versatile, and can handle hard problems that may arise in astrophysical RT
theory. The applicability of this method is discussed in the later chapters where we extend
it to multi-D RT problems (chapters 5, 6, 7 and 8). In Appendix C we give some additional

mathematical details related to chapter 3.
1.7.2 QOutline on part—II of the thesis

The solution of the polarized line RT equation in muti-D media has been rarely addressed
and only under the approximation that the changes of frequencies at each scattering are
uncorrelated (the assumption of CRD). With the increase in the resolution power of tele-
scopes, being able to handle RT in multi-D structures becomes absolutely necessary. In
chapter 4 our first aim is to formulate the polarized RT equation for resonance scattering in
multi-D media, using the elegant technique of irreducible spherical tensors 722K (7,€2). Our
second aim is to develop a numerical method of solution based on the PALI approach. We
consider both CRD as well as PRD in line scattering. In a multi-D medium the radiation
field is non-axisymmetrical even in the absence of a symmetry breaking mechanism such as
an oriented magnetic field. We generalize here to the 3D case, the decomposition technique
developed for the Hanle effect in a 1D medium which allows one to represent the Stokes

parameters I, Q,U by a set of 6 cylindrically symmetrical functions. The scattering phase
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matrix is expressed in terms of 75 (¢,2), (i = 0,1,2, K = 0,1,2, - K < Q < +K), with Q
being the direction of the outgoing ray. Starting from the definition of the source vector,
we show that it can be represented in terms of 6 components Sg independent of €2. The
formal solution of the multi-D transfer equation shows that the Stokes parameters can also
be expanded in terms of the ’TQK (,€2). Because of the 3D-geometry, the expansion coeffi-
cients Ig remain {2-dependent. We show that each Ig satisfies a simple transfer equation
with a source term Sg and that this transfer equation provides an efficient approach for
handling the polarized transfer in multi-D geometries. A PALI method for 3D, associated
to a core-wing separation method for treating PRD is developed. It is tested by comparison
with 1D solutions and several benchmark solutions in the 3D case are given. Appendix D is

devoted to detailed description of the numerical method of solution presented in chapter 4.

The work in chapter 5 is an up-gradation of the numerical methods developed in chap-
ter 4. In chapter 5, we develop a faster and more efficient Pre-BiCG-STAB method to solve
polarized 2D RT with PRD. The formal solution used in chapter 4 was based on a simple
finite volume technique. In chapter 5 we use a more accurate formal solver, namely the
well known 2D short characteristics method. Using the numerical methods developed in
chapter 4, we can consider only simpler cases of finite 2D slabs due to computational limita-
tions. It was a first step towards solving polarized multi-D problems with PRD. Using the
superior methods developed in chapter 5, we could compute PRD solutions in 2D media,
in the more difficult context of semi-infinite 2D atmospheres as well. We present several
solutions which may serve as benchmarks for future studies in this area. In Appendix E
we discuss the simplification brought about by the symmetry properties of the polarized

radiation field in a 2D medium and in Appendix F we prove these symmetry relations.

In chapters 4 and 5 we assumed Rayleigh scattering as the only source of linear polar-
ization (Q/I,U/I). In chapter 6 we extend these previous works to include the effect of
weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique
of Stokes vector decomposition in terms of the irreducible spherical tensors 72, developed
in chapter 4, to the case of RT with Hanle effect. A fast iterative Pre-BiCG-STAB method
for the solution of polarized 2D RT equation, developed in chapter 5 is now generalized
to the case of RT in magnetized 3D media. We use the efficient short-characteristics for-
mal solution method for multi-D media, generalized appropriately to the present context.
The main results obtained in chapter 6 are the following: (1) A comparison of emergent
(1,Q/I1,U/I) profiles formed in 1D media with the corresponding emergent, spatially av-
eraged profiles formed in multi-D media shows that in the spatially resolved structures,

the assumption of 1D may lead to large errors in linear polarization, especially in the line



26 Chapter 1. General introduction

wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial
variation of the emergent (Q)/I,U/I) profiles, which is more pronounced in the line wings.
(3) The presence of a weak magnetic field modifies the spatial variation of the emergent
(Q/I,U/I) profiles in the line core, by producing significant changes in their magnitudes.
Appendices G-J are devoted to provide the essential mathematical details that are related

to the formulations presented in chapter 6.

In the previous three chapters (4, 5 and 6) we have been investigating the nature of
Stokes profiles formed in multi-D media including PRD in line scattering. For numerical
simplicity, so far we restricted our attention to the particular case of PRD functions which
are averaged over all the incident and scattered directions. In chapter 7 we formulate
the polarized RT equation in multi-D media that takes into account Hanle effect with
angle-dependent PRD functions. We generalize here to the multi-D case, the method of
Fourier series expansion of angle-dependent PRD functions originally developed for RT in
1D geometry. We show that the Stokes source vector S = (S, Sg, Sy)? and the Stokes
k), 7
respectively, k € [0, +00). We show that the components S *) become independent of the

vector I = (I,Q,U)T can be expanded in terms of infinite sets of components S (
~ (k

azimuthal angle (¢) of the scattered ray, whereas the components l'( ) remain dependent

=~ (k ~ (k

on ¢ due to the nature of RT in multi-D geometry. We also establish that 8( ) and 7! )

satisfy a simple transfer equation, which can be solved by any iterative method like PALI

or a Biconjugate-Gradient type projection method, provided we truncate the Fourier series

to have a finite number of terms.

The solution of polarized RT equation with angle-dependent PRD is a challenging
problem. Modeling the linear polarization of strong lines in the solar spectrum often
requires solving angle-dependent line transfer problems in 1D or multi-D geometries. It
is essential to have a clear picture of the relative importance of angle-dependent PRD
effects and the multi-D transfer effects and particularly their combined influence on the
line polarization. The purpose of chapter 8 is to develop a physical and mathematical
understanding of these two effects. This would help in a quantitative analysis of the second
solar spectrum (the linearly polarized spectrum of the Sun). In chapter 8 we reduce the
Stokes vector transfer equation to a simpler form using a Fourier decomposition technique.
A fast numerical method is also devised to solve the concerned multi-D transfer problem.
We show that the angle-dependent PRD effects are significant, and can not be ignored in a
fine quantitative analysis of the line polarization. These effects are accentuated by the finite
dimensionality of the medium (multi-D transfer). The presence of magnetic fields (Hanle

effect) modifies the impact of these two effects to a considerable extent. In Appendices K
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and L we discuss the mathematical details of the phase matrices used in chapter 8 and the

symmetry breaking properties of angle-dependent PRD functions respectively.

1.7.3 Outline on part—III of the thesis

To model the second solar spectrum one needs to solve the polarized RT equation. For
strong resonance lines PRD effects must be accounted for, which makes the problem com-
putationally demanding. The ‘last scattering approximation’ (LSA) is a concept that has
been introduced to make this highly complex problem more tractable. An earlier applica-
tion of a simple LSA version could successfully model the wings of the strong Ca 14227 A
resonance line in Stokes )/ (fractional linear polarization), but failed completely to re-
produce the observed Q)/I peak in the line core. Since the magnetic-field signatures from
the Hanle effect only occur in the line core, we need to generalize the existing LSA ap-
proach if it is to be useful for diagnostics of chromospheric and turbulent magnetic fields.
In chapter 9 we explore three different approximation levels for LSA and compare each of
them with the benchmark represented by the solution of the full polarized RT, including
PRD effects. The simplest approximation level is LSA-1, which uses the observed center to
limb variation of the intensity profile to obtain the anisotropy of the radiation field at the
surface, without solving any RT equation. In contrast, the next two approximation levels
use the solution of the unpolarized RT equation to derive the anisotropy of the incident ra-
diation field and use it as input. In the case of LSA-2 the anisotropy at level 7, = u is used,
the atmospheric level from which an observed photon is most likely to originate. LSA-3 on
the other hand makes use of the full depth dependence of the radiation anisotropy. The
Q/I formula for LSA-3 is obtained by keeping the first term in a series expansion of the
@-source function in powers of the mean number of scattering events. Computationally,
LSA-1 is 21 times faster than LSA-2, which is 5 times faster than the more general LSA-
3, which itself is 8 times faster than the exact polarized RT approach. Comparison of
the calculated @/I spectra with the RT benchmark shows excellent agreement for LSA-3,
including good modeling of the Q/I core region with its PRD effects. In contrast both
LSA-1 and LSA-2 fail to model the core region. The RT and LSA-3 approaches are then
applied to model the observed @Q/I profile of the Ca1 4227 A line in quiet regions of the
Sun. Apart from a global scale factor, both give a very good fit to the (/I spectra for
all the wavelengths, including the core peak and blend line depolarization. We conclude
that LSA-3 is an excellent substitute for full polarized RT and can be used to interpret the
second solar spectrum, including the Hanle effect with PRD. It also allows the techniques

developed for unpolarized 3D RT to be applied to modeling of the second solar spectrum.
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In Appendix M we discuss in detail the phase matrices used in the calculations performed

in chapter 9.

Coherent scattering of limb darkened radiation is responsible for the generation of the
second solar spectrum. This second solar spectrum is usually observed near the limb of
the Sun, where the polarization amplitudes are the largest. At the center of the solar disk
the linear polarization is zero for an axially symmetric atmosphere. Any mechanism that
breaks the axial symmetry (like the presence of an oriented magnetic field, or resolved inho-
mogeneities in the atmosphere) can generate a non-zero linear polarization. In chapter 10
we study the linear polarization near disk center in a weakly magnetized region, where the
axi-symmetry is broken. We present polarimetric (I, Q/I, U/I, V/I) observations of the
Ca 14227 A line recorded around p = cosf = 0.9 (where 6 is the heliocentric angle) and a
modeling of these observations. The high sensitivity of the polarimeter (ZIMPOL) makes
it possible to measure the weak polarimetric signals with great accuracy. The modeling of
these high quality observations requires the solution of polarized RT equation in the pres-
ence of a magnetic field. For this we use standard 1D model atmospheres. We show that
the linear polarization is mainly produced by the Hanle effect (rather than by the trans-
verse Zeeman effect), while the circular polarization is due to the longitudinal Zeeman
effect. A unique determination of the full B vector may be achieved when both effects are
accounted for. The field strengths required for the simultaneous fitting of (Q/1,U/I,V/I)
are in the range 10-50 G. The shapes and signs of the /I and U/I profiles are highly
sensitive to the orientation of the magnetic field. In Appendices N and O we discuss the
mathematical details of the phase matrices used in chapter 10 and some additional details

related to the calculations in chapter 10.

Chapter 11 constitutes conclusions from the studies undertaken in this thesis and future
outlook into possible progress in this field. We give a chapter-wise summary of the thesis
presenting the important results obtained in each of the chapters. Finally we discuss the
application of the work done in this thesis to realistic modeling of the spectro-polarimetric

observations using 3D magnetohydrodynamical model atmospheres of the Sun.

All the mathematical details are presented in the form of a collection of Appendices A—
O, which pertain to different chapters of the thesis as discussed above. A detailed bibliog-
raphy is prepared and included at the end of the thesis.
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Chapter 2

The Hanle effect in a random magnetic field

The contents of this chapter are based on the following publication:
Frisch, H., Anusha, L. S., Sampoorna, M., Nagendra, K. N.; 2009, A&A, 501, 335-348

2.1 Introduction

As pointed out by Stenflo (1982; see also 1994, 2010), the Hanle effect provides a powerful
diagnostic for the detection of a weak turbulent magnetic field. The physical origin of
this field, and symmetry properties of the observed linear polarization, suggest that the
field scale of variation is small compared to the mean free path of photons and hence
that “micro-turbulence” could be assumed. This allows one to replace all the physical
parameters depending on the magnetic field by their average over the magnetic field vector
probability density function (PDF). All the determinations of solar turbulent magnetic
fields have been carried out so far with this approximation (Faurobert-Scholl 1993, 1996;
Faurobert et al. 2001; Trujillo Bueno et al. 2004; Bommier et al. 2005; Faurobert et
al. 2009). In addition, it is usually assumed that the magnetic field PDF is isotropically
distributed, and that its strength has a single value. The Hanle problem reduces then to a
resonance polarization problem with a modified polarization parameter that is in general
smaller (Stenflo 1982, 1994).

In Frisch 2006 (henceforth referred to as HF06), a model magnetic field has been in-
troduced allowing one to examine the possible effects of a finite magnetic field correlation
length (comparable to a typical photon mean free path). Equations have been established
for the calculation of the mean Stokes parameters, but no numerical results were given. In

this chapter (see also Frisch et al. 2009), the equations given in HF06 are rewritten in a

31
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form easily amenable to a numerical solution. An iterative method of solution of the Ap-
proximate Lambda Iteration (ALI) type is used to calculate the mean Stokes parameters.
We examine their dependence on the correlation length of the magnetic field and analyze
the results in terms of the mean number of scattering events contributing to the formation
of the surface polarization. We also investigate the sensitivity of the mean Stokes parame-
ters to the shape of the magnetic field PDF, the objective being to see whether the Hanle

effect can provide some clue on the behavior of this quantity.

In Section 2.2, we describe the magnetic field, the atomic and atmospheric models
(they are the same as in HF06). We establish the radiative transfer (RT) equations for
the calculation of the mean Stokes parameters in Section 2.3. In Section 2.4 we describe
an ALI type numerical method of solution. In Section 2.5 we describe different types of
PDFs used in our investigation. The finite correlation effects are presented in Section 2.6
and analyzed in Section 2.7. Finally, in Section 2.8, we calculate the mean polarization
for various types of magnetic field strength PDFs, in the framework of micro-turbulence.
Some technical details about RT equations and calculations of the mean Stokes parameters

are presented in Appendices A and B.

2.2 Assumptions

We consider a two-level atom with unpolarized ground level and assume complete frequency
redistribution (CRD). The 4 x 4 redistribution matrix is then of the form

Rz, 2, Q, 0, B) = ¢(x)p(z') Py (Q, Y, B), (2.1)

where 2’ and x are the frequencies of incident and scattered beams measured in Doppler
width units from line center and €2, € their directions. The function ¢(z) is the line
absorption profile normalized to unity. The elements of the polarization matrix can be

written in the form

[pH(Q’ Q/a B)]Z] = Z %K(ia Q) Z Mg@’(B)(_l)QIIT—K ’(j> Ql)? (2'2)
KQ Q’

where 722K (7,€2) are the irreducible spherical tensors for polarimetry introduced by Landi
Degl'Innocenti (1984). The index K takes the values K = 0,1,2. The index @ takes
(2K +1) integer values in the range —K < @ < +K. For the lower index, we have followed
the usual notation (). There should be no confusion with the Stokes () parameter that
never appears as an index in this chapter. The indices i, j refer to the Stokes parameters

(1,7 =0,...,3). The coefficients ’7;5((2', Q) with ¢ = 1,2, associated to linear polarization,
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Figure 2.1: Atmospheric reference frame with the definition of (6, ¢), (0p,
xB) and (¢, ¢') the polar and azimuthal angles of the outgoing ray direction €2,

magnetic field vector B and those of the incoming ray direction €’ respectively.

depend also on a reference angle, often denoted v, needed to define the reference frame of
the electric field in a plane perpendicular to € (see Figure 5.14 in Landi Degl’Innocenti &
Landolfi 2004, henceforth L1.04). Hanle effect measurements are usually performed close to
the solar limb, with the spectrograph slit parallel to the nearest limb. Stokes @) is negative
along the slit (positive in the direction perpendicular to it) for v = 0. The elements MgQ,
of the magnetic kernel depend on the magnetic field vector, on atomic parameters and

collision rates (for details see Appendix A).

In this chapter we consider a one-dimensional (1D) medium (plane-parallel atmosphere).
The direction of the magnetic field and of the radiation beams are reckoned in an atmo-
spheric reference frame with the Z-axis along the outward normal to the medium. The
polar angles of the magnetic field direction are denoted by 6 and xpg; the polar angles of

the directions €2 and Q' are denoted by 6, ¢ and ¢, ¢’ (see Figure 2.1).

The random magnetic field B is modeled by a Kubo-Anderson process (KAP). It is
a Markov process, discontinuous, stationary, and piecewise constant (Brissaud & Frisch
1971, 1974). By definition, a random function m(t) is a KAP, if the jumping times ¢; are

uniformly and independently distributed in [—o00, +00] according to a Poisson distribution.
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Further, m(t) = m; for t; <t < ;41 where the m; are independent random variables with
the same probability density P(m). A KAP is thus fully characterized by a probability
density P(m) and a correlation time t.,, = 1/v4, with v, the density of jumping times on
the time axis (Papoulis, 1968, p. 557). For a KAP, the covariance (m(t)m(t')) varies as

/ . .
el Hence, the spectrum is algebraic.

For the Hanle effect, polarization is created by a scattering process and this implies
that the photons make a random walk inside the medium. If the magnetic field is a
Markov process, say along the normal to a plane-parallel atmosphere, the radiation field
at a point r, depends on magnetic field values below and above the point r. To take
advantage of the Markov character of the magnetic field, it is necessary to simplify a little
and assume that the magnetic field is a random process in time, defined by a density v
and a probability density P(B). This approach was first used for random velocities with
a finite correlation length by Frisch & Frisch (1976). Its shortcoming is that it ignores
correlations between photons that return to a same turbulent element after having been
scattered a number of times (Frisch & Frisch 1975). The radiation field I has then to
be taken as time dependent. Standard techniques of solutions for stochastic differential
equations with Markov coefficients become applicable (Brissaud & Frisch 1974). They
rely on the crucial remark that the joint random process in time {B(t); I(t)} is also a
Markov process. To simplify the notation we have omitted other independent variables
on which the radiation field depends. As shown in HF06, the combination of the time-
dependent RT equation, with the evolution equation for the probability density of the
joint process {B(t); I(t)}, provides a time-dependent RT equation for a conditional mean
Stokes vector I(t,r,z,Q|B). For this radiation field, B plays the role of an additional
independent variable with values distributed according to the probability density P(B)
(for the definition of the conditional mean see HF06).

The next step is to consider the stationary solution, I(r,x, 2| B), for t — oco. It satisfies
an RT equation which has the usual advection, scattering and primary source terms, but
contains also an additional term describing the action of the magnetic field. Somewhat
similar equations (without the scattering term) have been introduced for the Zeeman effect
by Carroll & Staude (2005). The mean Stokes parameters that one is looking for are given
by

() (7,2, Q) = / P(B)I(r,z,Q|B)d*B. (2.3)

In the next Section we construct the stationary RT equation for the conditional mean

Stokes vector. We work with the irreducible components of the Stokes vector because they
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satisfy RT equations that are simpler than the RT equations for the Stokes parameters

themselves.

2.3 The transfer problem

We specialize now to the case of a 1D slab. We introduce the frequency averaged line
optical depth 7 defined by dr = —k(z)dz with z the coordinate along the vertical axis (see
Figure 2.1) and k(z) the absorption coefficient per unit length. We denote by T the total
optical thickness of the slab with the surface at 7 = 0 towards the observer. We assume

that the incident radiation is zero on both sides of the slab.

For the deterministic Hanle effect with CRD, each component S;(7,€2; B) of the emis-
sion term in the RT equation (sum of the scattering and primary source terms) has an

expansion of the form

Si(r. 4 B) =Y TS (i,Q)85(m:B), i=0,...3. (2.4)
KQ

Starting from this expression, one can show (Frisch 2007, henceforth HF07) that the Stokes

parameters have a similar expansion that can be written as

L(r,z, 4 B) =Y T5 (i, QIS (1,2, B), i=0,...3, (2.5)
KQ

where 1 = cosf. Whereas the four Stokes parameters (three if one considers only linear
polarization) depend on the two polar angles 6 and ¢ defining €2, the nine irreducible
components Ig (six only for linear polarization) are independent of the azimuthal angle .
This decomposition holds also for the conditional mean Stokes vector I(7,z,Q|B) and the
corresponding source vector S(7, Q|B). The components Ig and Sg can be regrouped into
nine (or six) component vectors Z(7,x, u|B) and S(7|B). We will be using calligraphic
letters for the vectors Z and & constructed with the K'() decomposition and refer to them
for simplicity as the “Stokes vector” and “source vector”. We now give in Section 2.3.1 the
RT equation satisfied by Z(7,z, u|B) and construct in Section 2.3.2 an integral equation
for S(7|B).
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2.3.1 Transfer equation for the conditional mean Stokes parameters

Proceeding as described in Section 2.2 (see also HF06), we find that Z(7,z, u|B) satisfies
the RT equation

pEEEB) o) (@ (r, 2, 41B) ~ S(71B)
—V/Hl(B,B’)I(T,x,M\B’) B, (2.6)
where
S(r|B) = G(r)+ M(B)T(r|B), (2.7)
with oo 1
FeAB) = [ "5 [ @b B dude (2.5)

The operator vII; describes the effects of the random magnetic field. The factor v is now
the mean number of jumping points per unit optical depth. It is related to the density
of jumping times v, by v = v;/ck(z), with ¢ the speed of light. For simplicity we assume
v independent of 7, but a depth-dependent v could be handled (see e.g. Auvergne et al.
1973). Micro-turbulence corresponds to v = oo and macro-turbulence to v = 0. Macro
and micro-turbulence are also referred to as the optically thick and optically thin limits.
The operator II; is defined by

I, = — [§(B — B') — P(B)]. (2.9)

The matrix M (B) describes the Hanle effect. Construction rules for its elements
./\/ng,(B ) are given in Equation (A.4). When the magnetic field is zero, M (B) reduces to a
diagonal matrix with elements depending only on the atomic model and collision rates (see
Appendix A). The matrix (u) describes resonance polarization. Its elements W5X" are
real quantities. They can be found in LL04 (Appendix A20) (see also Landi Degl’Innocenti
et al. 1990; HF07). The primary source term G(7) is non-random.

Averaging Equation (2.6) over P(B), we see that (Z)(7,x, i) satisfies the RT equation

II)(7, x, 1)

o = o@) (D) (.2, ) = (S)(7)], (2.10)

where (Z) and (S) are averages over the magnetic field vector PDF (see Equation (2.3)).
It is not possible to write an integral equation for (S)(7) (except in the micro-turbulent
limit). One must first calculate S(7|B) and then average it over P(B).
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2.3.2 Integral equation for S(7|B)

With the boundary condition that there is no incident radiation on the outer surfaces of

the slab, the formal solution of Equation (2.6) can be written as

T -7 ;o dr!
Z(roplB) = [ ew[-To 0 om)]o@)S(1) im0 (210
T T -7 ;o dr!
Z(r,z,u/B) = — | exp [_ (- unl)} S)S(r|) s <0 (2.12)
0
The operator II; acts on the variable denoted “-”. It is standard notation for cases when

the variable cannot be written explicitly. The action of II; can be calculated by considering

the Laplace transform
/ e PEZe™ I o = (pE — vI1;) 7, (2.13)
0

where w = |7 — 7|/p and E is the identity operator. To ensure convergence R(p) > 0.

Solving for f(B) the equation
(pE —vIL)f(B) = g(B), (2.14)

where g(B) is known, one finds a simple expression that is easily expressed in terms of
elementary Laplace transforms (for details see HF06; also Frisch & Frisch 1976). We thus

obtain

T s —’J—_TV /
I(r.2,4B) = / sa)e TN TS| B)

+ [1— efT,TiTV] /P(B’)S(T/\B') d3B'}d77; > 0; (2.15)

Z(r.ulB) = - [ ota)e T TS (B
T/—T d /
+[1—e w7 /P( NS(r'|B') d3B’} ;o <O. (2.16)
I
The combination of Egs. (2.15) and (2.16) with Equation (2.7) yields the integral equation

S(7|B) = G(7) + M(B)A[S], (2.17)
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where
A[S] = /OT dT’{ﬁ(T -7 v)8(|B) +
[ﬁ(T —0) = L(r — 7 y)} /P(B’)S(T’|B’) d3B'}, (2.18)
with
L(riv) = /:O /01 i\i/(u)e_ll(q&(xyr”)q?(x) dpdx. (2.19)

For v = 0, we recover the usual kernel matrix for resonance scattering with CRD, denoted
here by K(7) (see e.g. Landi Degl'Innocenti et al. 1990; Nagendra et al. 1998), and

for v = oo, we have L£(7;v) = 0. Thus, in the micro-turbulent limit, the averaging of

Equation (2.17) over P(B) yields a standard integral equation
T
(8)(71)=6(r) + <M(B)>/O K(r = 7')(8)(7") dr’, (2.20)
where (M(B)) is the mean value of M(B), and K(7) = £(r;0).

2.4 A PALI type numerical method of solution

Several numerical methods of solution have been developed to solve integral equations
arising in the study of the Hanle effect with deterministic or micro-turbulent magnetic
field. In Landi Degl’Innocenti et al. (1990), the system of linear integral equations for the
components 8§ (7) is transformed into a system of linear equations for the S§ (7;) with 7;
the optical depth grid points. In this reference, the unknown functions are actually the
density matrix elements pf (1), but for a two-level atom with CRD, pg(7) and S5 (7) are
proportional (see e.g. Landi Degl'Innocenti & Bommier 1994).

Iterative methods of the ALI type have been developed for the Hanle effect with CRD
(Nagendra et al. 1998; Manso Sainz & Trujillo Bueno 1999, 2003) and partial frequency
redistribution (PRD) (Nagendra et al. 1999; Fluri et al. 2003b; Sampoorna et al. 2008a).
For PRD, the unknown functions depend on two independent variables: optical depth
and frequency. Here we have a similar problem, the independent variables being now the
optical depth and the magnetic field vector. We have developed a PALI method (P for
polarized) described below to solve the integral equation (2.17) for S(7|B). The results

are presented in Section 2.6.

We have followed a standard approach by which one introduces an approximate A

operator denoted by A*, choosing for A* the diagonal of A with respect to optical depth.
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This is the so-called Jacobi scheme (Stoer & Bulirsch, 1983). It is the only one that has been
used for PRD (see e.g. the review by Nagendra & Sampoorna 2009 and references therein)
and seemed to be an appropriate choice for exploratory work with random magnetic fields.

More efficient iteration methods based on the Gauss—Seidel scheme have been developed
for CRD (see e.g. Trujillo Bueno & Fabiani Bendicho 1995; Léger et al. 2007).

The Jacobi iteration scheme is

E— M(B)A*| 68™(7|B) = G(7) + M(B)J ™ (7|B) — 8™ (r|B), (2.21)

with
68" (r|B) = 8"V (r|B) — 8™ (7|B), (2.22)

and
T™(r|B) = A[S™]. (2.23)

The superscript (n) refers to the iteration step, and E is the identity matrix.

The right hand side (r.h.s.) in Equation (2.21) is easy to calculate. Knowing ™ (7|B),
one can calculate its mean value (S)™(7) by averaging over P(B). Equations (2.15) and
(2.16) are then used to calculate Z(7,x, u|B). A short characteristics method (Kunasz &
Auer 1988; Auer & Paletou 1994) is used for this step. Finally J™ (7|B) is deduced from
Equation (2.8).

Equation (2.18) shows that to construct the operator A* we only need the diagonal
operator corresponding to £(7;v), henceforth denoted L£*(7;v). As Equation (2.19) shows,
it can be calculated by a standard method introduced in Auer & Paletou (1994). At each
grid point in space, we solve an RT equation, like Equation (2.10), where ¢(x) is replaced
by ¢(z) + v and the source term replaced by a point source at the grid point under con-
sideration. A short characteristics method is also used for this step. Finally, the elements

of £* are obtained by performing the integration over = and y (see Equation (2.19)).

The corrections 68™ (7| B) are solutions of Equation (2.21). Since the operator A* is
diagonal in space, there is no coupling between the different depth points. At each depth
point 7,, we have a system of linear equations for 68™ (1,/B). The dimension of this
system is ng X n,, with n, the number of irreducible components (6 for linear polarization)
and npg the number of grid points needed to describe the magnetic field PDF. Since the
magnetic field is defined by its strength B, inclination 65 and azimuth xp (see Figure 2.1),
nB = Np X Ng, X Ny, With ng, ng, and n,, the number of grid points corresponding to

the respective variables.
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Table 2.1: A list of different PDF's used in this chapter:

Ps(B) P4(0B)

(1) PD(B) = 5(B — Bo) RSO(GB) = SiIlQB

(i) Pu(B)= 22 (B/B,)’ exp [~% (B/By)?] Puc(f5) = (p+ 1)| cos 5| sin g

(iii) Pa(B) = =% exp [—% (B/By)’] P,_(0p) = (sinfp)Psin0z/C,

(iv) Pg(B) = g exp(—B/Bo)

At each depth point 7,, the linear system of equations for the 5S§-n) can be written as
> Ay(r)oS ! (z) = M (7,), (2:24)
J

where i and j are indices for the magnetic field vector grid points (i, = 1,...,np).
The vectors (5S§n) and 7" have the dimension n,. We use the notation 58;") (1y) =
68" (7,|B;). Similarly, 'rZ(") (1) = 7" (7,|B;). Each element A,; is a n, x n, block given
by

AZ’]’(T(]) = 5,LJEA — dezﬁ*(Tm U) — Ml[ﬁ*(ﬂp O) — /j*(TQ; V)]wj‘. (225)

The w; are weights for the integration over the magnetic field PDF. The matrices E,
M, =M (B;), and ﬁ*(Tq; v), corresponding to the operator £*, are of dimension n, x n,.
Explicit expressions for the elements of M and £ are given in the Appendix A. The
elements Aij have to be computed only once since they do not change during the iteration

cycle.

The convergence properties of this iteration method are similar to those of other PALI
methods used for polarized problems (Nagendra et al. 1998, 1999). The new feature here is
the discretization of the magnetic field vector. Typically we have been using np = 40. For
an isotropic angular distribution, ng, = 5 — 7 points in the interval [0, 7], the integration
over 0 being performed with a Gauss—Legendre quadrature. Significantly larger values

of ng, are needed for angular distributions that are peaked along some direction (see
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Section 2.5). All the magnetic field PDFs chosen here have a cylindrical symmetry about
the normal to the atmosphere, so no integration over xpg is needed. For the integration

over T, we are using 5 to 7 points per decade.

In this work, we are considering self-emitting slabs. The primary source is G(7) =
¢B,/(1+ €¢) with € the rate of destruction by inelastic collisions (see Appendix A) and
B, the Planck function at line center. The line absorption profile ¢(z) is a Voigt function
with damping parameter a. The atomic and atmospheric models are thus defined by a set
of parameters (T, a, €, B,) where a, € = ¢/ /(14 ¢€') and B, are assumed to be constant with

7. The solution of the RT equation is then symmetrical with respect to 7'/2.

The magnetic kernel elements Mg, (B) are defined in the Appendix A. In all the
calculations we assume a normal Zeeman triplet, an electric-dipole transition and no depo-
larizing collisions. For the magnetic field, the parameters are the magnetic field strength B,
the polar angles fp and x g, the density v of jumping points and the PDF P(B). For the
Hanle effect, it is convenient to use the Hanle efficiency factor I', instead of the magnetic
field strength itself. The definition of I'g is recalled in the Appendix A.

2.5 A choice of magnetic field vector PDFs

For the quiet Sun, a few PDFs have been proposed in the literature for the field strength
B and for the inclination 6g of the magnetic field with respect to the vertical direction.
They are based on the analysis of magneto-convection simulations, inversion of Stokes
parameters, and heuristic considerations (see e.g. Trujillo Bueno et al. 2004; Dominguez
Cerdena et al. 2006; Sanchez Almeida 2007; Sampoorna et al. 2008b). Almost nothing is
known about the azimuthal distribution. For our investigation we have chosen PDF's that

are cylindrically symmetrical, and of the form

d
P(B)d*B = f(B)g(05)Bsin 0 dB doy %, (2.26)
7
0<B<+oo, Opel0,n], xpe]l02n7]
For convenience, we rewrite them as
1
P(B)d’B = 5PS(B)PA(HB) dB dfp. (2.27)

Our choices for the strength and angular distributions are presented in Table 2.1.

For Ps(B), we have chosen a Delta function, Pp(B), an exponential distribution,
Pg(B), a Gaussian distribution, Pg(B), and a Maxwell Distribution, Py/(B). They are
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Figure 2.2: Probability density functions P(B/By) as a function of (B/By).
Solid line: Pp(B/By), dotted line: Pgr(B/By), dashed line: Pg(B/By), dot-
dashed line: Py (B/By).

plotted in Figure 2.2 as a function of B/Bj. These functions are normalized to unity; they
have the same mean value, (B) = By, but the variance o = [(B?) — (B)?'/? changes: for
the exponential distribution, o = By, for the Gaussian distribution, o = \/71'_/230, and for
the Maxwell distribution, o = [(37/8) — 1]/2B,.

For the angular distribution (see Table 2.1, second column), we have retained the
isotropic distribution Pyg,, frequently used in the analysis of the Hanle effect. It was
introduced by Stenflo (1982) to model weak magnetic fields that are passively tangled by
the turbulent motions (see also Stenflo, 2010).

Recent Hinode observations suggest a predominantly horizontal magnetic flux in the
quiet Sun (Lites et al. 2008). This finding is supported by some numerical simulations
(Schiissler & Vogler 2008). This type of distribution can be modeled with the sine power
law P,_s, where p (p > 0) is an index that can be chosen arbitrarily, and C,, a normalization
constant. When p goes to zero, one recovers the isotropic distribution, and when p goes
to infinity, a purely horizontal random field, considered in Stenflo (1982). When p is an

integer, the normalization constant C}, can be calculated explicitly. For even values of p,

o px(p—2)x---x2
P A DX - x X3

(2.28)

Y
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Figure 2.3: Effect of the cosine power law index p on (Q)/(I) at 7 = 0,
p = 0.05, for the model parameters (T, a, e, B,) = (10*,1073,1074,1), and in
the micro-turbulent limit. Solid line: p = 0, dotted line: p = 0.1, dashed line:
p =5, dot-dashed line: p = 50, and dash-triple-dotted line: p = 1000.

and for odd values of p,

o px(p—-2)x---x1 7
P p+ ) x(p—1)x---x2 2

(2.29)

When p = 0, we have C},, = 1. When p goes to infinity, C, goes to zero. Setting p = 2m

for even values of p, and p = 2m — 1 for odd values (m > 1), one can establish that

Cp, — \/7/m/2 when m — oo.

The cosine power law Pp_. was introduced in Stenflo (1987) to investigate the Zeeman
effect with random magnetic fields that may become predominantly vertical. It was used in
Sampoorna et al. (2008b) to construct a composite PDF that mimics a distribution becom-
ing more and more vertical as the field strength increases. When p = 0, the distribution is
isotropic. When p increases the field becomes more and more vertical. In the limit p — oo,
the Hanle effect disappears because the scattering atoms are illuminated by an unpolarized
field, cylindrically symmetrical about the magnetic field direction. This effect is illustrated
in Figure 2.3. We see that the ratio (Q))/(I) increases with p. It reaches the Rayleigh
limit when p = 1000. The mean Stokes parameters, (@) and (I), have been calculated in
the micro-turbulent limit, for a magnetic field with constant strength, corresponding to a
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Hanle factor I'g, = 1.

2.6 Dependence of the polarization on the correlation length

In order to examine the dependence of the polarization on the correlation length 1/v (in
Doppler width units), we have examined the surface value of the ratio (Q)/(I) at the limb
(n=0.05), (Q) and (I) being the mean values of Stokes @) and I, for several values of v
and 7.

We have first chosen the most simple PDF, namely an isotropic angular distribution
with a Dirac distribution §(B — By). The parameter I'g, has been set to unity. We found
that the dependence of (Q)/(I) on the value of v is quite small for optically thin (7" < 1)
lines, and also optically thick (7" > 10?) ones. For lines with a moderate optical depth
(T = 10), some dependence could be observed, the maximum variation of the ratio (Q)/(I)
being about 0.1%.

Keeping the assumption of a single value field strength, we have calculated the ratio
(Q)/(I) for the sine and cosine power law distributions (see Table 2.1). For the sine
power law, we choose p = 50. For this value of p, the distribution is strongly peaked in
the horizontal direction. For the cosine power law, we retained p = 5. The distribution
is also strongly peaked, but in the vertical direction (see Figure 11 in Sampoorna et al.
2008b) and the diminution of the Hanle effect is significant (see Figure 2.3). For these
two distributions, the dependence on the correlation length is also negligible for optically
thin and optically thick lines. Some dependence appears for lines with an intermediate
optical depth. Figure 2.4, corresponding to the sine power law and 7" = 10, shows that
the difference ((Q)/{I))macro — ({@)/{I))micro =~ 0.30% all along the polarization profile.
The variation of (Q))/(I) is coming almost exclusively from the variation of (Q)), since the
dependence of Stokes I on the magnetic field is very small for the Hanle effect. This figure
shows also that the micro-turbulent limit is reached for v ~ 10. The reason is that v enters
only in exponential terms, as can be seen in Equation (2.19). For the cosine power law and
T = 10, we found a behavior very similar to that shown in Figure 2.4, but the polarization

is somewhat larger because of the reduction of the Hanle effect.

To understand the dependence on the correlation length, we have examined the depen-
dence on v and 6p of the conditional source function component S3(r = 0|B,0p). This
function depends strongly on v and 6z, with the micro and macro-turbulent limits showing

quite different variation with #g. The averaging over fg eliminates most of the variation
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with v. Some of it may remain however, in particular when the angular distribution is

peaked in the horizontal or vertical direction.

A very small sensitivity to the value of the correlation length is a strong indication that
the polarization is created locally. For a line with a very small optical thickness, T" < 1,
photons will suffer about one scattering and the polarization is well represented by the
so-called single scattering approximation. For very thick lines, although photons suffer a
very large number of scattering events, the polarization is created near the surface by a
few of them. So in these two limits, the polarization cannot feel the correlation length of
the magnetic field. For T' = 10, we have an intermediate situation with a clear sensitivity

to the correlation length.

For the Hanle effect, the polarization can be evaluated by a perturbation method leading
to a series expansion in terms of a mean number of scattering events (see HF06). In the
next Section we show how to construct this expansion. We use it to examine how many
terms are needed to reproduce the exact solution and thus give a somewhat quantitative

content to the above remarks.

2.7 A series expansion for the calculation of the polarization

The construction of a series expansion for the calculation of the polarization is possible for
the following three reasons: (i) the Hanle polarization is weak, (ii) it is controlled by the
anisotropy of the radiation field, (iii) at each scattering a significant amount of polarization

is being lost. This last point will be clarified below.

Here, for simplicity we present the perturbation method and discuss its convergence
properties for the simple case of a deterministic (or micro-turbulent) magnetic field. We
then show how to carry it out for magnetic fields with a finite correlation length and
propose a perturbation expansion which is an improved version of the method presented
in HF06.

2.7.1 Construction of the expansion

We start from the standard integral equation for the Hanle effect with a deterministic

magnetic field, namely

S(m;B) = G(r) + M(B) /0 ' K(r—7)8(7; B)dr'. (2.30)
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Figure 2.4: Dependence of (Q)) /(I) on the correlation length 1/v. Sine power
law angular distribution with single value field strength (I'p, = 1). Slab with
an optical thickness T' = 10. Different line types are : Solid line (v = 0),
dotted line (v = 0.1), dashed line (v = 1), dot-dashed (v = 10), and dash-
triple-dotted (micro).

In the micro-turbulent limit, M (B) should be replaced by its mean value over the magnetic
field PDF and & will depend only on 7. With B = 0, this equation describes Rayleigh

scattering.

In the deterministic case, if the magnetic field is a constant, the dependence on the
azimuthal angle x g can be factored out as shown in the Appendix A. Henceforth we work
with the components S5 = ¢S/ and to simplify the notation, the dependence on B

is omitted. These new components satisfy the set of equations
T
SE(1) = 0kl G(r) + > Mo (B) / KEX' (r — 1)K/ (+") ar’, (2.31)
K/Q/ 0

with Kg/K,(T) the components of the matrix & (7). The notation B stands now for (B, 0p).

The components 1, g of the radiation field satisfy the RT equation
015 (1,2, 1)
N—

5 = o@)llg (r, 2, 1) = S5 (7). (2.32)

We first consider the equation for Sj. Only S2 appears in the r.h.s. since K = 0 implies
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@ = @' = 0. For the Hanle effect, the polarization is always weak and its effect on Stokes
I may be neglected, at least in first approximation. Neglecting the contribution from Sg,

we obtain

5’8(7) =G(1)+ ./\/180/0 K(1 — T’)S’S(T’) dr'. (2.33)

The notation S'g is used to denote approximate values. Equation (2.33) is the usual

unpolarized integral equation for the source function where My, = 1/(1 + ¢').

We now replace S by S9 in the equation for S5 and obtain
82(r) = M2y )+ ZMQQ/ / KZ(r — )53, (') dr (2.34)

where

C3(r) = / KX(r — T’)Sg(T’) dr'. (2.35)

0
The kernel K32°(7) is sometimes denoted Ki2(7) (e.g. Landi Degl'Innocenti et al. 1990;
Nagendra et al. 1998). Its integral over 7 in the interval [0, +oc] is zero. The function

CZ(7), can also be written as

+oo 1 +1
/ / U2 (1) () IS (7, 2, o) dpd, (2.36)

with W%(p) = 5 \[(3ﬂ —1). In this form we recognize the dominant term in the radiation
spherical tensor JZ(7). This function, which is zero for an isotropic radiation field, serves

to measure the anisotropy of the field (see e.g. Trujillo Bueno 2001; LL04).

Equation (2.34) shows that Mg (B)C§(7) is the driving term for the polarization. This
suggests to solve this equation by the standard method of successive iterations for Fredholm
integral equations of the second type (Iyanaga & Kawada 1970). For RT problems, this
method is usually referred to as A-iteration. The zeroth-order solution in this iteration

scheme is given by Mg, (B)C§(7). The recurrence scheme may be written as

[Sé](k) = Mé[)(B)Cg(T) + QQ/ / K T — T SQ/( )](kil) dTI, (237)

with [S3]© = M2, (B)C2(7).

It is well known that the A-iteration applied to Equation (2.33) has a very poor conver-
gence rate when 7 is large and € very small, because the kernel K{° is normalized to unity

and the coefficient MY, almost equal to unity. In Equation (2.34) the situation is radically
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different because the kernels KZ*(7) have integrals over [—o0, +-00] which are smaller than
unity, actually they are all equal to 7/10 (see e.g. HF06), and the coefficients M), (B)
are also significantly smaller than unity when B is not zero. For Rayleigh scattering, the

only non zero coefficient is MZ,, which is of the order of the depolarization parameter

Wik (Jy, Ju) (see AppendixA).

In order to examine the convergence properties of this iteration scheme, we can consider
a simplified version of Equation (2.34). The r.h.s. of this equation contains a driving term,
a transport term corresponding to ' = @, and terms coupling S% with the 5%,, Q' + Q.
Neglecting these last terms, we see that the solution at step (k) can be written as a series

expansion of the form
N m=k 7 m T _
[S31®) = ME(B)C3(r) + ) [1—0/\45@] /0 K (r —m)dn
m=1
T T
X / KéQ(Tl —T)dTy . . / KZ)Q(Tk_l — Tk)MQQO(B)Cg(Tk) dry,. (2.38)
0 0

Here the kernels K¢, defined by K&’ = 22 K&, are normalized to unity. The term of order
m contains the contribution of all the photons that have been scattered (m + 1) times, the
first scattering corresponding to the creation of the primary source M%O(B )C2(T). Since
the kernels K 322 are positive and normalized to unity, the ratio of the term of order (m+1)
over the term of order m scales as 0.7Mg,(B). Since the Mg, (B) are smaller than unity,
one can expect that a few terms in the series will suffice to provide a good approximation
to the exact solution. Somewhat more accurate predictions can be made for optically thin

and optically thick lines.

For optically thin lines (7' < 1), one can approximate [SQ](]“) (1) by

S%](’“) (1) ~ M (B)C3 () (2.39)

The driving term is dominant and suffices to correctly evaluate the polarization. This is

the so-called single scattering approximation.

To examine the case of optically thick lines, we can let 7" — oo. If we approximate

KZ(7) by a delta function, we obtain

[S3)M () = M (B)Ci(7)

1+ i:l [1—70/\/122@(3)} m] : (2.40)
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This expression shows that a single scattering can provide a reasonable approximation for
optically thick lines also. We also see that the smaller Mg, (B), the better the single
scattering approximation and the faster the speed of convergence of the series expansion.
We note also that the MéQ(B) are positive, hence the sum inside the square brackets

increases with the value of k.

For lines with very large optical thicknesses, the value of Stokes ) at the surface can
be easily related to S3(7). For these lines, @ is controlled by the component IZ. Using
T2(1,9) = =3(1 — ?)/(2v/2) for v = 0, and the Eddington-Barbier relation, we obtain

Qo) = 1 -3 (1), (2.41)

We have performed a few numerical experiments described below to give a quantitative

proof to these predictions.

Table 2.2: Number of iterations needed to reproduce the exact solution with
a relative error about 1073 at line center. The parameters of the magnetic
field in columns 2 and 3 are the same as in Figures 2.6 and 2.7
Rayleigh deterministic micro-turbulent
T N N ny
1072 3 3 3
107! 4 4 4
1 7 7 )
10 16 16 9
102 12 11 4
103 7 6 )
10 7 7 )
106 8 7 )
108 8 7 5)




50 Chapter 2. The Hanle effect in a random magnetic field

(b) T=10*
oF T T T
-2t
_4 -
N N
< N
of . -6
0 1 2 3 4 0 1 2 3 4
Frequency x Frequency zx

Figure 2.5: Rayleigh scattering. Convergence history of the expansion method for the
calculation of @/I shown for 7 = 0 and g = 0.05. Panels (a) and (b) correspond to
T = 10 and T = 10* respectively. Different line types are: thick solid: exact; dotted :
single scattering; dashed, dot-dashed, dash-triple-dotted and long dashed: 2nd, 3rd, 4th,
5th and 6th iterations respectively. All the following iterations are plotted with thin solid

lines.

2.7.2 Numerical results

The computation of the polarization by the series expansion method involves the following
steps:

(i) Solution of Equation (2.33) for SJ by an ALI method and calculation of the correspond-
ing scalar radiation field 1.

(ii) Computation of C2(7) with Equation (2.36).

(ifi) Calculation of the source terms [S3]*), with the iterative scheme in Equation (2.37),
starting from Mgy, (B)C§(7).

(iv) At each step (k), solution of Equation (2.32) by a short characteristics method, calcu-
lation of the Stokes parameters with Equation (2.5), and of the ratio

r® = [|p® — pE=D]] /p®), (2.42)

at 7 =0,z =0, = 0.05. Here p = {[Q/I]* + [U/1]*}/2.
The iterations are stopped when r*) < 1073.

The polarization has been calculated by this expansion method for several values of
the slab optical thickness 7" varying between 1072 and 10®. For each value of T, we

have considered Rayleigh scattering, a deterministic magnetic field and a micro-turbulent
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Figure 2.6: Same as Figure 2.5 but for a deterministic magnetic field with I'p = 1,
03 = 3()0, XB = 45°.
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Figure 2.7: Same as Figures 2.5 and 2.6 but for a micro-turbulent magnetic with an

isotropic angular distribution and single value field strength defined by I'g, = 1.
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magnetic field. For the deterministic case we chose I'g = 1, g = 30° and yp = 45°. For
the micro-turbulent case, the magnetic field has an isotropic angular distribution and takes
a single value By, with ', = 1. The coefficients ./\/%Q, are replaced by their mean values
over the isotropic distribution. In each case, the exact solution has been calculated with a
PALI method applied to Equation (2.31). For Rayleigh scattering and the micro-turbulent
magnetic field, Stokes U is zero and Stokes () depends only on the inclination angle 6 of
the line of sight (see Figure 2.1). For a deterministic magnetic field, the Stokes parameters

@ and U depend also on the azimuthal angle ¢. In the calculations presented here ¢ = 0.

We show in Table 2.2 the number ny, of iterations defined by the criterion ) < 1073,
We stress that the value of nj, has nothing to do with the number of iterations of the
PALI method, the latter being controlled by the choice of the approximate A*- operator.
In Figures 2.5 to 2.7 we show the results of our calculations for 77 = 10 and T = 10%,
Figure 2.5 being devoted to Rayleigh scattering, Figure 2.6 to the deterministic Hanle
effect, and Figure 2.7 to the micro-turbulent case. In each panel we have plotted the exact

values of Q/I and a few iteration steps. For the micro-turbulent case, ) and I are replaced
by (@) and (I).

We observe that the series expansion properly converges to the exact solution, that
single scattering provides an approximation which is much better for 7 = 10* than for
T = 10, and that the accuracy of this approximation improves from Rayleigh scattering
to deterministic and micro-turbulent Hanle effect. These last two points are illustrated in

Figure 2.8 where we show the difference

€ss = (Qexact - QSS)/[7 (243)

calculated at 7 = 0, x = 0, u = 0.05, as a function of the slab optical thickness T'. Here,
Qexact 1S the solution of Equation (2.30), Qs is given by the single scattering approximation,
and [ is the exact value of Stokes I. We see that for T" small, ey increases with 71" in
agreement with Equation (2.39). For T' large, it becomes essentially independent of T" as

predicted by Equation (2.40). It goes through a maximum around 7" = 10.

The decrease of ey from Rayleigh scattering to micro-turbulent Hanle effect, is directly
related to the value of the elements ./\/%Q. For Rayleigh scattering, the index () takes only
the value Q = 0 and M2, = 1/(1 + ¢) (assuming Wy = 1). For the Hanle effect, the
/\/%Q and (Méd are significantly smaller than unity. Experiments with different angular

distributions clearly show that a decrease of (M3,) induces a decrease of eg.

Table 2.2 shows also clearly that the single scattering approximation is better for opti-
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Figure 2.8: Difference between single scattering (ss) and exact (ex) solution
as a function of the optical thickness T for 7 = 0, x = 0, and pu = 0.05.
Rayleigh scattering (solid line), deterministic Hanle (dotted line), micro-
turbulent Hanle (dashed line). Magnetic field parameters are the same as
in Figures 2.6 and 2.7.

cally thin and optically thick lines, than for lines with intermediate optical thicknesses. It
also shows that this approximation is better for a micro-turbulent magnetic field, than for
a deterministic one or Rayleigh scattering. We have examined the values of n; at different
frequency points along the line profile, and found that in the wings they are in general a

bit larger than at line center.

Our last comment is on the fact that the exact value of Stokes () is reached from below
in the case of thin to moderately thick slabs and from above in the case of thick slabs (see
Figures 2.5 to 2.8). The transition is occurring around 7' = 10? as shown in Figure 2.8. This
change of behavior is directly related to the sign of C2(7), determined by a competition
between a limb-darkened outgoing radiation and a limb-brightened incoming one (see e.g.
Trujillo Bueno 2001). For T' = 10*, C2(7) is positive as long as 7 is smaller than unity
and then becomes negative (7 is assumed to be in the range 0 < 7 < 7'/2). Since the sum
inside the square bracket in Equation (2.40) increases with k, the value of [SZ]*) near the
surface will also increase with the value of k. We can then deduce from Equation (2.41)

that @ is negative and decreases (increases in absolute value) when k increases.
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Figure 2.9: Panel (a): profile of (Q)/(I), for 7 = 0 and p = 0.05, calculated with the
isotropic distribution combined with different Pg(B). Panel (b): variation with u, for 7 =
0, x = 0, and the same PDFs. Solid line: Pp(B/By), dot-dashed line:Py;(B/By), dashed
line: Pg(B/By), dotted line: Pg(B/Bjy). Model parameters of the slab (T, a,¢, B)) =
(10%,1073,1074,1).

For T < 1, C3(1) is negative, and we have the opposite behavior. Apparently this
behavior holds until 7" becomes around 10% (see Figures 2.5 to 2.8) but we have no sim-
ple approximation for Stokes @, nor for [S2]*)(7), in this intermediate range of optical

thicknesses.

What should be remembered is that the single scattering approximation can lead to
very large errors for Rayleigh scattering, but may be sufficient for the micro-turbulent

Hanle effect, especially when the line optical thickness is small or large enough.
2.7.3 Magnetic field with a finite correlation length

Assuming, as above, that S is independent of the polarization and given by the solution
of Equation (2.33), the equation for 5%(7’|B) can be written as (see Equation (A.1))

T
Sgg(T‘B) M ZMQQI {/0‘ LEQZ/(T—T/;I/)SC??/(T/‘B) dr

+ /O (K2 (7 — ') — L2(r — 73 v)] / P(B)8%('|B') d*B’ dT’}. (2.44)

The iteration scheme defined in Equation (2.37) can be carried out on this equation. If, at

step (k— 1), one knows [5622,(7" |B)]*~1 one knows also its average over the magnetic field
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Figure 2.10: Panel (a): variation of the ratio ((Q)/(I))/(1 — u?) with respect to u,
at 7 = 0, x = 0, for the cosine angular power-law, with p = 5. Panel (b): same
results but for the sine power-law with p = 50. Each of the angular distributions is
combined with different strength distributions. Solid line: Pp(B/By), dot-dashed line:
Py (B/By), dashed line: Pg(B/By), dotted line: Pg(B/Bp). Model parameters of the
slab (T, a,¢, B,) = (10%,1073,1074,1).

PDF which appears in the r.h.s. of Equation (2.44). The iteration scheme for a finite value

of v will have the same convergence properties as the simpler case of Equation (2.37).

2.8 Dependence of the polarization on the magnetic field vector
PDF

This study is carried out for the micro-turbulent limit, because one can expect, from our
previous results, that the dependence of the polarization on the shape of the magnetic field

PDF will be essentially independent of the value of the correlation length.

In the micro-turbulent limit, the mean source vector satisfies Equation (2.20). Here we
are dealing with magnetic field distributions that are cylindrically symmetric about the
vertical axis and a primary source term which is unpolarized. Hence, the matrix M (B) is
diagonal and the only source vector components that are not zero are (Sj) and (Sz). For
their calculation, carried out here with a standard PALI method, we only need MY, and
(MZ,). The solution of Equation (2.10), with (S2)(7) as source term, yields (I2). The
mean value of Stokes @ is then given by (Q) = —3(1 — p?)/(2v/2)(I32).

The element (M3,) can be calculated explicitly for all the angular distributions given
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Figure 2.11: Panel (a): variation of the ratio ({(Q)/(I))/(1 — u?) with respect to u,
at 7 = 0, x = 0, for the isotropic distribution, cosine angular power-law with p = 5,
and sine angular power-law with p = 50; the magnetic field strength has a single value
corresponding to I'g, = 1. Panel (b): dependence on I'g, for 7 = 0, z = 0, u = 0.05.
Model parameters of the slab (T, a,¢, B,) = (10*,1073, 1074, 1).

in Table 2.1, when they are associated to the Delta and Gaussian strength distributions.
The expressions are given in the Appendix B. In the other cases, (M32,) is calculated by
numerical averaging with Gauss—Legendre quadratures. We have also considered a log-

normal distribution, but it yields essentially the same results as the Gaussian distribution.

The calculations have been performed for slabs with different optical thickness T
and we found that the main conclusions are essentially independent of the value of T
The results shown in this Section correspond to a slab with parameters (T, a,¢, B,) =
(10%,1073,107%,1).

Figure 2.9 is devoted to the isotropic distribution. The Panel (a) shows that (Q)/(I)
increases (in absolute value) as we go from a Dirac distribution (single field strength value),
to a Maxwell distribution, then a Gaussian distribution and finally an exponential distri-
bution, i.e., from case (i) to case (iv) (see Table 2.1). All these curves lie well above the
Rayleigh scattering limit in which Q/I(t = 0,2 = 0, = 0.05) = —0.07. The variation
of (Q)/(I) is due to the fact that the value of (M2,) increases as we go from case (i) to
case (iv), because the probability of having weak magnetic fields increases. The maximum

value of (M3;) is reached for Rayleigh scattering.

In Figure 2.9(b) we show the center-to-limb variation of ({(Q)/(I))/(1 — pu?). A striking
feature is that the variation with p is almost insensitive to the field strength distribution.
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We have even found that the full line curve, corresponding to a Dirac PDF with B = B,
exactly coincides with the center-to-limb variation given by an exponential distribution
with a mean value (B) = 2Bj,. This result is fully in agreement with calculations of
Trujillo Bueno et al. (2004), showing that observed center-to-limb variations can be fitted
by an isotropic field with a strength of 60 G, or by an exponential distribution with a mean
value of 130G.

Somewhat more insight on the behavior of (@) can be obtained by considering (S2)(7).
The dependence on optical depth is controlled by the propagation kernel K2*(7) (see Sec-
tion 2.7). Hence changing the shape of Pg(B) will have a very small effect on the u-
dependence of (@) (see Equation (2.41)). In contrast, a change in the shape of Ps(B) will

modify the value of (M2,) and hence the degree of polarization.

In Figure 2.10, devoted to the cosine and sine angular power-laws, we see that the ratio
((Q)/{I))/(1 — pu?) also increases from case (i) to case (iv). The dependence on the shape
of Ps(B) is quite large for the sine power-law with p = 50 (even a bit larger than with the
isotropic distribution), but very small for the cosine power-law with p = 5. This is due to
the reduction of the Hanle effect when the field becomes strongly peaked in the vertical

direction.

In Figure 2.11, we show the ratio ((Q)/(I))/(1 — p?) for magnetic fields with different
angular distributions, the field strength being kept equal to a single value By. In Fig-
ure 2.11(a), we see that the choice of the angular distribution has a strong effect on the
amplitude of this ratio, but not on its center-to-limb variation, for the reason given above.
Figure 2.11(b) shows the variation of this ratio with the Hanle efficiency parameter I'p,
for 7 =0, x = 0, and p = 0.05. We observe the standard Hanle saturation for large
field strengths. An isotropic distribution, and a sine power-law with a fairly horizontally
peaked distribution, yield similar polarizations, as already been pointed out in Stenflo
(1982). There are however observable differences around I'p, = 1. The polarization is
larger for the cosine power-law because the distribution is strongly peaked in the vertical

direction.

These numerical experiments with different magnetic field PDF's indicate a clear sensi-
tivity of the polarization to the magnetic field strength and angular distributions. Hence,
any information on mean magnetic field strengths, extracted from Hanle depolarization
measurements, may depend critically on the choice of the magnetic field PDF that has

been made a priori for the analysis of the observations.
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2.9 Concluding remarks

In this chapter, we have studied the Hanle effect due to a random magnetic field with a
finite correlation length, in order to assess limitations to the usual micro-turbulent approx-
imation. The modeling of the magnetic field by a Markovian random process, piecewise
constant, characterized by a correlation length and a magnetic field vector PDF, has en-
abled us to construct a RT equation for a mean radiation field, that still depends on the
random values of the magnetic field (Section 2.3). A simple averaging of the solution of
this equation over the PDF yields the mean Stokes parameters. The RT equation is solved
numerically by an PALI method, generalized to the problem at hand (Section 2.4).

We have found that optically thin lines (lines with optical thickness 7" < 1), and very
optically thick ones (7" > 100) can be treated with the micro-turbulent approximation.
For these lines, the polarization is created locally by a small number of scattering events.
For optically thick lines they are located near the surface. To evaluate this number of
events, the polarization has been calculated by a method of successive iterations leading
to a series expansion in the mean number of scattering events (Section 2.7). For optically
thin and thick lines, this number is around 5; for lines with intermediate optical thicknesses
(T ~ 10 — 100), it is significantly larger (10-15) and these lines show some sensitivity to
the magnetic field correlation length (see Figure 2.4).

We have also found that for a random magnetic field, the single scattering approxima-
tion can be safely used to evaluate the Hanle depolarization. For a deterministic magnetic
field, it may also provide a reasonable approximation. In contrast, for the Rayleigh scat-

tering, it may lead to large errors, except for optically thin lines (see Figure 2.8).

Numerical experiments carried out in the micro-turbulent limit with different types of
magnetic field PDF, indicate that the polarization is quite sensitive to the shape of the
PDF (Section 2.8). However, our results suggest that it may not be easy to retrieve a
quiet Sun magnetic field PDF from the Hanle effect depolarization measurements, since
the same degree of linear polarization can be created by PDFs that have rather different
shapes. Also the center-to-limb variation of the linear polarization depends very little on
the PDF shape. Several laws for the solar magnetic field PDF have been proposed in recent
years. They have been deduced from Zeeman effect measurements and may contain some
uncertainty in the weak field domain involved in the Hanle effect. Numerical simulations

such as those carried out in Schiissler & Vogler (2008) may clarify the situation.

In this chapter, we have assumed CRD at each scattering. This assumption is certainly
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not valid to analyze the Hanle depolarization of strong resonance lines showing significant
PRD effects. An example is the Ba 11 D2 line considered in Faurobert et al. (2009) to
evaluate the turbulent magnetic field in the low chromosphere. However, our conclusions
concerning the applicability of the micro-turbulent approximation remain most probably
valid, since the polarization is still created in a small region close to the surface. The RT
equations given here, and their method of solution, can be easily generalized to handle
PRD and to verify this prediction, but this generalization will be accompanied by a signif-

icant increase in computing time.

New Results

For the first time, an exact theory of turbulent magnetic fields for the Hanle effect is de-

veloped in this chapter. The following important results were achieved.

1. RT equations are established for the calculation of the mean Stokes parameters and

they are solved numerically by a Polarized Approximate Lambda Iteration (PALI) method.

2. We show that optically thin spectral lines and optically very thick ones are insensitive to
the correlation length of the magnetic field, while spectral lines with intermediate optical

depths (around 10-100) show some sensitivity to this parameter.

3. The result is interpreted in terms of the mean number of scattering events needed to
create the surface polarization. It is shown that the single-scattering approximation holds

good for optically thin and thick lines, but may fail for lines with intermediate thickness.

4. The dependence of the polarization on the magnetic field vector probability density
function (PDF) is examined in the micro-turbulent limit. A few PDF's with different angu-
lar and strength distributions, but equal mean value of the magnetic field, are considered.
It is found that the polarization is in general quite sensitive to the shape of the magnetic
field strength PDF and also to the angular distribution.

5. The mean field derived from Hanle effect analysis of polarimetric data strongly depends
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on the choice of the field strength distribution used in the analysis. It is shown that micro-

turbulence is in general a safe approximation.

Further studies related to the work presented in this chapter are published in:

1. Anusha, L. S., Sampoorna, M., Frisch, H., & Nagendra, K. N., 2010b, in Astrophysics
and Space Science Proceedings: Magnetic Coupling between the Interior and the
Atmosphere of the Sun, eds. S. S. Hasan, & R. J. Rutten (Heidelberg, Berlin:Springer-
Verlag), 390-394

2. Nagendra, K. N., Sampoorna, M., & Anusha, L. S., 2010, in Recent advances in

Spectroscopy; Astrophysical, Theoretical and Experimental Perspective, eds. R.
Chaudhary, M. V. Mekkaden, A. V. Raveendran, A. Satyanarayanan (Heidelberg, Berlin:
Springer-Verlag), 139-153



Chapter 3

Bi-Conjugate Gradient methods for radiative

transfer

The contents of this chapter are based on the following publication:
Anusha, L. S., Nagendra, K. N., Paletou, F., and Léger, L. 2009, ApJ, 704, 661-671

3.1 Introduction

The solution of radiative transfer (RT) equation in spherical geometry remains a classic
problem even 75 years after the first attempts by Chandrasekhar (1934) and Kosirev (1934)
who used Eddington approximation. In later decades more accurate methods were given
(see Mihalas 1978; Peraiah 2002 for historical reviews). Hummer & Rybicki (1971) and
Kunasz & Hummer (1974a, 1974b) developed a variable Eddington factor method, and
computed the solution on rays of constant impact parameter (tangents to the discrete
shells and parallel to line of sight) in one-dimensional (1D) spherical geometry. This is a
very efficient differential equation based technique which uses Feautrier solution along rays
of constant impact parameter. An integral equation method was developed by Schmid-
Burgk (1974) to solve the problem, again based on tangent rays approach. Peraiah &
Grant (1973) presented a highly accurate finite difference method based on the first order
form of the RT equation. All these methods were later extended to expanding, and highly
extended atmospheres. However, in this chapter we confine our attention to static, 1D

spherical atmospheres.

In a next epoch in the development of spherical RT, the integral operator techniques

were proposed. The idea of operator splitting and the use of approximate operators in

61
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iterative methods was brought to the astrophysical RT in planar media by Cannon (1973).
Scharmer (1981) extended his work with a new definition of the approximate operator. The
application of integral operator technique to the spherical RT problems started with the
work of Hamann (1985) and Werner & Husfeld (1985). They used approximate operators
that are diagonal, constructed from core saturation approach. The A operator contains
the non-local coupling between all the spatial points. Olson et al. (1986) showed that
the diagonal part (local coupling) of the actual A operator itself is an optimum choice for
the ‘approximate operator’. These methods are known as Approximate Lambda Iteration
(ALI) methods. The ALI methods which are based on the concept of operator splitting
and the use of Jacobi iterative technique, were widely used in the later decades in RT

theory (see Hubeny 2003; Hamann 2003, for historical reviews).

Gros et al. (1997) used an implicit integral method to solve static spherical line RT
problems. The most recent and interesting work on spherical RT are the papers by Asensio
Ramos & Trujillo Bueno (2006) and Daniel & Cernicharo (2008) both of which are based

on Gauss-Seidel (GS) and Successive Over Relaxation (SOR) iterative techniques.

Klein et al. (1989) were the first to use Bi-Conjugate Gradient (BiCG) technique in
astrophysics. They use BiCG with incomplete LU decomposition technique in their double
splitting iterative scheme along with Orthomin acceleration. They applied it to multi-
dimensional line RT problem. Auer (1991) describes a variant of Orthomin acceleration
which uses ‘Minimization with respect to a set of Conjugate vectors’. He uses a set of n
(usually n=2 or n=4) conjugate direction vectors which are orthogonal to each other, con-

structed using the residual vectors with a purpose to accelerate the convergence sequence.

Hubeny & Burrows (2007) developed GMRES (actually its variant called Generalized
Conjugate Residuals GCR) method to solve the spherical RT problem. It is based on an
application of the idea of Krylov subspace techniques. They applied it to a more general
time-dependent transport with velocity fields in a medium which scatters anisotropically.
They apply GMRES method to the neutrino transfer. It can also be used for RT problem,

including the simple problem of two-level atom line RT discussed in this chapter.

The Preconditioned Bi-Conjugate Gradient method (hereafter Pre-BiCG, see eg., Saad
2000) was first introduced to the line RT in planar media, by Paletou & Anterrieu (2009)
who describe the method and compare it with other prevalent iterative methods, namely
GS/SOR. In this chapter (see also Anusha et al. 2009) we adopt the Pre-BiCG method to
the case of spherical media. We also show that the ‘Stabilized Preconditioned Bi-Conjugate

Gradient (Pre-BiCG-STAB)’ is even more advantageous in terms of memory requirements
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but with similar convergence rate as Pre-BiCG method.

It is well known that the spherical RT in highly extended systems, despite being a
straight forward problem, has two inherent numerical difficulties namely (i) peaking of
the radiation field towards the radial direction, and (ii) the (1/r?) dilution of radiation
in spherical geometry. To handle these, it becomes essential to take a very large number
of angle (1) points and spatial (7) points respectively. The existing ALI methods clearly
slow down when extreme angular and spatial resolutions are demanded (for example see
Table 3.1). Therefore there is a need to look for a method that is as efficient as ALI
methods, but faster, and is relatively less sensitive to the grid resolution. The Pre-BiCG

method and Pre-BiCG-STAB provide such an alternative as we show in this chapter.

Governing equations are presented in Section 3.2.1. In Section 3.2.2, we define the
geometry of the problem and the specific details of griding. In Section 3.2.3, the benchmark
models are defined. We briefly recall the Jacobi, and GS/SOR methods in Section 3.2.4.
In Section 3.3 we describe the Pre-BiCG method. The computing algorithm is presented
in Section 3.3.1. In Section 3.4 we describe the Pre-BiCG-STAB method briefly, and we
give the computing algorithm in Section 3.4.1. In Section 3.5 we compare the performance
of Pre-BiCG with the Jacobi, and GS/SOR methods. In Section 3.6 we validate this new
method, by comparing with the existing well known benchmark solutions in spherical line

RT theory. Concluding remarks are presented in Section 3.7.

3.2 Radiative transfer in a spherical medium

3.2.1 The transfer equation

In this chapter we restrict ourselves to the case of a two-level atom model. Further, we
assume complete frequency redistribution. The RT equation in divergence form is written

as

OT(rpex) |10 )

or ’ i = [ki(r)p(x) + Ke(P)|[S(x,7) — I(r,p, )] (3.1)

Here, I is the specific intensity of radiation, S - the source function, r - the radial distance,
- the direction cosine, z - the frequency measured in Doppler width units from line center,
¢(z) - the line profile function, and k;(r), k.(r) - line center and continuum opacities

respectively. The differential optical depth element is given by

dr(r) = —ky(r)dr. (3.2)
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There are several methods which use the above form of the RT equation (see Peraiah 2002).
In this chapter we solve the RT equation on a set of rays tangent to the spherical shells.

It is written as
oIt (z,p,
£ PR o) 4 w8 r) — T2, ), (33
for the outgoing (4) and incoming (-) rays respectively. Here z is the distance along
the tangent rays and p is the distance from the center to the points on the vertical axis
(the mid-line), where the tangent rays intersect it (see Figure 3.1). The direction cosines
p (0 < p < 1) are related to p by p = /1 — (p?/r?) for a shell of radius r. The optical
depth scale along the tangent rays are now computed using dr(z) = d7(r)/p. In practical
work, due to the symmetry of the problem, it is sufficient to perform the computations on

a quadrant only. The source function is defined as
ki(r)o(x)Si(r) + ke(r)Se(r)
ri(r)o(x) + ke(r)
S.(r) is the continuum source function taken as the Planck function B, (r) throughout
this chapter. The monochromatic optical depth scale A1, = A7, [¢(x) + 5.], with 8. =

ke(r)/ki(r) along the tangent rays. For simplicity, hereafter we omit the subscript z from

S(xz,r) = (3.4)

7, and write 7 to denote 7,. The line source function is given by

Si(r)y=(1—¢) /_1 %’u/ /_00 dx' ¢(a I (7, 1/, 2") + B, (r), (3.5)

with the thermalization parameter defined in the conventional manner as € = Cy;/( Ay +
Cw), where C, and A,; are collisional and radiative de-excitation rates. The intensity

along the rays is computed using the formal solution integral

I (7,p,x) = I (7,p, x) exp[—AT,] + / ) exp[—AT,|S(7)[¢(x) + Beldr'. (3.6)
The corresponding integral for the incoming rays is

I (7,p,x) =I;(7,p,x) exp[—AT,] + /OT exp[—AT]S(7)[p(x) + BdT’. (3.7)

Here, I (7, p,x) represents the inner boundary condition imposed at the core and along
the mid-vertical line (see Figure 3.1). I, (7, p,x) is the outer boundary condition specified
at the surface of the spherical atmosphere. When the above formal integral is applied to a

stencil of short characteristics (MOP) along a tangent ray, it takes a simple algebraic form

Ii<7—7p7 fL’) = I:OE(T7p7 .Z') eXp[_ATM] + 7~p1:\‘:/[(7-7p7 x)SM + wé(Tapa x)SO + wl:Dt(Tapa x)SPv
(3.8)
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where Sy 0,p are the source function values at M, O and P points on a short characteristics.
The coefficients 1 are calculated following the method described in Kunasz & Auer (1988).

3.2.2 The constant impact parameter approach

In Figure 3.1, we show the geometry used for computing the specific intensity I(7,p,x)

along rays of constant impact parameter.

In a spherically symmetric medium, we first discretize the radial co-ordinate 7 (Recore <
r < R), where R is the core radius, and R is the outer radius of the atmosphere. The
radial grid is given by ri, k = 1,2, ..., ng, where r; is the radius of the outer most shell, and
Tn, 1s that of the inner most shell. d€2/4r is the probability that the direction of propagation
of an emitted photon lies within an element of solid angle d€2. In the azimuthally symmetric
case, it is dp/2. To calculate the mean intensity J in plane parallel geometry, we integrate
the intensity over the angular variable p itself. In spherical medium, we have one to one
correspondence between the (u,r) and the (p,r) system. In (p,r) system, the probability
that a photon is emitted with its impact parameter between p and p+dp, propagating in
either positive u or negative p direction is pdp/ 27\/@. The direction cosines made
by the rays in the (i, r) space, with a tangent ray of constant p value, are given by
i = m at different radii ;. Therefore the angular integration factor du/2 can
be changed to pdp/?r\/m (see Kunasz & Hummer 1974b).

The p - grid construction: If n. is the number of core rays, then the p-grid for the core

rays is computed using:

doi=1, n.

pli) = Reore (VI = (i/n0)?)
0 < p < Reore

end do

The number of lobe rays equals the number of radial points. For lobe rays, the p-grid is

same as radial r-grid. It is constructed using:

doizl,nd

p(nc + i) = T(Z)
end do
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Z Mid-line

Figure 3.1: Geometry of the problem showing the computation of radiation field in a spherically
symmetric system. The set of core rays and tangent rays are marked. The core is defined as
a sphere with radius » = 1 in units of the core radius R.oe. The surface is a sphere of radius
r = R in units of Reore. The rays that intersect the core are called ‘core rays’, and the rest are
called ‘lobe rays’. No radiation is incident on the outer surface of the sphere (outer boundary
condition). For all the examples presented in this chapter, we use a reflecting boundary condition

at the z = 0 vertical axis (the mid-line), namely same inner boundary conditions are used for

both the core and the lobe rays.
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where ng=the number of radial points. Thus, the total number of impact parameters is

n, = n. + ng. We have followed Auer (1984) in defining the p-grid in this manner.
3.2.3 Benchmark models
Geometrical distances along the rays of constant impact parameter are constructed as

z(p,r) = /12 —p*. (3.9)

For spherical shells we perform several tests using power-law type variation of density. For

follows:

such atmospheres, the line and continuum opacities also vary as a power law given by

Kie(r) ocr™™, (3.10)
Let C and C denote the proportionality constants for x;(r) and r.(r) respectively. The
constant C' can be determined using the optical depth at line center T'. For a power law

with index n,
T(1—n)

RO — R

Using the given input value of 3. = C/C we can compute the constant C.

C:

(3.11)

We use Voigt profile with damping parameter a or the Doppler profile for the results
presented in this chapter. The spherical shell atmosphere is characterized by the following
parameters: (R, n, T, a, €, B, B,). We recall that R is the outer radius of the spherical
atmosphere surrounding a hollow central cavity of radius Reore. When R = Ry We recover
the plane parallel limit. For the spherical shell atmospheres, we take R...c = 1 as the unit
of length to express the radial co-ordinate. The boundary conditions are specified at the
outer boundary (I~ (7 = 0,p,z) = 0) and the inner boundary. There are two types of inner

boundary conditions:

(a) Emitting Core:
Core rays:
I (1 =T,p < Reore, ) = By, (3.12)

Lobe rays:
I'(r=T,p=ryz) =1 (r=T,p=r;x), (3.13)

1=1,2,...,nq along the mid-vertical.
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(b) Hollow Core:
For both the core and the lobe rays:

I+(T:T,p,:1:):I_(T:T,p,x). (3.14)

The hollow core boundary condition is also called ‘planetary nebula boundary condition’
(see Mihalas 1978). It is clear that a spherical shell with a hollow core is equivalent to a
plane parallel slab of optical thickness 27 with symmetry about the mid-plane at 7 =T

We use spherical shell atmospheres for most of our studies.
3.2.4 Iterative methods of ALI type for a spherical medium

The ALI methods have been successfully used for the solution of RT equation in spherical
shell atmospheres (see eg., Hamann 2003 and references therein). These authors use the
Jacobi iterative methods (first introduced by Olson et al. 1986) for computing the source
function corrections. Recently the GS method has been proposed to solve the same prob-
lem (see eg., Asensio Ramos & Trujillo Bueno 2006; Daniel & Cernicharo 2008). Hubeny &
Burrows (2007) proposed the GMRES method for solving spherical RT problem. GMRES
and Pre-BiCG both belong to Krylov subspace technique. In this chapter we compute the
spherical RT solutions by Jacobi and GS/SOR methods, and compare with the solutions
computed using the Pre-BiCG method. For the sake of clarity, we recall briefly the steps
of Jacobi and GS/SOR methods.

Jacobi Iteration Cycle: The source function corrections are given by

(1—e)J!+eB, — St
[1— (1= e)A%,]

§Sp =St — Sp = : (3.15)

for the nth iterate. Here k is the depth index. The A* is the approximate operator which
is simply taken as the diagonal of the actual A operator defined through

A[S] = J; (3.16)
J(1) = /1 %’ul /OO dx’ op(\I (7, 1/, x'). (3.17)

GS/SOR Iteration Cycle: The essential difference between the Jacobi and GS/SOR meth-
ods is the following:
Sptt = Sp +wdSy.



3.2. Radiative transfer in a spherical medium 69

Table 3.1: The sensitivity of different iterative methods to the convergence criteria w. Ta-
bles 3.1(a), 3.1(b), 3.1(c) correspond respectively to w=10"% 1078 and 107!°. Number of
points per decade in the logarithmic 7 scale is denoted by [npts/D]. The SOR parameter used is

1.5. The entries under each method indicate the number of iterations required for convergence.

(a) w=10"°

[npts/D]  Jacobi GS SOR Pre-BiCG Pre-BiCG-STAB

) 81 40 24 16 12

8 136 69 22 19 15

30 444 230 74 ) 23
(b) @=10"%

[npts/D]  Jacobi GS SOR  Pre-BiCG  Pre-BiCG-STAB

) 110 54 30 18 13

8 186 94 30 22 15

30 635 325 103 39 30
(c) w=10"19

[npts/D]  Jacobi GS SOR  Pre-BiCG  Pre-BiCG-STAB

) 138 68 37 20 14
8 236 118 40 25 18
30 827 419 132 45 30

Here the parameter w is called the relaxation parameter which is unity for the GS technique.

The SOR method is derived from the GS method by simply taking 1 < w < 2 (see
Trujillo Bueno & Fabiani Bendicho 1995 for details). The source function correction for
the GS method is given by

1— jn(old+new) Bu _§n
ssp = L= s (3.18)
[1—(1- E)Ak,k]
where the quantity J}' (oldtnew) Janotes the mean intensity computed using new values of

the source function as soon as they become available. For those depth points for which the
source function correction is not yet complete, GS method uses the values of the source
function corresponding to the previous iteration (see Trujillo Bueno & Fabiani Bendi-

cho(1995)). For clarity we explain how the GS algorithm works in spherical geometry, on



70 Chapter 3. Bi-Conjugate Gradient methods for radiative transfer

rays of constant impact parameter.

Begin loop over iterations
Begin loop over radial shells with index k

Begin loop over impact parameters (or directions) with increasing p

For the nth iteration:

For the incoming rays (u < 0):

(Reverse sweep along radial shells)

(a) This part of the calculations start at the outer boundary for all impact parameter rays.
(b) I, are first calculated for a given radial shell k using S}, S;_; and S} ;.

(¢) The partial integral Ji(u < 0) are calculated before proceeding to the next shell. This
part of the calculations is stopped when the core (for the core rays) and the mid-vertical

line (for the lobe rays) are reached.

For outgoing rays (x> 0):

(Forward sweep along radial shells)

(d) This part of the calculations start at the inner boundary. First, for the radial shell

with k = ng J,,, is calculated, using boundary conditions I,,,.
no; ; : : n+l _ Qn n
(e) 68}, is computed and the source function is updated using S, = S} + 4685, .

(f) For the next radial shell k = ng — 1:
to calculate I,,_1 by applying the short characteristics formula, S,,,, S,,-1 and S,,,_2 are
needed. Already S;', S; | and S} _, are available. GS takes advantage of the available

new source function at k = ng4. I,,,—; is calculated with this set of source functions.
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(g) Then J,, 1(; > 0) are calculated using I,, ;.

(h) Note that, J,,, 1(p < 0) was calculated using S” , S"

ng’? ng—17

and S _, whereas J,,,_1(pu >
0) used the “updated” source function S;''. Therefore J,, 1 is corrected by adding the

following correction:

0
Ad,, 1= 55&/ U, (< 0) dp.
-1

(i) 687 _y and Si =87 | +0S" | are now calculated.

(j) Since “updated” S;‘j_ll at k = ng — 1 is also available now, before going to the next

radial shell it is appropriate to correct the intensity at the present radial shell by adding

to it, the following correction term

AInd,1 (:U’) = 5577;711?“[1*1'

End loop over impact parameters (or directions)
End loop over radial shells

End loop over iterations.

3.3 Preconditioned BiCG method for a spherical medium

In this section we first describe the essential ideas of the Pre-BiCG method. The complete
theory of the method is described in Saad (2000). We recall that the two-level atom source

function with a background continuum is given by

(1)0() Su(r) + () Selr)

Sr) = 6@ + elr) (319
It can be re-written as
S(x,r) = plx,r)Si(r) + [1 = p(z,r)]Sc(r), (3.20)
where (M6(x)
B ki(r)o(x
plz,r) 6@ £ ) (3.21)
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From Equations (3.5), (3.16) and (3.17), we get
S(x,r) =p(z,r){(1 —e)A[S(z,r)] + eB,(r)} + [1 — p(x,r)]S.(r). (3.22)

Therefore the system of equations to be solved becomes

A

[ = (1 =e)p(x,r)A]S(x, ) = p(x, r)eBy(r) + [1 — p(z,)]Sc(r), (3.23)
which can be expressed in a symbolic form as
Ay =b; with A=[I—(1—ep(x,r)A; y=S(z7r). (3.24)
The vector b represents quantities on the RHS of Equation (3.23). Now we describe briefly,
how the Pre-BiCG method differs from ALI based methods.

Let R™ denote the n-dimensional Euclidean space of real numbers.

Definition: The Pre-BiCG algorithm is a process involving projections onto the m-
dimensional subspace (m < n) of R"

IC., = span{wvy, Avy, . .. ,flm’lvl}, (3.25)
and also being orthogonal to another m-dimensional subspace of R"”
L., = span{wy, ATwy, ... AT D, }. (3.26)

Here v, is taken as the initial residual vector ro = b — Ayo with yo the initial guess for
the solution of Equation (3.24). The vector w; is taken as arbitrary such that the inner
product (v, w;) # 0. The method recursively constructs a pair of bi-orthogonal bases
{vi;i=1,2...,m} and {w;;i = 1,2...,m} for K, and L,, respectively, such that they
satisfy the bi-orthogonality condition (v;, w;) = d,;. For the purpose of application to the
RT theory it is convenient to write the Pre-BiCG steps in the form of an algorithm For

simplicity we drop the explicit dependence on variables.
3.3.1 The Preconditioned BiCG Algorithm

Our goal is to solve Equation (3.24). In this section the symbols r; and p; are used to be in
conformity with the standard notation of residual and conjugate direction vectors. They
should not be confused with the radius vector r; and impact parameter p; which appear in
spherical RT theory.
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(a) The very first step is to construct and store the matrix AT (which does not change
with iterations, for the cases considered here, namely two-level atom model). Details of

computing A7 efficiently is described in Appendix C.

We follow the preconditioned version of the BiCG method. Preconditioning is a pro-
cess in which the original system of equations is transformed into a new system, which
has faster rate of convergence. For example, this can be done by solving the new system
M _1Ay = M~'b where M is an appropriately chosen matrix, called the “preconditioner”
(see also equation 2 of Auer 1991). This preconditioner is chosen in such a way that,

(i) the new system should be easier to solve,

(ii) M~ itself should be inexpensive to operate on an arbitrary vector,

(iii) the preconditioning is expected to increase the convergence rate.

The choice of the preconditioner depends on the problem at hand. When an appropriate
A* is chosen such that the amplification matrix [_f — (1 — €)A*] has as small a maximum
eigen value as possible (see Olson et al. 1986), the convergence rate is enhanced. What
enables the convergence of ALI, that satisfies the above property, and simplest to manipu-
late, is the diagonal of the A itself. Therefore the amplification matrix [I — (1 — €)A*] with
a diagonal form for A* is a simple and natural choice as a ‘preconditioner’. We construct

the preconditioner matrix M by taking it as the diagonal of A.

(b) An initial guess for the source function is
Yo=peB+(1-p)S., (3.27)

where the thermal part eB is taken as an initial guess for S;.
(¢) The formal solver is used with ¥, as input to calculate J (o).

(d) The initial residual vector is computed using
To = b-— Ayo

(e) The initial bi-orthogonal counterpart r{ for r( is chosen such that we have (rg, r§) # 0.

One can choose r; = 7y itself.

Such an initial choice of r; vector is necessary, as the method is based on the con-

struction of bi-orthogonal residual vectors r; and 7} recursively, for i = 1,2, ..., m, where
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m is the number of iterations required for convergence. The process of constructing the
bi-orthogonal vectors gets completed, once we reach the convergence. In other words, the
number of bi-orthogonal vectors necessary to guarantee a converged solution represents
the actual number of iterations itself. It is useful to remember that when we refer to
‘bi-orthogonality’ hereafter, say eg., of the residual vectors r;, 7 we simply mean that

(ri,r3) = 0 for i # j, but (r;, ;) need not be unity.

(2

(f) The bi-orthogonalization process makes use of conjugate direction vectors p and p*
for each iteration. They can be constructed during the iterative process, again through

recursive relations. An initial guess to these vectors is made as py = ry and pj = 7.

(g) The preconditioned initial residual vectors {; are computed using

C= Mrg (3.28)

(h) For i = 1,2, ..., the following steps are carried out until convergence:

(i) Using the formal solver with p; as input (instead of actual source vector y), J[p;] is

obtained.

§) /Al[pz] is computed using

A

A[ z] =Pi— (1 - 6)25-]_[131']-

(k) The inner products

~

(Alpi],p;) and (r;, (), (3.29)
are computed and used to estimate the quantity
a; = & (3.30)
(Alpi], p})

(1) The new source function is obtained through
Yir1 = Yi T QiPi. (3.31)

Test for Convergence: Let w denote the convergence criteria. If

mTaX{(Sy/y} <w, (3.32)
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then iteration sequence is terminated. Otherwise it is continued from step (m) onwards.

The convergence criteria w is chosen depending on the problem.

(m) Following recursive relations are used to compute the new set of vectors to be used in
the (i + 1)th iteration:

~

Tig1 =7 — aiA[pi]a (333)
i =1 — o AT[p}], (3.34)
¢ =M (3.35)

(n) The quantity §; is computed using

<Ti+17 C5k+1>

6i N <ri7 Cz*>

(3.36)

(0) The conjugate direction vectors for the (i 4+ 1)th iteration are computed through

Dit1 = Tiy1 + Bips,
Pi1 = Tip T 0ip;- (3.37)

(p) The control is transferred to step (g).

The converged source function y is finally used to compute the specific intensity every-

where within the spherical medium.

3.4 Transpose free variant - Pre-BiCG-STAB

In spite of higher convergence rate, computation and storage of the AT matrix is a main dis-
advantage of the Pre-BiCG method. To avoid this, and to make use of only the ‘action’ of
A matrix on an arbitrary vector, a method called ‘BiCG-squared’ was developed (see Saad
2000, for references and details), which is based on squaring the residual polynomials. Later
it was improved by re-defining the residual polynomial as a product of two polynomials
and obtaining a recursive relation for the new residual polynomial. This product involves
residual polynomial of the Pre-BiCG method and a new polynomial which ‘smoothens’ the
iterative process. In this section we give the computing algorithm of the Pre-BiCG-STAB
method as applied to a RT problem. As described below, we can avoid computing and
storing of the AT matrix in the Pre-BiCG-STAB method. However we would now need
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to call the formal solver twice per iteration unlike in Pre-BiCG method, where it is called
only once. This results in an increase in number of operations per iteration when compared
to Pre-BiCG method, causing a slight increase in the CPU time per iteration. In spite of
these the Pre-BiCG-STAB method turns out to be always faster than the regular Pre-BiCG

method in terms of convergence rate (lesser number of iterations for convergence).

3.4.1 Pre-BiCG-STAB algorithm

Now we give the algorithm of Pre-BiCG-STAB method to solve the system M 1AS =
M~'b. Here M is a suitably chosen preconditioner matrix. The computing algorithm is

organized as follows:

(a) First initial preconditioned residual vectors and conjugate direction vectors are defined
through

zo=M"'b— M 'AS, (3.38)
ZS = 20, Po = Zp. (339)
(b) For j = 1,2, ... the following steps are carried out until convergence.

(c) Using P; instead of the source function a call to the formal solver is made to compute
AP;.
(d) The coefficient a; can be evaluated now as

(2j,27) .
(M—1AP;, ;)

(3.40)

j =

(e) Another vector g; is calculated as

q; =z — ;M *AP;. (3.41)

(f) Using g; in place of the source function a call to the formal solver is made to obtain flqj.

(g) The coefficient w; is estimated as

(M~'Aq;, q;) _
(M—1Aq;, M—'Agq;)

(3.42)

wj:
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(h) The updated new source function is calculated as

Sjr1 = Sj+ ;P + w;q;. (3.43)

(i) Test for convergence is made as in the Pre-BiCG algorithm.

(j) Before going to the next iteration a set of recursive relations are used to compute
residual vectors
Zji+1 = g5 — ijflqu’ (344)

and conjugate direction vectors

Pjii = zji1 + B,(P; — w;M ' AP). (3.45)

for the next iteration, where the coefficient 3; is

<Zj+17 ZS) Q;
By = 0L (3.46)
’ <Zja Z0> Wi

(k) The control is now transferred to the step (b).

3.5 Comparison of ALI and Pre-BiCG methods

There are two characteristic quantities that define iterative techniques. They are (a) con-

vergence rate, which is nothing but the maximum relative change (MRC) defined as

R. = max { 05 } : (3.47)

Sn

and (b) the total CPU time Tyt required for convergence. Tiopa is the time taken to reach
a given level of convergence, taking account only of the arithmetic manipulations within
the iteration cycle. We also define a quantity called the true error T, and use it to evaluate
these methods.

3.5.1 The behaviour of the maximum relative change (MRC)

In this section we compare R. and Ti.. for the Jacobi, GS, SOR, Pre-BiCG and the
Pre-BiCG-STAB methods. The SOR parameter used is 1.5. It is worth noting that the
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Figure 3.2: Dependence of the Maximum Relative Change R. on the iterative progress for
different methods. Panels (a), (b), and (c¢) represent models with low, medium and high spatial
resolution respectively. The model parameters are (7, R, T, a, €, 8., B,)= (0, 10, 103, 1073,
1074, 0, 1). The convergence criteria is chosen arbitrarily as @ = 1078, The SOR parameter
w =1.5. The figures show clearly that Jacobi method has the smallest convergence rate, which
progressively increases for GS and SOR methods.
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Pre-BiCG and Pre-BiCG-STAB methods

generally have the largest convergence rate compared to the other three.

Table 3.2: Timing efficiency of the iterative methods. The “CPU time” refers to the time taken

for convergence, “Overrates” to the extra time excluding the time needed for the iteration sequence

to converge and the “Total time” to the total computing time.

Jacobi GS SOR Pre-BiCG Pre-BiCG-STAB
CPU time 7 min 49 sec 4 min 4 sec 1 min 18 sec 27 sec 42 sec
Overrates 6 sec 6 sec 6 sec 9 sec 6 sec
Total time 7 min 55 sec 4 min 10 sec 1 min 24 sec 36 sec 48 sec
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overrates (the time taken to prepare the necessary set up, before initiating the iterative
cycle) are expected to be different for different methods. For instance, in Jacobi and
GS/SOR this is essentially the CPU time required to set up the A* matrix. In the Pre-
BiCG method this involves the time taken to construct the A7 matrix, which is a critical
quantity of this method. The Pre-BiCG method is described in this chapter in the context
of a two-level atom model, because of which, we do not need to update the AT matrix
at each iteration. For the Pre-BiCG-STAB method it is the time taken to construct the

preconditioner matrix M.

Figure 3.2 shows a plot of R, for different methods. We can take R. as a measure of
the convergence rate. Chevallier et al.(2003) show that it always becomes necessary to
use high resolution grids, to achieve high accuracy of the solution (see also Section 3.1 of
this chapter). This is especially true in the case of spherical RT where a spatial grid with
a large number of points per decade becomes necessary to achieve reasonable accuracy.
In the following we discuss how different methods respond to the grid refinement. It is
a well known fact with the ALI methods, that the convergence rate is small when the
resolution of the depth grid is very high. In contrast they have a high convergence rate in
low resolution grids. On the other hand the R, of Pre-BiCG and Pre-BiCG-STAB methods
have higher convergence rate even in a high resolution grid. Figure 3.2(a) shows R, for
different methods when a low resolution spatial grid is used (5pts/D in the logarithmic
scale for 7 grid). The Jacobi method has a low convergence rate. In comparison, GS
has a convergence rate which is twice that of Jacobi. SOR has a rate that is even better
than that of GS. However Pre-BiCG and the Pre-BiCG-STAB methods have the higher
convergence rate. Figure 3.2(b) and 3.2(c) are shown for intermediate (8 pts/D) and high
(30 pts/D) grid resolutions. The essential point to note is that, as the grid resolution
increases, the convergence rate decreases drastically and monotonically for the Jacobi and
the GS methods. It is not so drastic for the SOR method which shows non-monotonic
dependence on grid resolution. The Pre-BiCG and Pre-BiCG-STAB methods exhibit again

a monotonic behaviour apart from being relatively less sensitive to the grid resolution.

In Table 3.1 we show what happens when we set convergence criteria to progressively
smaller values (0 =107%, 1078, and 107'° for Tables 3.1(a), 3.1(b) and 3.1(c) respectively)
for various grid resolutions. The model used to compute these results is (7, R, T, a, ¢,
B., B,)= (0, 10, 103, 1073, 107*, 0, 1). The idea is to demonstrate that for a given grid
resolution (corresponding rows of the Tables 3.1(a), 3.1(b) and 3.1(c)), all the methods
show a monotonic increase in the number of iterations for convergence, as we decrease
the w. On the other hand Pre-BiCG and Pre-BiCG-STAB require much less number of
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iterations to reach the same level of accuracy.

CPU time considerations: Table 3.2 shows the CPU time requirements for the methods
discussed in this chapter. The model used to compute these test cases is (n, R, T, e,
B., B, @)= (0, 300, 103, 1074, 0, 1, 1078). The grid resolution considered is 30 pts/D.
The CPU time for convergence can be defined as the computing time required to complete
the convergence cycle and reach a fixed level of accuracy. We recall that the overrates
in computing time is the time taken to prepare the necessary set up before initiating
the iterative cycle. Total computing time is the sum of these two. In Appendix C we
discuss in detail how to construct A* matrix for Jacobi, GS/SOR methods and A and
M matrices for Pre-BiCG and Pre-BiCG-STAB methods respectively with an optimum
effort. Construction of these matrices constitutes the overrates in computing time of each
method. The first row of Table 3.2 shows that Pre-BiCG is the fastest to complete the
convergence cycle. The reason why Pre-BiCG-STAB takes slightly longer time than Pre-
BiCG is explained at the end of Section 3.4.

The second row of Table 3.2 shows that all methods except Pre-BiCG take nearly
8 seconds as overrates for the chosen model. Pre-BiCG takes additional 3-4 seconds as
explicit integrals are performed for computing off-diagonal elements also (Unlike the other

methods where such integrals are performed only for diagonal elements).

The last row of Table 3.2 shows that in terms of total CPU time requirement, the other
methods fall behind the Pre-BiCG and the Pre-BiCG-STAB. Pre-BiCG seems to be a bit
faster compared to Pre-BiCG-STAB for the particular model chosen. However it is model
dependent. For instance, as the contribution towards overrates increases, Pre-BiCG-STAB

clearly stands out as the fastest method of all, discussed in this chapter.

3.5.2 A study of the True Error

We now study the true errors in these methods (see Figure 3.3). The model parameters
are (7, R, T, €, B., B,)= (0, 10, 103, 1074, 0, 1). A coherent scattering limit is used. To
define a true error, we need a so called ‘exact solution’. Except for highly idealized cases,
exact solutions do not exist. For practical purposes, the exact solution can be defined
as a solution obtained on a spatial grid of resolution that is three times larger than the
grid resolution of the model that we are interested in. Also, we extend the iteration until
R, reaches an extremely small value of 107'2. The source function computed in this way
can be called S(oco, 00) (fully converged solution on an infinite resolution) (see Auer et al.
1994). The source function at the nth iterate is denoted by S™. We define the true error
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as
n
S - Sexact

Sexact
following Trujillo Bueno & Fabiani Bendicho (1995). In Figure 3.3(a) we show T, computed
for the Pre-BiCG method using three grid resolutions, namely 10 pts/D, 14 pts/D and 20

pts/D. The plateau of each curve represents the minimum value of the true error reached for

: (3.48)

T. = max
T

a given grid resolution. We notice that as the resolution increases, T, gradually decreases
in magnitude as expected. In Figure 3.3(b) we show T, computed for the Pre-BiCG-STAB
method. The model parameters are same as in Figure 3.3(a). Clearly, Pre-BiCG-STAB
shows a smooth decrement of true error compared to Pre-BiCG, because of the smoothing
polynomial used to define the residual vectors. In Figure 3.3(c) we compare the decrement
of true errors for different iterative methods. The grid resolution chosen is 14 pts/ D
with other model parameters being same as in Figures 3.3(a), (b). The decrease of the
true errors follows the same pattern in all the iterative methods, although the number of
iterations required for T, to reach a constant value (plateau) depends on the method. To
reach the same level of true error, the Pre-BiCG and Pre-BiCG-STAB methods require

considerably less number of iterations, when compared to the other three.

3.5.3 A theoretical upper bound on the number of iterations for convergence
in the Pre-BiCG method

Suppose that A is an ng x ng matrix. The solution to the problem fly = b is a vector
of length ng. In an ng-dimensional vector space V,,, the maximum number of linearly
independent vectors is ng. Hence, there can at the most be ng orthogonal vectors in V;,,.
The Pre-BiCG method seeks a solution by constructing orthogonal vectors. We recall that
the residual counterpart vectors {rf,r3,..., 75} constructed during the iteration process
are orthogonal to the initial residual vector ry. Thus, when we reach convergence after m
iterations, we will have a set of m + 1 orthogonal vectors {rg,r},r3,..., 7} }. From the
arguments given above, it is clear that m + 1 < ng, namely in the Pre-BiCG method, ‘the
convergence must be reached theoretically in at the most ng steps (or iterations)’. This
sets an upper limit to the number of iterations to reach convergence (see also Hestenes &
Stiefel 1952). For example when the dimensionality of a problem is high (very large value of
nq), the Pre-BiCG method ensures convergence in at the most ny iterations. A theoretical
upper bound on the number of iterations also exists for the Pre-BiCG-STAB method,
whereas the other methods do not have such a theoretical upper bound. In practice we
find that Pre-BiCG and Pre-BiCG-STAB methods actually require much less number of

iterations than ng4, even when ng, is large.
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Figure 3.3: Behaviour of the true error 7, in a spherically symmetric medium. The model
parameters are (7, R, T, €, Be, B,)= (0, 10, 103, 1074, 0, 1). Panel (a) shows the decrement of
the true error of the Pre-BiCG method for three different spatial grid resolutions. Notice the
plateau in the true error. Panel (b) shows T, for Pre-BiCG-STAB method. Panel (c) shows for
different methods, the number of iterations required to reach a constant true error 2.9 x 1072
The SOR parameter w =1.5. The overall behaviour of the curves is same for all the methods,
although the rates of decrement are different.

3.6 Results and discussions

The main purpose of this chapter is to propose a new method to solve the line RT problems
in spherically symmetric media. In this section we show some illustrative examples in order
to compare with the famous benchmarks for spherical RT solutions presented in the papers
by Kunasz & Hummer (1974a). In Figure 3.4 we show source functions for different test
cases. Figure 3.4(a) shows the source functions for ¢ = 1072 and ¢ = 10™* for R = 300
and T = 10%. Other model parameters are (1, 3., B,)=(2, 0, 1). We use a Doppler
profile to compare with the results of Kunasz & Hummer (1974a). Plane parallel result is
also shown for comparison. When ¢ = 10~2 we observe that the thermalization is reached
at the thermalization length for the Doppler profile namely 1/e¢ = 100. When ¢ = 1074
thermalization does not occur. Clearly the minimum value of the source function is €B,,.
For the large values of R = 300 and opacity index n = 2, as r increases the opacity
decreases steadily and the source function indeed approaches this minimum value near the
surface layers. For this case, the departure of the source function from planar limit is
severe near the surface. It can be shown (dashed line of Figure 3.4(b), see also Figure 3

of Kunasz & Hummer 1974a) that this departure is not so acute when 7 = 0, but is more
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(a) T=10% =2 (b) T=10% e=10"* (c) T=10% ¢=1071°

=300, €=10"%

Figure 3.4: In panel (a) the source function variation with optical depth is shown for a spherical
media with inverse square opacity variation for two different values of €. The symbols show
the benchmark solution read from Kunasz & Hummer (1974a), which compare well with the
solution by our method (Pre-BiCG - full lines). The plane parallel solution (R = 1) is shown for
comparison. Panel (b) shows the effect of power law opacity indices 7 on the source function
variation with 7. In panel (c) the effects of spherical extension R are shown by taking a difficult

case of highly scattering, effectively optically thin medium.

acute when n = 3 (dash triple-dotted line in Figure 3.4(b)). In Figure 3.4(b) we plot source
function for the same model as Figure 3.4(a) but for various values of n. For negative 7,
the distinction between S(7) vs. 7 curves for different 7 is small. For positive 7, the
effects are relatively larger (see dot-dashed and long dashed curves in Figure 3.4(b)). In
Figure 3.4(c), we show source function variation for a range of spherical extensions R.
We have chosen an effectively optically thin model (T, €)=(10%, 10~'%) because in such a
medium, thermalization effects do not completely dominate over the effects of sphericity.
Other parameters are same as in Figure 3.4(b). Clearly, the decrease in the value of source
function throughout the atmosphere is monotonic, with an increase in the value of R from
1 to 10%. In Figure 3.5, we show effects of limb darkening in spherical atmospheres for
R =103 and R = 10°. The other model parameters for Figure 3.5(a) are (n, T €, ., B,)=
(2, 108, 107*, 0, 1). A Doppler line profile is used. From the Figure, we notice absorption
in the line core and emission in the near line wings (z ~ 4) for § = 0° and 10°. This
is the characteristic self reversal observed in spectral lines formed in extended spherical
atmospheres. The self reversal decreases gradually as # increases, and finally vanishes for

large values of 6. Indeed for extreme value of § = 90°, we observe a pure emission line.

In Figure 3.5(b) we show line profiles formed in a semi-infinite spherical medium. The
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Figure 3.5: Angular dependence of emergent intensities in highly extended spherical media
(R =10% and R = 10°%). In panel (a) the profiles for the central ray (# = 0°), and the lobe rays
(6 = 10°,90°) are shown. Panel (b) shows the line profiles formed in a semi-infinite spherical
atmosphere with R = 300 and 7 = 10'2.

model parameters are same as in Figure 3.5(a) except for (R, T)=(300, 10'?). The profiles
for a range of 6 = 0°,31°,54°,72°,84° are shown. For the core rays (6 = 0°) we see a pure
absorption line due to thermalization of source function. For other angles, as expected we
see chromospheric type self-reversed emission lines, formed in the lobe part of the spherical

medium.

3.7 Concluding remarks

In this chapter we propose a robust method called Pre-BiCG method to solve the clas-
sical problem of line RT in spherical media. This method belongs to a class of iterative
methods based on the projection techniques. We briefly present the method, and the com-
puting algorithm. We also present a transpose-free variant called the Pre-BiCG-STAB
method which is more advantageous in some of its features. The Pre-BiCG and Pre-BiCG-
STAB methods are validated in terms of its efficiency and accuracy, by comparing with
the contemporary iterative methods like Jacobi, GS and SOR. To calculate the benchmark
solutions we use spherical shell atmospheres. Few difficult test cases are also presented to
show that the Pre-BiCG and Pre-BiCG-STAB are efficient numerical methods for spherical
line RT.
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New Results

For the first time, the projection methods were introduced to spherical RT in this chap-
ter. Further, it is for the first time that Pre-BiCG-STAB method is applied to RT in any

context. The following are the results obtained in chapter 3.

1. The Pre-BiCG and Pre-BiCG-STAB show highest speed of convergence when compared

with all other contemporary iterative methods.

2. The application of Pre-BiCG and Pre-BiCG-STAB methods in some benchmark tests
shows that it is quite versatile, and can handle hard problems that may arise in astrophys-
ical RT theory.

3. The applicability of this method is discussed in the later chapters where we extend it to
multi-D RT problems (chapters 5, 6, 7 and 8). Therefore the development in this chapter

is a basis for the work in the later chapters.

Further studies related to the work presented in this chapter are published in:
1. Anusha, L. S., & Nagendra, K. N., 2009, Mem.S.A.It, 80, 631-634
2. Nagendra, K. N., Anusha, L. S., & Sampoorna, M. 2009, Mem.S.A.It, 80, 678-689
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Chapter 4

Decomposition of Stokes parameters in

multi-D media

The contents of this chapter are based on the following publication:
Anusha, L. S., and Nagendra, K. N. 2011a, ApJ, 726, 6-19

4.1 Introduction

The solution of the polarized line radiative transfer (RT) equation in multi-dimensional
(multi-D) media is necessary to model the solar atmospheric features. This requirement
stems from the non-axisymmetry of the radiation field arising purely due to inhomogeneous
structures in the solar atmosphere. An idealization to simplify this problem, is to represent
the inhomogeneities as computational cubes, characterized by their shape and the physical
parameters. This approach has proved useful in the hydrodynamics as well as the theory
of RT applied to the solar atmosphere (see below). In this chapter we focus on the RT
aspects only. Our goal is to set up the polarized RT equation suitable for a given geometry,

and to develop numerical techniques to solve them.

Extensive work has been done in unpolarized multi-D RT in recent years. Here we
mention only a few important developments on this subject. A classic paper on multi-D
unpolarized RT is by Mihalas et al. (1978), who undertook an extensive analysis of the na-
ture of two-dimensional (2D) RT solutions and presented illustrative examples that helped
later developments. They used a formal solver based on short characteristics but solved
the problem using a second order RT equation. A faster and more efficient formal solution
based on short characteristics method for 2D was developed by Kunasz & Auer (1988). An

39
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Approximate Lambda Iteration (ALI) method for unpolarized line RT was formulated by
Auer & Paletou (1994) who used partial frequency redistribution (PRD) in the line scat-
tering. Auer et al. (1994) formulated an ALI method for line RT in a three-dimensional
(3D) medium for a multi-level atom model, under the complete frequency redistribution
(CRD) approximation. Vath (1994) and Papkalla (1995) also proposed efficient 3D RT
codes based on the short characteristics formal solvers. Folini (1998) has done extensive
work on the numerical techniques to solve the multi-D RT equation, and applied them to
few astrophysical problems of practical interest. van Noort et al. (2002) have developed
a general multi-D RT code applicable to a variety of astronomical problems. This list
of papers to the unpolarized RT in 3D does not pretend to be complete. Indeed 3D RT
techniques and applications have been the subject of keen interest in other branches of

astrophysics (see e.g., Nagendra et al. 2009).

There are two formalisms to write the RT equation for line polarization. The density
matrix formalism (see for e.g., Landi Degl’Innocenti & Landolfi 2004, hereafter LL04),
and the scattering phase matrix formalism (see e.g., Stenflo 1994). The density matrix
formalism may handle polarized scattering in multi-level atoms, while it is not the case
for the scattering formalism, but with the advantage that it is well adapted to handle the
polarized line scattering with PRD. Again there are two streams in the scattering phase
matrix formalism. The first one used the Stokes vector RT equation (see e.g., Stenflo
1976; Dumont et al. 1977; Rees & Saliba 1982; Faurobert 1987; Nagendra 1988; Nagendra
1994; Nagendra et al. 2002; Sampoorna et al. 2008c). The second stream worked with
the polarized RT equation for a reduced intensity vector (see e.g., Faurobert-Scholl 1991;
Nagendra et al. 1998; Fluri et al. 2003b; Sampoorna et al. 2008a; Frisch et al. 2009;
Sampoorna & Trujillo Bueno 2010; Nagendra et al. 2010; Anusha et al. 2010b).

The solution of multi-D polarized line RT equation formulated in the Stokes vector
basis is rather complicated to solve. The reason for this is the explicit dependence of the
physical quantities on the spatial variables (x,y,z), angular variables (6, ¢) and frequency
x, in the standard notation. Therefore it is advantageous to write the RT equation in
a basis where it takes a simpler form. For example Chandrasekhar (1950) showed that
in a one-dimensional (1D) geometry, the monochromatic polarized RT equation in the
Stokes vector (I,Q,U)T basis can be transformed to a Fourier basis, where the physical
quantities no longer depend on the azimuthal angle . An RT equation can be written for
the Fourier components of the Stokes vector and the solution is transformed back to the
original (I,Q,U)? basis. This technique was later extended by Faurobert-Scholl (1991),

(see also Nagendra et al. 1998) to the case of polarized line RT in the presence of a magnetic
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field (Hanle effect). (Frisch 2007, hereafter HF07) decomposed the Stokes vector (I, Q, U)T
in terms of irreducible spherical tensors for polarimetry (see LL04 and the references cited
therein). In HFO7 it is shown that the Fourier expansion approach and the irreducible
spherical tensor approach are somewhat equivalent, the latter being more compact and

convenient to use in the scattering theory.

Dittmann (1997) formulated the solution of the polarized RT equation for continuum
scattering in 3D media. Later he (Dittmann 1999) proposed an approach of factorizing the
Hanle phase matrix into a form which is suitable for the solution of the line RT equation in
3D geometries, under the assumption of CRD. The Hanle line RT equation in 2D and 3D
media with CRD using the density matrix formalism was solved by Manso Sainz & Trujillo
Bueno (1999). Paletou et al. (1999) solved the non-magnetic polarized resonance scattering
with CRD using a perturbative approach, in a 2D geometry. Trujillo Bueno et al. 2004
and Trujillo Bueno & Shchukina (2007, 2009, and references cited therein) have applied
their multi-level 3D polarized RT code to a variety of problems to understand the nature
of the line RT in the second solar spectrum. An escape probability method to compute
the polarized line profiles in non-spherical winds was developed by Jeffrey (1989). In all
the works mentioned above, the authors used the CRD in line scattering. Hillier (1996)
solved the problem of Rayleigh scattering polarization in a 2D-spherical geometry based on
the Sobolov-P approach (polarized line RT in high speed winds) using the angle-averaged

partial frequency redistribution functions.

In this chapter (see also Anusha & Nagendra 2011a) we solve the 3D polarized line
RT equation in a non-magnetic medium under the assumption of PRD. For this purpose
we use the traditional scattering phase matrix approach. We follow the decomposition
technique of HFO7 all through this chapter . Basically we start from the decomposition of
Stokes parameters in terms of the irreducible spherical tensors for 1D media, developed by
HF07, and extend it to handle the case of RT in multi-D media. For the PRD we consider
the collisional redistribution matrix (Domke & Hubeny 1988; Bommier 1997a, 1997b) for

a two-level atom model with unpolarized ground level.

A polarized RT equation in Stokes vector formalism is presented in Section 4.2. A
general multipolar expansion of the Stokes source vector and Stokes parameters in terms
of the irreducible spherical tensors and the corresponding RT equation is presented in
Section 4.3. For the formal solution of the RT equation we use the finite volume element
method formulated by Adam (1990), extended here to include polarization and PRD. We

briefly explain in Section 4.4 the numerical method that we have developed in this chapter.
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Table 4.1: The optical depth information for
the spatial points 1-9 on the top surface (77 =
0) in Figure 4.2.
Spatial point Tx Ty Tz
1 Tx/2 Ty/2 0
2 Tx Ty/2 0
3 0 Ty/2 0
4 Tx /2 Ty 0
) Tx/2 0 0
6 0 Ty 0
7 Tx 0
8 0 0 0
9 Tx Ty O

Details of the numerical method are presented in Appendix D. In Section 4.5 we present
some solutions to understand the nature of polarization in a 3D scattering medium. They
may serve as benchmarks for further exploration. In Section 4.6 we present our concluding

remarks.

4.2 Polarized radiative transfer in a 3D medium — Stokes vector

basis

The RT equation in divergence form in the atmospheric reference frame (see Figure 4.2) is

written as

Q-VI(r,Q,z)=—[r(r)o(z) + ke(r)|[I(r, Q,z) — S(r,Q, z)], (4.1)

where I = (I,Q,U)T is the Stokes vector, with I, Q and U the Stokes parameters defined
below. Following Chandrasekhar (1950), we consider an elliptically polarized beam of light,
the vibrations of the electric vector of which describe an ellipse. If I; and I, denote the

components of the specific intensity of this beam of light along two mutually perpendicular
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directions [ and r, in a plane transverse to the propagation direction, then we define

I= Il + IT7
Q = Il - IT7
U= (I, — I,) tan 2y, (4.2)

where x is the angle between the direction [ and the semi major axis of the ellipse. Pos-
itive value of @) is defined to be in a direction perpendicular to the surface, and neg-
ative @) in the directions parallel to it. The quantity » = (x,y,z) is the position vec-
tor of the ray in the Cartesian co-ordinate system. The unit vector Q@ = (n,v,u) =
(sinf cos ¢ ,sind sin p, cos @) describes the direction cosines of the ray in the atmosphere
with respect to the atmospheric normal, with 6, ¢ being polar and azimuthal angles of the
ray. The quantity x; is the frequency averaged line opacity, ¢ is the Voigt profile func-
tion and k. is the continuum opacity. Frequency is measured in reduced units, namely

x = (v —1wy)/Avp, where Avp is the Doppler width. The total source vector S is given by

KZ(T)¢($)SI('I", Q, I) + KC<T)SC(T7 x) '

S(r.Q,z) = k(1) () + Ke(T)

(4.3)

Here S, is the continuum source vector namely (B, (r),0,0)” with B, (r) being the Planck

function at the line center frequency. The line source vector can be expressed as
+oo dﬂl Q Q’
Si(r, Q, z) / f{ Rz, 1,0 2), (4.4)

where G = (eB,(r),0,0)T is the thermal source. ¢ = I';/(I'g + I';) with I'; and I'p being

the inelastic collision rate and the radiative de-excitation rate respectively, so that € is the

rate of destruction by inelastic collisions, also known as the thermalization parameter. The
damping parameter is computed using a = ag[l + (I'g + I';)/T'g| where agr = T'r/47Avp
and T'j; is the elastic collision rate. R is the redistribution matrix. The solid angle element
dQY =sin®' df’ dy’ 0 € [0, 7] and ¢ € [0,27]. To construct the decomposition in multipolar
components, it is convenient to work with the RT equation written along a ray path. It

has the form
dI(r,2,x)

ds
where s is the path length along the ray (see Figure 4.1) and ko (7, ) is the total opacity

= _Ktot(rvm)[I(r’Q7l‘) - S(’I",Q,ZL‘)], (45)

given by
Kot (T, ) = Ki(1)(x) + Ke(T). (4.6)
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Figure 4.1: The definition of the spatial location r and the projected dis-
tances r — (s — s')€2 which appear in the 3D formal solution integral. ro and
7 are the arbitrary initial and final locations considered in the formal solution
integral.
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Table 4.2: The values of the free parameters corresponding to different models

shown in Figure 4.8.

Model Scat. mechanism a O A (O _q) (BA —a)
1 CRD 0.00 1.00 1.00 1.00 1.00
2 Ip/Tgr= 107 0.99 0.99 0.99 0.00 0.00
3 Ig/Tp=0.1 0.90 0.99 0.96 0.09 0.06
4 g/Tp=1 049 0.99 0.72 0.50 0.23
5 [g/Tr=10 0.09 0.99 0.21 0.89 0.12

The formal solution of Equation (4.5) is given by

—/ Kot (1 — (s — 8 )Q, x)ds’
I(r,Q,x)=1I(ry,Q,x)e /s

—/ Kot (1 — (s — "), x)ds"”

+/ S(r—(s—5)Q,Q,x)e Kiot (T — (s — 8" ), x)ds’.

S0

(4.7)
I(ry,Q, z) is the boundary condition imposed at ry = (Xo, Yo, Zo)-

4.3 Decomposition of Stokes vectors for multi-D transfer

In this section we show how to generalize to a multi-D geometry the Stokes parameters

decomposition method developed for the Hanle effect in 1D geometry.

4.3.1 A multipolar expansion of the Stokes source vector and the Stokes in-

tensity vector in a 3D medium

We derive the required decomposition starting from the polarized RT equation in (I, Q, U)T
basis. For simplicity, we assume that the redistribution matrix can be written as a prod-
uct of angle-averaged redistribution functions and an explicit angle (6, ¢) dependent phase
matrix. The scattering phase matrix can be expressed in terms of the irreducible spher-
ical tensors introduced in LL0O4. The ij-th element of the redistribution matrix in the
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Y

Figure 4.2: The geometry of the problem. The angle pair (0, ¢) defines the
ray direction. The optical depth information of the spatial points 1-9 on the
top surface (77 = 0) of the computational cube are given in Table 4.1. The

results are shown at the points marked on grid lines which are just inside the

outermost boundaries. The Z-axis is along the atmospheric normal.




4.3. Decomposition of Stokes vectors for multi-D transfer 97

atmospheric reference frame (Bommier 1997b) is given by

Rij(z, 2, Q, Q) = ZWK%K(i,Q)(—l)Q[%(j, QVRE (2,2)),
KQ
(4.8)
where (7,7) = (1,2,3) and

RE(x,2") = {aru(z, ") + [BY) — a]rm(z, 2)}. (4.9)

In this chapter, we consider only the linear polarization. Therefore, K = 0,2 and
Q € [-K,+K]. The weights Wx depend on the line under consideration (see LL04).
Here r(x,2') and rip(z,2’) are the angle-averaged versions of redistribution functions

(see Hummer 1962). The branching ratios are given by

I'g
- R 4.10
S E T T (4.10)
r
(K) _ R
= I'r+DE 4T, (4.11)

with D© = 0 and D® = cI'g, where c is a constant, taken to be 0.379 (see Faurobert-
Scholl 1992). Substituting Equations (4.8) and (4.9) in Equation (4.4), we can write the

i-th component of the line source vector as

1 +oo , dQ/
SN(T,Q,m) =Gi(r) + M /_OO dz 7{ =
X N T 6 (=1)0T (5, ) RN (2, 2) [ (v, o), (4.12)

j=0 KQ
Denoting Gf; = dx00goG (1), where G(r) = eB,(r) we can write the i-th component of the

thermal source vector as

Gi(r) =) T3 (1, QG (r). (4.13)
KQ
Substituting Equation (4.13) in Equation (4.12) we can write the line source vector as

Sulr. Qx) =Y T3 (i, Q)8 (r,2), (4.14)
KQ

where
Sou(r,z) =G (r) + —¢<x> . dx .

X R" (2,2 Z(—l)QTfig(j, ) I(r, &, "),

Jj=0

(4.15)
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Notice that the components Sg (7, ) now depend only on the spatial variables (x,y,z)
and frequency z. The (0, ¢) dependence is fully contained in 775 (i, 2). These quantities
are listed in LLO04 (chapter 5, Table 5.6, p. 211, see also Table 2 of HF(07). We can define

the monochromatic optical depth scale as

T.(r, Q) = 1.(x,y,2,Q) = / Kiot(r — (s — §")Q, ) ds’, (4.16)

S0

where 7, is measured along a given ray determined by the direction 2. We use the notation
Tx, Ty and 7z to denote the optical depths along the X, Y and Z axes respectively at line
center. Substituting Equation (4.14) in Equation (4.7), the components of I can be written
as

Lir,Q,2) =) 15,15 (r,Q,2), (4.17)
KQ

where

/ Kiot(T — (s — '), ) ds’

Ig(r,ﬂ,m) = Igo(ro,ﬂ,x)e 50

s / Kiot(T — (s — §")Q, 1) ds”
+/ e Js [pxsgl(r — (s — 5, )
S0

+(1 = pa)She(r — (s — ), :L‘)] Kot (T — (s — 8" )Q, x) ds'.
(4.18)

]g o = lo(ro, 2, x)0k00go are the intensity components at the lower boundary. The quan-
tities 5’5 . = S¢(r,2)0Kkodgo denote the continuum source vector components. We assume

that S.(r,x) = B,(r). The ratio of the line opacity to the total opacity is given by
P = Ki(1)p(x) /Kot (7, T). (4.19)
Expressed in terms of optical depth along the ray, Equation (4.18) can be written as
]g(fr, Q.x)= ]gg(ro, Q,z)e

T2 (7,Q2)
+ / e [ SE () + (1= po)SE(r' )| drl(r', Q).
0

(4.20)

In Equation (4.20) 7,(r,€2) is the maximum optical depth when measured along the ray.
Let S§ = pS, + (1 — pz)SG,.. Using the expansions in Equations (4.14) and (4.17), it



4.3. Decomposition of Stokes vectors for multi-D transfer 99

8
]
S
-~ 6f
—
T 4
S |/
~
S o
0 2 4 6 8 0 2 4 6 8
- T=10
>~ 1.0 -
| (c)
- 05}
= /lD
32 0.0
®
“é -0.5} 3D
~ 1.0 Ly . .
AN
=) 0 2 4 6 8

Frequency z

Figure 4.3: Validation of a 3D RT solution through a comparison with a 1D benchmark.
The dotted line represents the solution for a 3D medium that mimics 1D planar slab of optical
thickness T' = 10. The solid line is the 1D solution. The model parameters chosen for the 3D

cube are given in Section 4.5.1.
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can be shown that Sg and Ig satisfy a RT equation of the form
1

g Ve ) =[G 2.2) - 55 (r.2)) (4.21)

The great advantage of working with the irreducible intensity components Ig is that the

corresponding source terms Sg become independent of the direction €2 of the ray.

Substituting Equation (4.17) in Equation (4.15) we obtain

Sgl(r, x) = Gg(r) + jg(r,x), (4.22)

+oo dQ/
/ 7{ RK (x,2)

* 30 ST G T G . 5.,

where

T ()

B

Jj=0 K'Q’
(4.23)
The symbol * represents the conjugation. QK satisfy the conjugation property
Equation (4.23) can be expressed in a matrix form as
+oo
1 R(z, 2\ (QI(r, ', 2), (4.25)
s

where the components of the vectors J and Z are J_g and [ 5 respectively. The matrix R

is given by
R(z, ') = Wlarn(z, ') + (8 — &)rm(z, 2')), (4.26)
where
W = diag{Wy, Wa, Wy, Wa, Wa, Wa}, (4.27)
& = diag{a, o, o, a, a, a}, (4.28)
B = diag{p, g, p*, p*, g*), g1, (4.29)

The elements of the matrix ¥(Q) are

Voo () =3 _(T3) G 9Ty (7. 92). (4.30)

.
Il
o
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Figure 4.4: The azimuth angle () dependence of the spatially averaged irreducible intensity
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UEL are exactly the same as T o (€2) given in LLO4 (Appendix A.20). We stress here
that the phase matrix ¥(€') in Equation (4.25) depends only on the directions €’ of the
incident rays. The dependence on €2, present in the phase matrix when one works with
the (I,Q,U) basis, disappears when the polarized radiation field is represented with the
six [5 components. For short we refer to this representation as the “reduced basis”. The
matrix W(Q') differs from the W(y/) matrix that appears in 1D RT problems (see HF07;

Nagendra et al. 1998), since it now depends on the azimuthal angle ¢’ of the incident ray.

4.3.2 Polarized radiative transfer equation for the real irreducible intensity

vector in a 3D medium

The irreducible components I and S and the phase matrix elements \115(5/’ introduced in
Section 4.3.1 are complex quantities. For practical computations, we prefer working with
the real quantities. In this section we transform those quantities into the real space. For

this purpose we follow the procedure given in HF07. We define

I5%(r, 2, 2) = Re{I5 (r, Q,2)},
I5%(r,Q,z) = Im{I5 (r,Q,2)}. (4.31)

We denote the the real vectors also by Z and & for brevity. it can be shown that Z =
(19,12, I7*, I, I, I;¥)T and the corresponding source vector S satisfy an RT equation

of the form

! g VZI(r,Qz)=[Z(r,Q )-8 1), (4.32)

Kot (T, T)
where S(r, z) = p,Si(r,z) + (1 — p,)S.(r, z) with

dsY . NI / 1o
1 R(z, 2" YU (QU)I(r, Q' 2"). (4.33)
T

Si(r,z) :eg(rﬂﬁ/_:” dz,}{

Here S.(r,x) = (B,(r),0,0,0,0,0)7 is the continuum source vector and B = (B, (r),0,0,0,0,0)”
is the Planck vector. In the above equation, the real part of the scattering phase matrix
U7 (£2) has the form

UT(Q) = TN (Q)T (4.34)
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where the matrix 7" is given by
10 0 0 O
01 0 00 O
A 00 1 720 0
7= ' (4.35)
00 -1 ¢ 0 O
00 0 01 =2
00 0 01 —¢

Hereafter we denote the real matrix U (£2) also by W(£2) for brevity. The elements of the
scattering phase matrix \if(ﬂ) are given in the Appendix J. The matrix \il(ﬂ) has only 21

distinct coefficients due to symmetry reasons. We remark that W(€) is a full matrix to

be used in Multi-D case, unlike the \i/(,u) that is used in the 1D case, which has a sparse

structure. After solving the RT problem in the real, reduced basis, one has to transform

back to the Stokes (I,Q,U)” basis. This can be done using the following equations (see

also Appendix B of HF07).

1
I(r,Q,2) =10+ ——=(3cos*f — 1)I?
(r Q) = 1§+ 5 )i

—V/3cosOsin O(17* cos p — I sin )

V3

+7(1 — cos? 0) (I3 cos 2p — I3 sin 2¢),

Q(r,Q,z) = —2—\3/5(1 —cos?0) 1]

—V/3cosOsin (17 cos p — I sin )

V3

—7(1 + cos? 0) (I3 cos 2p — 127 sin 2¢p),

U(r,Q, ) = v3sin (17 sin ¢ + 7Y cos p)
+v/3 cos (I3 sin 2¢ + I3 cos 2¢).

The irreducible components in the above equations also depend on 7, €2 and =x.

(4.36)

(4.37)

(4.38)
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Figure 4.5: Spatially averaged emergent (I,Q/I,U/I) in a 3D medium. The model parameters

are the same as those in Figure 4.4.
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4.4 The Numerical Method of Solution

For the numerical solution of the 3D RT problem (Equation (4.32)), we use a polarized
approximate lambda iteration (PALI) method, associated to a core-wing separation method

to handle PRD. The 6 component scattering integral can be expressed as

A

T(r,z) = /_ " i RS)Z‘;/>J(T,$’), (4.39)
with 4
T (r,z) = 7{ - U(QI(r, ¥, 2). (4.40)

The formal solution for Z(r, €2, z) allows us to define the operator A, as
T (r,x) = A J[S(r, )] (4.41)

Applying the operator splitting technique, the scattering integral at the (n+ 1)-th iteration

can be written as

+o0 » !
T = [ T (e K ), (4.42)
e x
We can re-write the scattering integral as
+00 B !
Ty =T " (r2) +/ dx’ R;“("’f )A;/Paﬁs?n("ﬂ ') (4.43)

It is useful to notice here that 8" (7, z) = p,08;" (r, x). The correction to the line source
vector in the n-th iteration is given by

587" (r.x) = T " (r,2) + eB(r) — SI". (4.44)
Further details of the numerical method of solution to solve the 3D RT equation is given

in Appendix D.
4.4.1 The formal solution in 3D geometry

In this section we generalize the method of Adam (1990) for 3D RT to include the polar-
ization and PRD. For the sake of brevity we drop the explicit dependence of the physical
quantities on the arguments. To start with, we divide the computational domain (a cube)
in to a 3 dimensional mesh of grid points (x;,y;,2x) withi = 1,2,...nx;7 =1,2,.. .ny; k=
1,2,...nz. A discretization of Equation (4.32) on this mesh can be written as

e nIijk —ZLi ok n /yIijk —Zii vk n Iul-ijk — T k-  [Tir— Sl (4.45)

Rtot X — Xj—a Yi—Yi-b 2 — Zk—c
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Figure 4.6: Optical depth effects on emergent (I, Q/I,U/I) in a 3D medium. The computations
are done using a cube with optical depths Tx = Ty = Ty = T, for a given value of T. Other
model parameters are the same as in the Figure 4.3. The solution for a planar slab of vertical
optical depth T = T is also shown as dash-triple-dotted line, for comparison. The labels on

the curves correspond to the points in Figure 4.2.
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where a, b, ¢ are the increments, taking values +1 or —1 depending on the choice of the
direction vector €. In deriving Equation (4.45) we have used a finite difference method

where the differential operator is represented to the linear order. Equation (4.45) can be

i ok Lij vk Lijk—c
Liji = § Sijk + n i e o
Xi — Xi—a Yi = Yi-b Zk — Zk—c

1
{1 + ( LS ) }
Rtot \ Xi = Xj—a  Yj = Vj-b 2k — Zk—c

simplified to get

1

Rtot

(4.46)

Equation (4.46) is solved recursively, namely the intensity at any spatial point (ijk) de-
pends only on the intensity at 3 previous neighboring points (i—a, j, k), (i,7—b, k), (i, 7, k—

c).

It is shown by Adam (1990) that this numerical approach is unconditionally stable. The
linear differencing is relatively less accurate compared to the short characteristic method, as
a formal solver. However, we can overcome this problem of accuracy by taking sufficiently
small step sizes in the (x,y,z) co-ordinates. The main emphasis of this chapter is to
understand the nature of 3D solutions for the problem at hand, instead of devising highly
accurate and rapid methods. These issues would be addressed in another chapter. In
Section 4.5 we present few benchmark solutions computed by the method presented in

Appendix D.

Computational details: We consider a self-emitting cube (or a slab) for the results presented
in this chapter. A Gaussian angle grid of 6 inclination (0=83.5°, 60°, 27.4°, 96.5°, 120°,
152.6°) and 8 azimuths (p=7°, 36°, 85°, 146°, 213°, 274°, 323°, 352°) are used. We have
numerically tested that this kind of angular resolution is quite reasonable and gives stable
solutions. A spatial grid resolution of 15 points per decade or 20 points per decade in
X, Y and Z directions are used. The spatial grid is logarithmic, with fine griding near
the boundaries. A logarithmic frequency grid of 31 points covering 20 Doppler widths
(0 < 2 < xpax = 20) is sufficient for the examples shown in this chapter. The standard
model parameters are listed in Section 4.5.1. The specific model parameters for each figure

are given on the figures and the respective figure captions.
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4.5 Results and Discussions

In this section we present sample results to show the correctness of the Stokes decompo-
sition procedure, as applied to the 3D case. Further we show some results to validate the
numerical method that computes the 3D solution. The departure of the radiation field
from axi-symmetry is discussed in some detail. A study of the PRD effects in 3D media is

also presented along with the role of collisional redistribution.
4.5.1 A validation test for the 3D polarized radiative transfer solution

It is possible to test the correctness of a 3D solution by going to a geometric situation
where the 3D cube mimics an 1D slab. For Tx >> T, and Ty >> T, with a finite
value of T, = T, the computational box looks like a planar slab of optical thickness T
We can expect the emergent solution (/,Q/I,U/I)T at the center of the upper surface
(Tx/2,Ty /2,77 = 0) of such a cube to approach the emergent 1D solution (I,Q/I,U/I)"
at 77 = 0. Figure 4.3 presents this validation test. The 1D benchmark solution is computed
using a PALI method (see e.g., Nagendra et al. 1999; Fluri et al. 2003b). The model
parameters are Tx = Ty = 107, and T, = T = 10; the elastic and inelastic collision
rates are respectively 'y /I'g = 1074, I';/T'g = 10~%. The damping parameter of the Voigt
profile is @ = 2 x 1072, The branching ratios for this choice of model parameters are
(v, B0 5(2)) ~ (1,1,1) (see the exact values in Table 4.2). We consider the pure line case
(ke = 0), and scattering according to PRD (see Equation (4.8)). The internal thermal
sources are taken as constant (the Planck function B = 1). The medium is assumed to
be self-emitting (no incident radiation on the boundaries). The emergent (I,Q/I1,U/I)
profiles are shown for a choice of angles (u, ¢)=(0.11, 7°). From Figures 4.3(a) and 4.3(b),
we see that there is a good agreement between the two solutions. In the planar case
U/I =0. The U/I in the 3D case approaches this value to a high accuracy (10~° percent).
This figure shows the correctness of the Stokes decomposition expressions, and also the

numerical method that computes the 3D solution.
4.5.2 The nature of irreducible intensity components Z in a 3D medium

In Section 4.3 we showed how to express the Stokes parameters in terms of the irreducible
intensity components. These components are more fundamental than the Stokes param-
eters themselves. Their study is useful to understand the behavior of Stokes parameters
- which are actually the measurable quantities. If we choose optical thickness in the X,

Y, and Z directions as T'x = 1Ty = 1y = T, then we encounter a situation where the



109

Results and Discussions

4.5.

]

N

v+ 1x()

RELA

N
v

N OQQQQ\\\\\\\\\\\\

rrrr
St

(VL=0'vy

//////////// &‘ ‘ Vz__
g e\\\\\\\\\\\\g
W

0= \1/b)

%——_—5

(2= v o=\ /d)

0
@ +
%
%
0
o )
] c\
: 0
) [
i 9°
o o o o o0’y
v
AWELR U ATV
0
@ +
%
%
O s&»————————/ﬂ% 2
~ Am- i
7~ / Qb
——y
o (=} o o @ 0 3
. a \/
(v e=tyro=m\)i/n)

Figure 4.7: Surface plots of the intensity I and the degree of linear polarization (Q/I,U/I)

0) of the computational cube. The model parameters are same as in

on the top surface (77

the T'= 100 case of Figure 4.6. See Section 4.5.3 for details.
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3D nature of the RT problem is clearly exhibited. Figure 4.4 shows the spatially aver-
aged emergent Z at the top surface (7 = 0). We prefer to show the spatially averaged
Z because the components themselves sensitively depend on the spatial location on the
surface. It is useful to note that the spatially averaged Z retain the original symmetries
even after averaging. The results are shown for ¢ = 0.11 and for all the 8 values of the
azimuth angle ¢ (namely 7°, 36°, 85°, 146°, 213°, 274°, 323°, 352°). The model parameters
and the physical conditions chosen for Figure 4.4 are the same as in Figure 4.3, except for
Tx=Ty=T7,=T=100.

The I component is the driving term. It is also the largest in magnitude. The I3
component is two orders of magnitude smaller than I{. In a corresponding 1D medium the
last 4 components of Z become zero because of the cylindrical symmetry of the radiation
field. In a 3D medium, these components are non-zero. Specifically for our chosen model
the components _712 * and ]12 ¥ are nearly one order of magnitude larger than I itself. The

2 2
components I, and I, are of the same order as I3.

Because I is the largest of all the components, the behavior of the Z can be understood
by considering the action of the first column elements of the ¥ matrix on IY. The quantities
IY in panel (a) and 12 in panel (b) are nearly independent of the azimuthal angle ¢. This
comes from the p-independence of the elements ¥1; and Wy of the scattering phase matrix
in the reduced basis. ¥3; and W5, elements contain cos ¢ and cos 2 functions respectively.
The ¢ values are chosen in such a way that ¢; = 27 —p, 41 withi =1,2,3,4 and n, = 8.
Due to symmetry of cos ¢ and cos 2¢ functions with respect to ¢ = 27 and 47 respectively,
only 4 curves are distinguishable among the 8 in Figures 4.4(c) and 4.4(e). The elements
V4, and W4 contain sin ¢ and sin 2¢ functions respectively. Due to antisymmetry of sin ¢
and sin2¢ functions with respect to ¢ = 27 and 47 respectively, in Figures 4.4(d) and
4.4(f) the curves for ¢;, i = 1,2,3,4 have opposite signs with respect to the curves for
Pn,—i+1, Ny = 8. Moreover, oo and 7 — ¢4 are close, and @5 and 37 — @7 are also close.
Due to symmetry of sin ¢ with respect to ¢ = 7 and 3, in Figure 4.4(d) curves for s and
w5 nearly coincide with those for ¢4 and @7 respectively. On the other hand, 25 is close
to 2m — 2¢p4 and 2¢5 is close to 6 — 2¢7, which in turn lead to the ¢ and ¢, curves and
@5 and 7 curves to have opposite signs in Figure 4.4(f) due to the anti symmetry of sin 2¢

function about ¢ = 27 and 67 respectively. Therefore, all the curves are clearly resolved.

In Figure 4.5 we present the spatially averaged emergent (I,Q/I,U/I) corresponding
to the irreducible intensity components shown in Figure 4.4. The Stokes I profile has dom-
inant contribution from I{ (see Equation (4.36)). The Q/I profile on the other hand has
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significant contributions from IZ, I 12 *and I 12 Y. The component 12 is nearly p-independent,
however I 12 *and [ 12 Y are strongly p-dependent. This dependence is responsible for a strong
variation of /I with respect to the azimuthal angle ¢ (see Equation (4.37)). On the other
hand, in a 1D medium /Z is the only component that is responsible for the generation of
Stokes ). Because of this, @/ in 1D medium becomes g-independent. The dominant
contribution to U/I comes from I7™ and I?¥. The magnitude of U/I is quite significant,
and could become larger than )/I, unlike the corresponding 1D situation, where U/l =0

always.

4.5.3 Linear polarization in 3D medium of finite optical depths

In this section we show (I,Q/I,U/I) profiles at chosen spatial points on the top surface
(17 = 0). Our purpose is to understand the spatial dependence of the solution. In Fig-
ure 4.6 we show the solutions for a cube defined by Tx =Ty =T, =T with T' =10, and
100. All the other model parameters and physical conditions are taken to be the same as
in Figure 4.3. The curves in Figure 4.6 represent the emergent (I,Q/1,U/I) at the spatial
locations marked as points 1-9 on the top surface of the computational cube as shown in
Figure 4.2 (see Table 4.1 for optical depth information). The corresponding 1D solution is

shown for comparison as dash-triple-dotted lines in all the panels.

Stokes I: In Figures 4.6(a) and 4.6(d) we plot the Stokes I in 1D and 3D media. The
3D solutions are shown at spatial points 1, 2, 3, 4, 5 as solid, dotted, dashed, dot-dashed,
long dashed lines respectively. The results are shown for 4 = 0.11 and ¢ = 7°. In all
the cases, Stokes I shows an emission line spectra, and the [I]3p is less in magnitude than
the [/]ip. This indicates the leaking in the 3D case, of the radiation through the surface
boundaries perpendicular to X and Y directions in contrast to the 1D case characterized
by T'x, Ty — 0o0. As we are showing Stokes I for p = 0.11 (positive p direction), the Stokes
I for points 2 and 4 are much smaller in magnitude than those at points 3 and 5. This is
because the incident intensity is zero at the boundaries adjacent to the points 2 and 4. At
points 3 and 5 Stokes I emergent in the direction p = 0.11 is larger in magnitude due to
the contribution of scattering in the medium. Stokes I shows a larger spatial gradient in
the regions covered by [T'x, T /2] and [Ty, Ty /2], when compared to the region covered by
[T'x/2,0] and [Ty /2,0]. This can be seen clearly by looking at the surface plots, namely
Figure 4.7(a) and 4.7(b).
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Stokes @: In Figures 4.6(b) and 4.6(e) we plot the @/ in 1D and 3D medium. The 3D
solutions are shown at spatial points 1, 2, 3, 6, 7 as solid, dotted, dashed, dot-dashed, long
dashed lines respectively. There exist significant differences between [Q/I]ip and [Q/I]3p.
For T' = 10, the maximum value of [|Q/I|]sp is for the spatial location 2. At this point,
[|Q/I]3p is about 4 percent and [|@Q/I|]p is 3 percent at line center. However in the near
wings (x < 6), [|Q/I|]ip reaches a maximum of around 8 percent at = = 2 and the corre-
sponding [|Q/!|]sp is around 3 percent. For T"= 100, the [|Q/I|]sp reaches a maximum of
10 percent for the spatial point 2 at = = 2 and [|Q/|];p reaches maximum of 7 percent at
x = 4. For the points 2 and 6, [|Q/|]sp takes largest values for both T'= 10 and 7" = 100.
The dominant quantity that dictates the emergent )/I is the radiation anisotropy within
the cube. The above results show the existence of a sharp variation of anisotropy within
the cube than within a slab which has only one degree of freedom for RT in the spatial
domain. Also from the surface plots Figures 4.7(c) and 4.7(d) we see a sharp variation of
[|Q/I]]sp at the edges of the top surface. However, the polarization remains nearly con-
stant (= 2 percent) at £ = 0 in the inner parts of the top surface. The spatial variation
of [|Q/I|]sp at © = 2 is quite different from that at x = 0. There is a sharp increase in
[|Q/I]]sp near the edge region (7x = 0 or 7x = Tx), reaching a maximum value of around

10 percent.

Stokes U: In Figures 4.6(c) and 4.6(f) we show U/I in 1D and 3D medium. The 3D
solutions are shown at spatial points 1, 4, 5, 6, 7 as solid, dotted, dashed, dot-dashed, long
dashed lines respectively. [|U/I|lip = 0, whereas [|U/I|]sp has a significant value. The
variation of [|U/I|]sp with an increase in 7" is analogous to the behavior of [|Q)/I|]sp. For
the points 4 and 5, [|U/I|]sp takes largest values for both 7= 10 and 7" = 100. It reaches
a maximum of 15 percent at the spatial point 4, for + = 0 and T=10 (see Figure 4.6(c))
and 25 percent at the spatial point 4, for + = 2 and T=100 (see Figure 4.6(f)). This
shows that U/I is much more sensitive to the anisotropy of the radiation field within a
3D medium. At the spatial point 1, [|[U/I|]sp = 0 as expected, namely the axi-symmetry
of the emergent radiation at the central point. From the surface plots Figures 4.7(e) and
4.7(f) we can see a large variation of [|U/I|]sp again at the edges of the cube, where non-
axisymmetry reaches maximum. As in [|Q/I|]sp the behavior of [|[U/I|]sp at = 2 is quite
different from that at x = 0. However its maximum is now reached near the edge region
(v = 0 or 7v = Ty ), which is oriented at 90° with respect to the regions where [|Q/I|]3p
shows a maximum variation (7y = 0 or 7x = Tx). In general, the run of anisotropy in the

3D case depends on the optical depths in X, Y and Z directions simultaneously. This is
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clearly seen in the complicated frequency dependence of (Q)/I,U/I) profiles in the 3D case
unlike the 1D case. Although the linear polarization (Q/I,U/I) may take large values at
different spatial points (for e.g., points 1-9), the spatially averaged values of (Q/I,U/I)
are usually less, in the self-emitting cubes that we have considered in this chapter. The
effect of spatial averaging can be seen in Figure 4.5. The fact that 1D values of (Q/1,U/I)
differ considerably from the 3D situation shows that realistic modeling of the observed
linear polarization using 3D model atmospheres is not as straight forward as the use of 1D

model atmospheres.

4.5.4 The effect of collisional redistribution on the Stokes parameters in a 3D

medium

Figure 4.8 shows spatially averaged (I,Q/I,U/I)T results computed for a T = 100 model
with a range of elastic collision rate parameters I'y/T'z = (1074,0.1,1,10). The models
corresponding to the curves shown in Figure 4.8 are given in Table 4.2. Models 2 and 3 can
be termed as radiative de-excitation models (dominated by r-type PRD). Model 4 has a
mixture of riy and 7y type PRD scattering mechanisms. The collisions dominate (ry-type

PRD) in the model 5. Model 1, corresponding to CRD, is presented for comparisons.

Stokes I: The Stokes I is controlled by a and 5() — a. The line core (z < 1) of the Stokes
I profile is unaffected by collisions. In the line core, the ri; and ryp type functions both
behave like CRD function, and hence the PRD and CRD profiles are similar. As we go
from models 2 to 5, the relative contribution of ry; progressively increases throughout the

line profile. However its effect is felt only in the wings (z > 2).

Stokes (Q: The ratio /I is controlled by a and 5?) — a. The models 1 to 3 yield nearly
the same magnitude for [|@Q/I|]sp at line center again because of the CRD-type behavior
of ri; and ryp in the line core. In model 4, both 71 and ry; are weighted by smaller values
of @ and B — . This causes a large depolarization in the line core. In the near line
wings, r;; dominated models 2 and 3 show largest polarization (&~ 1.5 percent). In the
CRD case (model 1), the scattering integral becomes constant in the optically thin wings.
This is because the contribution of the wing frequencies to the scattering integral becomes
smaller and smaller, in comparison to the contribution from the core frequencies. For this
reason, the anisotropy and hence the wing polarization takes a constant value. In models 2

and 3 rpp type scattering dominates throughout the profile. For these cases, the scattering
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Frequency x

Figure 4.8: The effect of collisions on the surface averaged emergent (I,Q/I,U/I). The model
parameters are the same as in Figure 4.5. Refer to Table 4.2 for details of the branching ratios.
The solid lines represent the special case of CRD solution. The indices near the curves correspond
to the model numbers given in Table 4.2. The collisions have a strong effect on polarization in

a 3D geometry (which has a non-zero U/I), as in the case of a 1D slab.
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integral approaches zero and hence only the thermal (isotropic) part contributes to the line
source function. As a consequence, polarization goes to zero in these optically thin wings
(see Faurobert 1987). The other two models are a combination of these two extreme condi-

tions and therefore the corresponding ()/1 curves lie in between the two extreme situations.

Stokes U: As discussed before, generation of Stokes U is a characteristic of multi-D RT
(through a large non-axisymmetry). The qualitative behavior of U/I profile is similar to
that of @/I for all the models. In the CRD case the magnitude of U/I in the wings is
much larger (= 2 percent) than that of Q/I (= 0.72 percent).

4.6 Concluding remarks

In this chapter we formulate the polarized RT equation in 3D geometry using the technique
of irreducible spherical tensors 7'QK (7,€2). The polarized RT equation for the irreducible
components of the Stokes parameters lends itself for solution by the standard PALI meth-
ods, extended appropriately to handle the RT of the rays in a 3D geometry. We present
3D solution on some test cases, which may serve as benchmarks. The nature of line RT in

3D geometry, as compared to the 1D case is discussed in some detail.

We show that the 3D PALI method gives correct results in the limit of 1D geometry. The
3D RT is characterized by the anisotropy of the radiation field within the computational
cube. The 3D anisotropy is characteristically different from the 1D anisotropy of the
radiation field. The difference arises due to the finite optical depths in the horizontal
directions (X,Y’). This causes large differences between the 3D and 1D values of the
degree of linear polarization (Q/I,U/I). In fact, in 3D geometry the radiation field is non-
axisymmetric (even in the absence of magnetic fields) because the finite optical depths in
X, Y, Z directions break the azimuthal symmetry of the radiation field. In a 1D geometry,
the radiation field is axisymmetric about the Z-axis. Due to these reasons, the shapes
and magnitude of the (Q/I,U/I) spectra differ significantly from the corresponding 1D
cases. We compare the spatially averaged (I,Q/I,U/I) spectra computed under the CRD
and PRD assumptions. The nature of differences between CRD and PRD profiles in
3D geometry remain the same as that for the 1D geometry. We notice that [|[U/I|]sp
is in general larger in magnitude, than [|@Q/I|]sp in the 3D models. This is because the
radiation field in a 3D medium is highly non-axisymmetrical in nature. The degree of linear
polarization in the spatially resolved (Q)/I,U/I) spectra are generally larger in magnitude

when compared to the corresponding spatially averaged values, clearly due to the fact that
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a spatial averaging over sign changing quantities leads to smaller values of @/ and U/I.
Another reason for this is the fact that linear polarization is largest in the very narrow
regions close to the boundaries (see Figure 4.7). When a spatial averaging is performed,
the relative contributions from these highly polarized narrow regions are dominated over

by the inner regions, where the linear polarization is considerably smaller.

We show that the advantage of solving the RT equation in the irreducible components
basis, is that the irreducible source vector Sg becomes completely independent of the angle
variables, making it easier to extend the existing 1D PALI methods to the 3D case. How-
ever the irreducible intensity components I, g remain dependent on the inclination and also
on the azimuthal angle of the ray. It is important to recognize the fact that the multipolar
expansion for Stokes intensity and Stokes source vectors presented in this chapter allows
us to write a RT equation in terms of IS and S§. A further advantage is that this for-
malism allows to efficiently use the scattering phase matrix approach to different problems
in multi-D geometry. We have demonstrated this by taking the example of polarized line
RT with PRD. In future we try to apply the solution method presented in this chapter,
to model the polarimetric observations of the resolved structures like solar filaments and

prominences.

New Results

It is for the first time that a multi-D polarized RT is solved ever, with PRD as the line

scattering mechanism. In chapter 4 we have achieved the following important results.

1. We have formulated the polarized RT equation for resonance scattering in multi-
D media, using the elegant technique of irreducible spherical tensors 7'QK (7,€2), where
1=0,1,2, K =0,1,2,-K < Q < +K.

2. We have developed a numerical method of solution based on the PALI approach.

3. For the first time, PRD in line scattering is considered for multi-D polarized RT and
the corresponding polarized RT equation is solved using the new PALI method that we

have developed.
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4. In a multi-D medium the radiation field is non-axisymmetrical even in the absence of a
symmetry breaking mechanism such as an oriented magnetic field. We have generalized to
the 3D case, the decomposition technique developed for the Hanle effect in a 1D medium
which allows one to represent the Stokes parameters I,Q,U by a set of 6 cylindrically
symmetrical functions. The scattering phase matrix is expressed in terms of ’TQK (1,2),

with € being the direction of the outgoing ray.

5. Starting from the definition of the source vector, we have shown that it can be repre-

sented in terms of 6 components Sg independent of (2.

6. The formal solution of the multi-D transfer equation shows that the Stokes parameters
can also be expanded in terms of the 7'QK (,€2). Because of the 3D-geometry, the expansion

coefficients Ig remain {2-dependent.

7. We have shown that each [5 satisfies a simple transfer equation with a source term Sg
and that this transfer equation provides an efficient approach for handling the polarized

transfer in multi-D geometries.

8. A PALI method for 3D, associated to a core-wing separation method for treating PRD
is developed. It is tested by comparison with 1D solutions and several benchmark solutions

in the 3D case are given.
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Chapter 5

Solution of partial redistribution problems in

multi-D media

The contents of this chapter are based on the following publication:
Anusha, L. S., Nagendra, K. N. Paletou, F. 2011a, ApJ, 726, 96-109

5.1 Introduction

The observations of the solar atmosphere indicate the existence of small scale structures,
which break the spatial homogeneity of the atmosphere. Since these structures have dif-
ferent physical properties, one can expect the effect of lateral transport of radiation to be
rather important. Extensive studies on radiative transfer (RT) in two-dimensional (2D)
and three-dimensional (3D) geometries have been made to understand the intensity profiles
in spectroscopic observations. As the polarization of the radiation field is more sensitive
to the breaking of axisymmetry occurring in 2D and 3D geometries than the intensity
(Stokes I parameter), the solution of polarized RT equation in 2D and 3D geometries is
very much needed for the understanding of the spectropolarimetric observations. Polar-
ized RT problems have been addressed in the past decade, but only for complete frequency
redistribution (CRD). A first investigation with partial frequency redistribution (PRD),
for 3D geometry, is described in chapter 4 (see also Anusha & Nagendra 2011a). Solving
polarized RT equation with PRD in multi-dimensional (multi-D) geometries is numerically
expensive, both in terms of computing time and the computer memory. To address this
problem, in this chapter (see also Anusha et al. 2011a) we develop a numerical method
for 2D geometry which is faster than the Jacobi iteration method used in chapter 4. The

method developed here can be easily extended to 3D geometries. For reviews on iterative
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methods see Trujillo Bueno (2003), Nagendra & Sampoorna (2009), and references cited
therein. For a detailed historical account of the developments in the area of multi-D RT

we refer to chapter 4.

For 2D geometry, Paletou et al. (1999) solve the polarized line RT equation for the
Stokes I,(Q),U parameters, with CRD, using a perturbation technique combined with a
short characteristics formal solution method. We generalize their work in following re-
spects. We include PRD, and solve the RT problem using a decomposition of the Stokes
parameters into a set of irreducible components. This Stokes vector decomposition for
multi-D geometries was developed in chapter 4. Its main advantage is that the mean in-
tensity components (averaged over all frequencies and directions of the incident radiation)
become independent of the outgoing direction (£2) and also the scattering phase matrix.
These properties have allowed us to set up an iterative method which is faster and more

accurate than the previous methods.

First, instead of the perturbation method used in Paletou et al. (1999) and the Jacobi
method used in chapter 4, we have implemented a new iterative method called the Sta-
bilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) algorithm introduced in
chapter 3 (see also Anusha et al. 2009; Anusha & Nagendra 2009; Nagendra et al. 2009).
The Pre-BiCG and Pre-BiCG-STAB methods belong to a class of iterative methods known
as projection techniques. Projection methods have already proved their usefulness for un-
polarized RT problems with the CRD approximation in different geometries (see e.g., Klein
et al. 1989; Folini 1998; Papkalla 1995; Meinkhon 2009; Hubeny & Burrows 2007; Paletou
& Anterrieu 2009; Anusha et al. 2009). Polarization was considered in Nagendra et al.
(2009) for planar geometry. Second, we have generalized the 2D short characteristics for-
mal solver of Paletou et al. (1999) to PRD. This 2D formal solver is more accurate than

the formal solver used in chapter 4.

The organization of the chapter is as follows. In Section 5.2 we present the governing
equations. In Section 5.3 we describe the 2D short characteristics formal solution method.
In Section 5.4 we give some details of the computations. In Section 5.5 we discuss the
Pre-BiCG-STAB algorithm. Section 5.6 is devoted to results and discussions. Concluding

remarks are presented in Section 5.7.
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5.2 The Polarized transfer equation in a 2D medium

We consider RT in a 2D slab in Cartesian geometry. We assume that the medium is infinite
in X direction and finite in Y and Z directions (see Figure 5.1). This means that any two
Y Z planes at two different points on the X axis are identical. As a result, all the physical
quantities like the Stokes vector I, the source vector S remain independent of the X co-
ordinate. We assume that our 2D slab is situated at x = xy. For a given ray with direction
2, the RT equation in divergence form in the atmospheric reference frame may be written

Q-VI(r,Q o) =—[k(r)o(z) + k(r)][I(r,2,z) — S(r,Q,x)], (5.1)

where I = (I,Q,U)T is the Stokes vector. We choose positive Stokes @) to be in the
direction perpendicular to the surface defined by z = Z,... Here r = (x,y,z) is the
position vector of the ray. @ = (n,7,u) = (sinfcos ¢, sinfsin p, cos) describes the
direction cosines of the ray with respect to the atmospheric normal Z, with 6, ¢ being
the polar and azimuthal angles of the ray (see Figure 5.3(b)). The Stokes V' parameter
decouples from the other three. We confine our attention in this chapter to the polarized RT
equation for (I,Q,U)T. We represent the frequency averaged line opacity and continuum
opacity by k; and k. respectively, and the profile function by ¢. Frequency is measured
in Doppler width units from the line center and is denoted by x, with the Doppler width
being constant in the atmosphere. It is convenient to work with the RT equation written

along a ray path. It has the form

dI(r,Q, x)

i = —Kiot (7, 2)[I(r, 2, 2) — S(r,Q, x)], (5.2)

where s = \/x2 + y2 + 22 is the path length along the ray. The total opacity k(7 x) is
given by

Kot (7, ) = Ki(r)d(x) + Ke(T). (5.3)

The formal solution of Equation (5.2) is given by

—/ Kot (T — (s — 8" )Q, x)ds’
I(r,Q,x)=1I(ry,Q,x)e /o

s —/ Kiot (1 — (s — 8", x)ds”
+/ S(’I" - (S - S,)Q7 97 x)e s "ftot(r — (8 — SI)Q, x)ds'.
50

(5.4)
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Figure 5.1: Figure showing the RT in 2D geometry. The medium is finite in Y
and Z directions and infinite in the X direction. The mid-axes along Y and Z are
marked. In Figures 5.5 and 5.6 the variation of the Stokes source vectors along these
mid axes are shown.

I(ry, 2, ) is the boundary condition imposed at ro = (X, yo,%0) (see Figure 5.2).

In a two-level atom model with unpolarized ground level, the total source vector S is

given by

ki(r)p(x)Si(r, Q, x) + ke(r)S.(r, z) |

S(r,Q,z) = k(1) () + ke(T)

(5.5)

Here S, is the continuum source vector given by (B,(r),0,0)" with B,(r) the Planck

function at the line center frequency. The line source vector can be expressed as

Si(r, 2, z) /m jldﬂl LE S; D) rr o), (5.6)

where G = (eB,(r),0,0)T is the thermal source. ¢ = I';/(I'r + ') with T'; and 'z

the inelastic collisional de-excitation rate and the radiative de-excitation rate respectively,

so that e represents the rate of photon destruction by inelastic collisions, also known as
the thermalization parameter. We assume that ¢ is a Voigt function. It depends on
the damping parameter a, given by a = ag[l + (U'rg + I'1)/T'g] where ag = I'g/4mAvp
and I'g is the elastic collision rate. As the lower level is assumed to be infinitely sharp,
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the radiative, and collisional rates refer only to the upper level. R is the redistribution
matrix given in Domke & Hubeny (1988) and Bommier (1997b). The solid angle element
dQ = sin@ df’dy’, 0 € [0,7] and ¢ € [0,27] (see Figure 5.3(b)). After decomposition
of the vectors I and S into irreducible components following the method described in
chapter 4, the redistribution matrix f?(x, 2,2, ) can be factorized into the product of a
matrix R(z,2’) and a phase matrix ¥(£2). Its elements are given by

3

K9 = S (TE) G )T (9. (57)
5=0
Here 725/(' (7, ) are irreducible spherical tensors for polarimetry with K = 0,1,2, —K <
Q < +K (see Landi Degl'Innocenti & Landolfi 2004). In this chapter, we consider only the
linear polarization. Therefore, K = 0,2 and @ € [—K,+K]. The matrix \i/(ﬂ) isabx6
matrix. Its elements and the irreducible components of I and S are complex quantities.
We apply the transformation described in Frisch (2007) to transform these components
and the elements of ¥(£2) matrix into real quantities. Hereafter we work with only real
quantities. We keep the notation @(Q) for the phase matrix. We introduce the irreducible
Stokes vector Z = (19, 12, I, I, I2™, I;¥)7 and irreducible source vector 8§ = (59, S2,
G2 §2Y 82* SZV)T The components of Z and 8 are all real. The RT equation for the
vector Z is given by
1

—mﬂ -VI(r,Qzx)=[Z(r,Q,z)—8(r x). (5.8)
Here S(r,z) = p,Si(r,z) + (1 — p,)S.(r, x) with
Si(r,z) =eB(r)+ J(r,z), (5.9)

where the mean intensity vector is

/+OO f{_R 2,2 ) U(Q)Z(r, Q.. (5.10)

S.(r,x) = (B,(r),0,0,0, O, O) is the continuum source vector and B = (B,(r),0,0,0,0,0)”
is the Planck vector. We assume that the ratio k.(r)/k;(r) is independent of r. The pa-
rameter p, is defined by

pr = Ki(r) () / Kot (T, ). (5.11)

The 2D Cartesian geometry used here implies some symmetries which simplify the

problem. The radiation field has a symmetry with respect to the X axis which leads to
I(r,0,p,2)=1(r,0,m1 — ¢, ),
I(r,0,m+¢,x)=1(r,0,2n —p,x), 0€[0,7],¢ € 0,7/2]. (5.12)
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Figure 5.2: The definition of the spatial location r and the projected dis-
tances r — (s — s')€2 which appear in the 2D formal solution integral. ro and
7 are the arbitrary initial and final locations considered in the formal solution
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Because the thermal source vector is unpolarized, the above symmetry relation leads to
the symmetry of Stokes () and anti-symmetry of Stokes U (see Appendix F) namely

Qr.0,p,2) =Q(r,0,m—p,x),
Q(r,0,m+p,x) =Q(r,0,2r — ¢, ),
U(r

U(r

,9,()0,1') = _U(raeaﬂ-_gpv‘%)a
0,7+ ¢, x) =-U(r,0,2r —p,2), 0€[0,7],pe0,7n/2.  (513)

Using Equations (5.12) and (5.13) we can prove that
JX =0, J3¥=0. (5.14)

Thus we have 2% = 0 and S5 = 0 and I = 0 and ¥ = 0. Thus in a 2D geometry,
one needs to only 4 out of the 6 irreducible components to describe the linearly polarized
radiation field. We recall that in a 3D geometry all the 6 irreducible components are

non-zero (see chapter 4).

The matrix R is diagonal. It is given by

~ A ~

R(z,2") = Wlarn(z,2") + (8 — &)rm(z, 2')], (5.15)
where
W = diag{ Wy, Wa, Wy, Wy}, (5.16)
& = diag{a, o, o, a}, (5.17)
B = diag{8", 8%, 5, @} (5.18)

The weight Wy = 1 and the weights W, depend on the line under consideration (see
Landi Degl'Innocenti & Landolfi 2004). Here ryi(x,2’) and ri(x, 2’) are the angle-averaged
redistribution functions introduced by Hummer (1962). The branching ratios (Bommier
1997b) are given by

I'r
L 5.19
R AT S (5.19)
r
(K) _ R
p - Tr+ DE) 4+ T/’ (5:20)

with D© = 0 and D® = cI'g, where c is a constant, taken to be 0.379 (see Faurobert-
Scholl 1992).
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5.3 A short characteristics method for 2D radiative transfer

In this section we discuss the short characteristics formal solver used here. The first 2D
short characteristics formal solver was introduced by Mihalas et al. (1978) for scalar RT
and an improved version was given in Kunasz & Auer (1988). A further improvement with
the introduction of monotonic interpolation was proposed by Auer & Paletou (1994). Then
Auer et al. (1994) generalized it to the case of 3D geometry. The extension to include
polarization in 2D geometries was done by Paletou et al. (1999) for Rayleigh scattering
and by Manso Sainz & Trujillo Bueno (1999) and Dittmann (1999) for the Hanle effect in
2D and 3D geometries. All the above papers use CRD as the scattering mechanism. PRD
was introduced for the scalar case by Auer & Paletou (1994). In this chapter we generalize
to the PRD scattering, the method of Paletou et al. (1999).

A short characteristics stencil MOP of a ray passing through the point O, projected on
to the 2D plane is shown in Figure 5.3(a). The point O is always chosen to coincide with
a grid point along the ray path. The points M and P intersect the boundaries of the 2D
cells either on a horizontal line or on a vertical line, depending on the direction cosines of

the given ray. The length As of the line segment MO or OP is simply,
As = Az/u, if the ray hits the horizontal line, (5.21)

and
As = Ay/~, if the ray hits the vertical line. (5.22)

Here Az and Ay are increments (positive or negative) between two successive grid points
in Z and Y directions respectively. Figure 5.3(b) shows the angles 6 and ¢ that define
the orientation of a ray that passes through the point O. Figure 5.3(b) also shows all the
8 octants contributing to the radiation field at O. The cone of rays above the point O
corresponds to p < 0, and the one below the point O corresponds to p > 0. Each of these
cones is further divided into 4 regions, which are defined by ¢ € [0, 7/2], [7/2, 7], 7, 37/2],
[37/2,27]. In the short characteristics method, the irreducible Stokes vector Z at O is
given by

Zo((r,Q,x) = Iy(r, Q, x) exp[—A7y|
+om(r, 2, 2)Su(r, ) + vo(r, 2, 2)So(r, ) + ¢Yp(r, 2, 2)Sp(r,z), (5.23)

where Sy o p are the irreducible source vectors at M, O and P. The quantity Zy; is the

upwind irreducible Stokes vector at the point O. If M and P are non-grid points, then,
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Table 5.1: The 12-point Carlsson type B angle points and weights for a quadrature of order
n =8 . See Figure 5.3(b) for the definition of 6 and .
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\Z

Figure 5.3: Figure showing the geometry of the 2D RT problem. MOP in panel (a) represents

a stencil of short characteristics along a ray path, after projecting the ray onto a 2D plane.

The points used for the interpolation of 8, kot at M and P, and the upwind intensity Zy; are

marked. In panel (b) we show all the rays in the 4 7 steradians considered for computing the

scattering integral, in the local co-ordinate system at O.
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Figure 5.4: Figure showing the progress of maximum relative correction in the first component
of the irreducible source vector (eg) and the surface polarization (ep) for Jacobi and Pre-BiCG-
STAB methods. A convergence criteria of 1078 is used. Spatial griding has 12 points per
decade.

Sup and Iy are computed using a parabolic interpolation formula. While computing
them, one has to ensure the monotonicity of all the 4 components of these vectors, by
appropriate logical tests (see Auer & Paletou 1994). The coefficients 1) depend on the
optical depth increments in Y and Z directions and are given in Auer & Paletou (1994).

5.4 Computational details

To calculate the integral in Equation (5.9) and the formal solution in Equation (5.23), we
need to define quadratures for angles, frequencies and depths.

5.4.1 The angle quadrature in 2D /3D geometries

Performing angle integrations in 2D or 3D geometries is not a trivial task. We have to
consider the distribution of the rays in the 3D angular space namely, Q = (1, v, ). This is
important because a correct representation of the incident and scatted radiation field from
all the octants surrounding the point of interest O is essential. A Gaussian quadrature,
because it tends to distribute more points near the limits of integration, is not appropriate

to correctly represent the radiation field in all the 8 octants.

The special quadrature method developed by Carlsson (1963) for neutron transport is
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Figure 5.5: Variation of the Stokes source vectors as a function of optical depth. The model
parameters are (T, Ty, a, €, ke, I'p/Tr)=(2 x 10%, 2 x 105, 1073, 107*, 0, 10~%). Panels (a)
and (b) show variations of the source vectors along the Z-axis at Yinax/2 for frequencies z = 0
and x = b respectively. The mid Y-axis is marked in Figure 5.1. The results are shown for a

half slab only due to symmetry about the mid axes. The curves are labeled by the values of pu.




5.5. A Preconditioned BiCG-STAB method 131

much superior in this respect. For all the computations presented in this chapter, Carlsson
type B quadrature with the order n = 8 is used. In the first octant, the € and ¢ grid points
are computed using

0 = arccos |ul, (5.24)

and

@ = arctan |y/n|. (5.25)

The values of the quadrature points (1;,v;, it;) in the first octant (0 € [0,7/2], ¢ € [0,7/2])
and the respective weights w; are given in Table 5.1. The values of corresponding 6#; and

@; are also listed.

The angle points in the other octants can be easily computed using simple trigonometric
formulas. We have found that the order n = 8 provides a good accuracy for the solution.

These quadrature points can be used in 2D as well as 3D RT computations.
5.4.2 The spatial and frequency griding

In this chapter, we use a logarithmic spacing in Y and Z directions, with a fine griding
near the boundaries. The X direction is taken to be infinitely extended. We recall that
the polarized radiation field depends on Y and Z co-ordinates, but is independent of the

X co-ordinate.

For most of the results presented in this chapter, a damping parameter of the Voigt
profile function, @ = 1073 is used. The number of frequency points required for a prob-
lem depends on the value of a and the optical thickness in Y and Z directions (denoted
by Ty and Tz). A frequency bandwidth satisfying the conditions ¢(zmax)Ty << 1 and
O(Tmax)T7z << 1 at the largest frequency point denoted by Zy., has been used. We have
used a logarithmic frequency grid with a fine spacing in the line core region and the near

wings where the PRD effects are important.

5.5 A Preconditioned BiCG-STAB method

The Pre-BiCG and Pre-BiCG-STAB are iterative methods based on projections of residual
vectors on Krylov subspaces (see Saad 2000). We recall that a great advantage of the
Pre-BiCG-STAB method is that, unlike the Pre-BiCG method, it does not require the
construction and storage of the transpose of A matrix, where A is the matrix of the system
of equations to be solved (see below). The Pre-BiCG and Pre-BiCG-STAB methods have

been applied up to now to RT problems with CRD (see Introduction for references). In
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Figure 5.6: Same as Figure 5.5, but along the Y-axis at Zy,ax/2. The mid Z-axis is marked in

Figure 5.1. The indices 1-12 near the curves refer to the indices of the directions for first octant

given in Table 5.1. The indices 13-24 refer to the indices of the directions in the second octant.

They can be computed easily using simple trigonometric relations. The labels for the curves in

panel (b) are the same as those in panel (a) for the respective line types.
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Figure 5.7: Optical depth effects on 2D polarized radiation field. The spatially averaged
emergent Stokes profiles are presented for Ty = T = T = 2,200,2 x 10%. The other model
parameters are same as those in Figure 5.5. The results are plotted for 12 directions with
@ = 0.11 and 12 ¢ values given by ¢;(i = 1,12)=60, 45, 30, 300, 315, 329, 120, 135, 150, 240,
225, 210. First 3 ¢ values correspond to first octant and are given in Table 5.1. The curves are

labeled by the indices of ¢. Due to symmetry reasons, only some of them are distinct.
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this chapter we generalize the computing algorithm of the Pre-BiCG-STAB method to
polarized RT with PRD in a 2D medium and show that this method is quite efficient.

Using the formal solution expression for Z, the vector J defined in Equation (5.10)

can be written as we can write
J(r,z) = A[S(r,z))]. (5.26)
The source vector is given by
S(r,z) = pa[eB(r) + T (v, 2)] + (1 = pa)Se(r, 7). (5.27)
Substituting Equation (5.26) in Equation (5.27), we obtain a system of equations
[ = peA]S(r,x) = poeB(r) + (1 = po)Se(r, 2), (5.28)
which can be expressed in a symbolic form as
AS =b. (5.29)

The computing algorithm is given below:
Step (a): Let M denote a preconditioner matrix (defined below). We introduce the 4-
component initial preconditioned residual vectors (y, ¢; and conjugate direction vectors
po. We define {, by

Co=M'b— M TAS,, (5.30)

and impose

CS =Co, Po=GCo- (5-31)

Here Sy is an initial guess for the source vector defined by Sy = p.eB + (1 — p,)S.. As
we discretize the frequency and depths, the 4-component irreducible source vector and
all the auxiliary vectors introduced in this algorithm can be treated as vectors of length
4 X n, X ny Xng, where n,, ny and nz are the number of grid points in frequency, Y and Z
co-ordinates respectively. The iterations are referred to by an index j, with j =0,1,2,...
niter, where niter is the number of iterations needed for convergence. For the jth itera-

tion, the following steps are carried out.

Step (b): We use the formal solver to compute Ap,.
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Step (c¢): We introduce a coefficient «; defined by

N (S <1
T (M Apy, &)

where the angle brackets (, ) represent the inner product in the Eucledian space of real

(5.32)

numbers R”, where n =4 X n, X ny X nz.

Step (d): We introduce a new vector g; defined as

q; = ¢ —a;M ' Ap;. (5.33)

Step (e): We use the formal solver to compute qu.

Step (f): We introduce a coefficient w; defined by

M-YAa. a:
oy = M Ad5,0) (5.34)
<M_1qu, M—lqu>

Step (g): The value of the new irreducible source vector is derived from the recursive
relation
Sjt1 =S; +a;pj +w;q;. (5.35)

Step (h): New values for the residual vectors ¢; and conjugate direction vectors p; are

calculated with the recursive relations

Cj-l—l = Qj — WjM_lAq]‘, (536)

Pjr1 = i1 + Bi(p; — w; M~ ' Ap;). (5.37)
Here, the coefficient 3; is defined as

8, = (Gi+1,60) o) (5.38)

<CJ7C6> wj.

Step (i): If the test for convergence described below is satisfied, we terminate the iteration

sequence. Otherwise, we go to the Step (b).
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Test for Convergence: At each iteration, we calculate the quantities
es = max O{] §S5/53 |} (5.39)
TY ,TZ L=

which denotes the maximum relative change (MRC) on the first component S of the

irreducible source vector and

ep = TY,;E%(WIH dP/P |}(t7z =0) (5.40)
with P =+/(Q/I)*+ (U/I)2, (5.41)

which defines a maximum relative change on the surface polarization. The values of 6; and
¢ are given in Table 5.1. The test for convergence is defined as e =max|eg, ep|] < @, with

@, a given number. In this chapter we use @ = 1075.
The Preconditioner matriz

The preconditioner matrix M is any form of implicit or explicit modification of the
matrix A, that helps to solve the given system of equations more efficiently (see Saad
2000). In a way, construction of the preconditioner matrix is similar to the construction
of A* matrix in ALI methods. For problems with CRD, the M matrix is nothing but the
diagonal matrix [I — (1 — €)A*], with A* being the diagonal of the A matrix. For problems
with PRD, the kernel in the scattering integral has dependence on both z and 2’ and a
diagonal preconditioner is not sufficient to represent this z, ' dependence. Therefore, we

construct a preconditioner matrix M given by
M = [I = (R(z,a")/¢(x))A}]. (5.42)

It is a block diagonal matrix. Each block is a full matrix with respect to x and x’. The
matrix M is diagonal with respect to other variables. The A% matrix in Equation (5.42)
is constructed following the method of constructing the A’ matrix in the frequency by
frequency (FBF) method of Paletou & Auer (1995).

Figure 5.4 demonstrates the performance of Pre-BiCG-STAB method in comparison to
the Jacobi method. The model parameters chosen are same as those in Figure 5.5. We
show progress of the maximum relative corrections eg and ep as a function of iteration
number for these two methods. While the Jacobi method takes 186 iterations, Pre-BiCG-
STAB takes only 26 iterations to reach the same level of accuracy (w0 = 107®). In terms of
CPU time taken for the computations, the Pre-BiCG-STAB is much faster than the Jacobi
method.
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5.6 Results and Discussions

The numerical calculations have been performed with the irreducible Stokes and the source
vectors. Most of the results presented in this section are for the Stokes parameters I, @, U
and the Stokes source vector components Sy, Sq, Sy which are related to the irreducible
components by Equations (E.1), (E.2), and (E.3).

Figures 5.5 and 5.6 show the optical depth dependence of S;, Sg and Sy along the mid-
axes in the Y and Z directions respectively, for two different frequencies namely x = 0 and
x = 5. The optical thickness in Y and Z directions are Ty = T, = 2 x 10°. The damping
parameter of the Voigt profile is @ = 1073. We consider the pure line case (k. = 0),
with scattering according to PRD. The elastic and inelastic collision rates are respectively
I'p/Tr = 1074, I';/Tg = 107, The corresponding branching ratios are (a, 3, 3?) =
(1,1,1). This PRD model is dominated by the ry; redistribution function. The internal
thermal sources are taken as constant (the Planck function B, (r) = 1). The medium is
assumed to be self-emitting (no incident radiation on the boundaries). We have plotted
the results for all the 96 (= 12 x 8) directions that we have considered, which cover all the

octants, with 12 directions per octant. For the first octant, they are listed in Table 5.1.

Figures 5.5(a) and (b) show the variation of source vectors along the mid Z-axis for
x = 0 and & = 5 respectively. Because the Z-axis is the axis of symmetry, Sg depends
only on |u|, and hence only 4 out of 96 curves are distinguishable. For the same reason,
Sy = 0.

Depth variation of the source vectors along the mid Y-axis is shown in Figures 5.6(a)
and (b). Along the Y-axis, Sg and Sy are sensitive to both p and ¢. They show some sym-
metries which follow from the symmetry of the angle-griding. For Sg, the distinguishable
curves correspond to the directions of the first octant. For Sy, the distinguishable curves
correspond to all the directions in the first and second octants (second octant is defined by

0 €[0,7/2],¢p € [7/2,7]). Curves for the remaining directions coincide with these curves.

In Figures 5.5(b) and 5.6(b), Sg and Sy are independent of the optical depth on the
surface up to 7 = 10* because, the monochromatic optical depth at = 5 is so small that
the RT effects become negligible. The magnitudes of S and Sy profiles are larger for x = 5
because of the frequency coherent nature of ry; in the wings. When the thermalization has
taken place, Sy — B,(r) and Sg and Sy vanish. For = 0 this occurs at 7 ~ 10* and for
r=>5at 7~ 10° (see Figures 5.5 and 5.6).
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Figure 5.8: Comparison of the spatially averaged components of irreducible Stokes vector Z
in one-dimensional (1D) and 2D semi-infinite media (T = Ty = Ty = 2 x 10%). The results are

shown for = 0.11 and p=60°. The continuum opacity parameter x. = 10~8. Other model

parameters are same as those in Figure 5.5.

The angular behavior and sign changes of Sg and Sy depend on the nature of the mean
intensity components J3, JZ, J12 Y and J22 . The behaviors of all these 4 components are
controlled by the angular dependence of the intensity component IJ. Considering only the
action of first column of the ¥ matrix on I?, these 4 components can be written as shown
in Equation (F.1). For example, JZ changes its sign roughly at the depth point where I§
changes its angular dependence from limb darkening (at the surface) to limb brightening
(at the interior) (see Nagendra et al. 1998). The signs of other components depend on the
0 and ¢ dependence of I and on the signs of the trigonometric weights in each octant.
For instance, J12 ¥ can be split into 8 terms, each representing the contribution from one
octant. It can be easily seen that the trigonometric weights coming from four of these terms
are positive (0 € [0,7/2] with ¢ € [0,7/2],[r/2,7] and 0 € [7/2,7] with ¢ € [m,37/2],
[37/2,27]). The weights for the remaining four terms are negative. If the sum of the
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Figure 5.9: The important differences between CRD and PRD Stokes profiles in a semi-infinite
2D atmosphere. The results are shown for p = 0.11 and ¢=60°. The 1D results are shown for
comparison. The results are presented for two values of €. The model parameters are same as

those in Figure 5.8.
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positive terms dominates over the sum of the negative terms, then J12 Y will be positive,
and vice-versa. This clearly shows that the signs of Sg and Sy in a 2D medium depend
strongly on the combined effects of § and ¢ dependence of the I§ component, unlike the
1D case, where I{ being independent of the azimuth, the sign of Sg depends only on the
6 dependence of I{.

In Figure 5.7 we show spatially averaged emergent Stokes profiles for 7' = 2, 200 and
2 x 10%. By spatial averaging, we mean that we integrate the values of the Stokes profiles
in the Y direction at the surface (17 = 0), by taking an arithmetic average. The other
model parameters are same as in Figure 5.5. For both T" = 2 and 200, the medium is
effectively thin because € = 10™*, and hence we see an emission line in the Stokes I profile.
For T = 2 x 105 the medium is effectively thick, hence we see an emission line with self
absorption in the core. Here the line core means that x < 4. Due to symmetries in the
distribution of the angular quadrature points there are only 3 different curves for )/ and
only 6 different ones for U/I, out of the 12 azimuths. For effectively thin cases (T' = 2,200),
the product a7 is smaller than unity and therefore the RT effects are restricted to the line
core (see Nagendra et al. 1998). Therefore the source functions Sg and Sy depend on
the ray direction only in the line core. They tend to zero in the line wings. The same
behavior is seen of course for emergent Q/I and U/I. For T = 2 x 10% Sg and Sy are
almost independent of the ray direction in the line core but show significant variation in the
wings. This is because of the larger monochromatic optical depth in the line core leading
to an increased number of scattering. For wing frequencies, the angular dependence of @)/
and U/I is significant because, Sg and Sy show variation throughout the atmosphere as

the thermalization is reached only near the mid slab (see Figures 5.5(b) and 5.6(b)).

The magnitudes of /I and U/I increase with T. For |Q/I| the largest values are
always at the line center. Further, for T = 2 x 10°, we see a dip at  ~ 12 and a second
peak at = & 20. For |U/I| the situation is a bit more complicated. For T" = 2,200 the
values of |U/I| are largest in the line core. For T'= 2 x 10, |U/I| is very small in the line
core and reaches up to 15 % in the wings around x ~ 12. These results are not easy to
interpret, as they represent the case of an unsaturated radiation field that prevails in 2D

slabs with intermediate optical thickness.

In Figure 5.8, we compare the spatially averaged components of Z for 1D and 2D
geometries in a semi-infinite media (Ty = Tz = T = 2 x 10°). The continuum opacity
parameter is k., = 107%. We have shown the results for 4 = 0.11 and ¢ = 60° The other

model parameters are same as in Figure 5.5. The IJ component is larger for 1D than 2D
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due to the leaking of the radiation from the boundaries of the 2D slab. The component
|I2]1p is larger than |I2]op because of the spatial averaging. It acts in 2 different ways. (1)
The signs of 12 change along the Y direction (2) the largest values of IZ occurs in narrow
regions near the boundaries of the 2D slab (see chapter 4). The components with the index
Q = 1,2 are zero for 1D. For 2D geometry, I* and I>” are zero. The components 12
and I have significant values which contribute to the differences between the Q/I and
U/I in 1D and 2D geometries.

In Figure 5.9 we show spatially averaged emergent Stokes profiles for CRD and PRD in
a semi-infinite 2D medium (Ty = Tz = T = 2 x 10°). We choose the same PRD model as
in Figure 5.5. This PRD model is dominated by r;. The other model parameters are same
as in Figure 5.8. We show the corresponding 1D results for comparison. Figures 5.9(a) and
(b) correspond to € = 107* and € = 1078 respectively. The global behaviors of I and Q/T
for CRD and PRD in a 2D semi-infinite medium, are similar to those of 1D. As expected,
intensity and polarization profiles for CRD and PRD are identical in the line core. In
the wings, the Stokes I for CRD reaches a constant value and becomes independent of
frequency whereas for PRD it varies sharply with frequency and reaches the CRD value
only in the far wings. Further details of the behavior of Stokes profiles in semi-infinite 1D
media can be found in Faurobert (1988). Now we focus on the essential differences between
1D and 2D results. [I]op is smaller than [I];p throughout the line profile due to leaking of
the radiation field near the boundaries of the 2D slab for both CRD and PRD. For CRD,
Q/I approaches zero in the wings while PRD profiles are non-zero (/I can take both
positive and negative values). For CRD, the effects of 2D geometry are not as significant

as for PRD.

We remark that for both CRD and PRD, the curves for [)/];p remain below the curves
for [Q/I]op. This can be understood by looking at the components of the irreducible Stokes
vector Z plotted in Figure 5.8. Equation (E.2) can be re-written as

Q(r, 2, z)]ip >~ —ay X [Ig]m,
[Q(7, 2, 2)]ap =~ —ay X [[§]ap + ac, (5.43)

where a; depends on p and is same for both 1D and 2D cases. The quantity a. depends
on u, ¢ and the components If’y and IQQ’X. For p = 0.11 and ¢ = 60° considered for
Figure 5.8, a; and a, are positive. As discussed above, |IZ|;p is larger than |IZ]op. When
[I3]oap > 0, —ay X [I3]ap > —aq X [IZ]ip and therefore the addition of a. to —a; X [I3]ap
leads to |Q/I|op < |Q/I|ip. When [I3]op < 0, —ay X [I2]ap < —ay X [IZ]ip. In this case,
the addition of a, to —a; x [IZ]ap may lead to |Q/I]op > |Q/I|ip or |Q/I|sp < |Q/I|1p.
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But the contribution from a. is sufficiently large that we have |Q/I|sp > |Q/I|ip. The

differences between the [Q/I]ap for other ¢ values and [Q/I]ip are similar.

Finally, as pointed out in chapter 4, [U/I]p is non-zero and can become significantly
large in the wings for the PRD case. In the CRD case |U/I|sp is non-zero only very close
to the line center and goes to zero in the rest of the frequency domain. As is well known,

[U/I)ip = 0 due to axial symmetry.

5.7 Concluding remarks

In this chapter we develop an efficient method to solve polarized RT equation with PRD in
a 2D slab. We assume a two-level atom model with unpolarized ground level. We assume
that the medium is finite in two directions (Y and Z) and infinite in the third direction
(X). First we apply the Stokes vector decomposition technique developed in chapter 4 to
2D geometry. We show that due to symmetry of the Stokes I parameter with respect to the
¢ = 7/2 axis, the Stokes () becomes symmetric and the Stokes U becomes anti-symmetric
about this axis (¢ is measured from the infinite X direction anti-clockwise). Using this
property we can represent the polarized radiation field by 4 irreducible components I3, I2,
I and I3, The Stokes source vectors are also decomposed into 4 irreducible components
which are independent of the ray direction. Due to axi-symmetry I;” and I>™ are zero in

1D geometry.

This decomposition technique is interesting for the development of iterative methods.
Here we describe a numerical method called the Pre-BiCG-STAB and show that it is much
faster than the Jacobi iteration method used in chapter 4. This method can be easily

generalized to 3D geometries.

Further, in this chapter we generalize to PRD, the 2D short characteristics method
developed in Paletou et al. (1999) for CRD. This formal solver is much more efficient than

the one used in chapter 4.

With these two new features it is possible to compute the solutions for a wide range
of model parameters. With the method of chapter 4 only media with small optical depths

can be considered.

In Figure 5.5 and 5.6 we show the optical depth dependence of the source vectors along
the mid axes in the Y and Z directions. We recover similar angular dependence of S¢
and Sy at line center as in Paletou et al. (1999). Contrary to CRD, one can observe the

increase in the values of Sg and Sy at x = 5. This is a PRD effect on the polarization
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caused by the coherence nature of ry; redistribution function in the wings.

In Figure 5.7 we study the spatially averaged emergent Stokes profiles for different
optical thicknesses. We show that the polarization is restricted to the line core for small
values of 7. As T increases, Q)/1,U/I take larger values in the line wings as well. This
is also a PRD effect. In the line core )/I becomes independent of the ray directions and

U/I — 0 due to an increased number of scattering for the line core photons.

In Figures 5.8 and 5.9 we consider the case of semi-infinite atmospheres with 7, =
Ty = T = 2 x 10°. In Figure 5.8 we compare the behaviors of the emergent spatially
averaged irreducible components, for 2D geometry and the corresponding components in
1D geometry. For 1D geometry only non-zero components are I and 2. The I{ component
is larger for 1D than 2D due to the leaking of the radiation from the boundaries of the 2D
slab. The component |IZ|ip is larger than |IZ|op due to spatial averaging. The contribution
from the components I3 and I; is mainly responsible for the deviation of Q/I and U/I

in 2D geometry from their 1D values.

In Figure 5.9 we compare the spatially averaged emergent Stokes profiles in 2D geome-
try, and the corresponding 1D solutions for CRD and PRD. We show that the deviation of
polarized radiation field in 2D geometry from the one in 1D geometry exists both for CRD
and PRD, but is more severe in the line wings of the PRD solutions. In Figure 5.9(a), at
x &~ 12, we see a near wing maxima in —[Q/I]. At this frequency ||Q/I|op—|Q/I]ip| = 2%.
At this wing frequency we have |U/I|sp ~ 3% and |U/I|;p = 0.

We thus propose our numerical method as an efficient and fast method to solve the
polarized RT problems with PRD in multi-D media.

New Results

The high efficiency of Pre-BiCG-STAB method was established in chapter 3. In this chap-
ter the method is extended to handle polarized multi-D RT. The important results of

chapter 5 are as follows.

1. We have developed faster and more efficient Pre-BiCG-STAB method to solve polarized
two-dimensional (2D) RT with PRD.
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2. The formal solution used in chapter 4 was based on a simple finite volume technique.
In chapter 5 we use a more accurate formal solver, namely the well known 2D short char-

acteristics method.

3. Using the numerical methods developed in chapter 4, we can consider only simpler cases
of finite 2D slabs due to computational limitations. It was a first step towards solving po-
larized multi-D problems with PRD. Using the superior methods developed in chapter 5,
we could compute PRD solutions in 2D media, in the more difficult context of semi-infinite
2D atmospheres as well. We present several solutions which may serve as benchmarks for

future studies in this area.



Chapter 6

Hanle effect with partial redistribution in

multi-D media

The contents of this chapter are based on the following publication:
Anusha, L. S., and Nagendra, K. N. 2011b, ApJ, 738, 116-135

6.1 Introduction

Multi-dimensional (multi-D) radiative transfer (RT) is important to advance our under-
standing of the solar atmosphere. With the increase in the resolving power of modern
telescopes, and the computing power of supercomputers, multi-D polarized line RT is be-
coming a necessity, and practically feasible. The multi-D effects manifest themselves in the
resolved structures on the Sun. The finite dimensional structures on the solar surface lead
to inhomogeneity in the atmosphere, which is then no longer axi-symmetric. The pres-
ence of magnetic fields adds to the non-axisymmetry, in the microscopic scales through
the Hanle effect. The purpose of this chapter is to address the relative importance of

non-axisymmetry caused by geometry, and oriented magnetic fields.

In the past decades extensive studies on line RT in multi-D media are done. A his-
torical account on these developments is given in chapter 4 (see also Anusha & Nagendra
2011a). In chapter 4 we presented a method of Stokes vector decomposition, which helped
to formulate an ‘irreducible form’ of the polarized line RT equation in a 3D Cartesian
geometry. Such a formulation is advantageous because, the source vector and the mean
intensity vector become angle independent in the reduced basis. Also the scattering phase

matrix becomes independent of the outgoing directions (£2). This property leads to several

145
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advantages in numerical work. It also provides a framework in which the transfer equation
can be solved more conveniently, because the decomposition is applied to both the Stokes
source vector, and the Stokes intensity vector. In chapter 5 (see also Anusha et al. 2011a),
we focused our attention on devising fast numerical methods to solve polarized RT equa-
tion with partial frequency redistribution (PRD) in a two-dimensional (2D) geometry. In
chapters 4 and 5 we considered the case of non-magnetic resonance scattering polarization.
Manso Sainz & Trujillo Bueno (1999) and Dittmann (1999) solved the polarized RT equa-
tion in the presence of a magnetic field (Hanle effect), in multi-D media. Their calculations
used the assumption of complete frequency redistribution (CRD) in line scattering. In this
chapter (see also Anusha & Nagendra 2011b) we solve the same problem, but for the more
difficult and more realistic case of Hanle scattering with PRD. The physics of PRD scatter-
ing is treated using the frequency-domain based approach developed by Bommier(1997a,
1997b). The RT calculations in one-dimensional (1D) geometry, using this approach are
described in Nagendra et al. (2002). We extend their work to 2D and 3D geometries. For

simplicity we restrict to the case of angle-averaged PRD functions.

This chapter represents a generalization to the magnetic case, the decomposition tech-
nique developed in chapter 4. It also represents the generalizations to the 3D case, the
Stabilized Pre-conditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) method developed
in chapter 5. Another generalization is the use of 3D short characteristics formal solver in
this chapter, for the case of PRD.

In Section 6.2 we describe the multi-D transfer equation in the Stokes vector basis. The
decomposition technique as applied to the case of a magnetic multi-D media is described in
Section 6.3. In Section 6.4 we briefly describe the 3D short characteristics formal solution
method. Section 6.5 is devoted to a brief description of the numerical method of solution.
Results and discussions are presented in Section 6.6. Concluding remarks are given in
Section 6.7.

6.2 The polarized radiative transfer in a magnetized multi-D me-
dia

In this chapter we consider polarized RT in 1D, 2D and 3D media in Cartesian geometry
(see Figure 6.1). We assume that the 1D medium is infinite in the X and Y directions but
finite in the Z direction. For 2D, we assume that the medium is infinite in the X direction,
but finite in the Y and Z directions. The 3D medium is assumed to be finite in all the
X, Y and Z directions. We define the “top surface” for a 1D medium to be the infinite
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XY plane passing through the point Z,.,. For a 2D medium, the top surface is defined to
be the plane passing through the line (Y, Zyayx), which is infinite in X direction. For a 3D
medium, the top surface is the plane (XY, Zyax) which is finite in X and Y directions.
For a given ray with direction €2, the polarized transfer equation in a multi-D medium

with an oriented magnetic field is given by
Q-VI(r,Q,z)=—[r(r)o(z) + ke(r)][I(r,Q,z) — S(r,Q, z)], (6.1)

where I = (I,Q,U)" is the Stokes vector, with I, Q and U the Stokes parameters defined
below. Following Chandrasekhar (1950), we consider an elliptically polarized beam of light,
the vibrations of the electric vector of which describe an ellipse. If I; and I, denote the
components of the specific intensity of this beam of light along two mutually perpendicular

directions [ and r, in a plane (see Figure 6.2) transverse to the propagation direction, then

we define
I = [l + IT7
Q = -[l - ]7‘7
U= (I, — I,) tan 2y, (6.2)

where x is the angle between the direction [ and the semi-major axis of the ellipse. Positive
value of () is defined to be a direction parallel to [ and negative () to be in a direction
parallel to r. The quantity 7 = (x,y, z) is the position vector of the ray in the Cartesian co-
ordinate system. The unit vector Q = (9,7, 1) = (sinf cos¢,siné sin g, cos ) describes
the direction cosines of the ray in the atmosphere, with respect to the atmospheric normal
(the Z-axis), where 0 and ¢ are the polar and azimuthal angles of the ray (see Figure 6.2).
The quantity x; is the frequency averaged line opacity, ¢ is the Voigt profile function
and k. is the continuum opacity. Frequency is measured in reduced units, namely x =
(v — )/ Avp, where Avp is the Doppler width.

The Stokes source vector in a two-level atom model with unpolarized ground level is

Ri(r)o(z)S(r, 2, ) + Kke(r)S.(r, ;1:)

S(r,Q,z) = ki (r) () + ko(r)

(6.3)

Here S. is the continuum source vector given by (B, (r),0,0)” with B, (r) being the Planck

function. The line source vector is written as

N

teo dY R(z,2’,Q, Q' B)
dx’ %
oW

Si(r,Q,z) = G(r) +/ I(r, Y 2"). (6.4)

—0o0
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Figure 6.1: The RT in 1D, 2D and 3D geometries. The Zpax, (Y, Zmax),
and (X,Y, Zax) represent respectively, the point, the line, and the plane on
which the emergent solutions are shown in this chapter. The corresponding
atmospheric reference frame is shown in Figure 6.2. The points A and B
marked on the 2D geometry figure represent an example of the spatial points
where the symmetry of the polarized radiation field (Equation 6.28) is valid

in a 2D medium.
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Here R is the Hanle redistribution matrix and B represents an oriented vector magnetic
field. € = I';//(I'r + I';) with I'; and I'g being the inelastic collision rate and the ra-
diative de-excitation rate respectively. The thermalization parameter € is the rate of
photon destruction by inelastic collisions. The damping parameter is computed using
a=ag[l+ (I'g + I'1)/Tg| where agr = I'r/47Avp and I'g is the elastic collision rate. We
denote the thermal source vector by G(r) = eB,(r) with B,(r) = (B,(r),0,0)". The
solid angle element dQ¥' = sin#' df’' dy¢’, where 0 € [0,7] and ¢ € [0,27]. The transfer
equation along the ray path takes the form

I(r,Q
W — ot () [I(r, Q, ) — S(7, 9, 7)),
(6.5)
where s is the path length along the ray and k. (7, ) is the total opacity given by
ot (7, ) = Ka(r) () + K (7). (6.6)

The formal solution of Equation (6.5) is given by

I(r.Q,2) = I(ro, 2, 2) exp {—/Sﬁmt(r (s s’)Q,x)ds'}

50

n / S(r— (s — ), Q, )k (1 — (5 — 8)Q, 7) exp {—/:mtot@« ~ (s —s")Q, x)ds”} ds',
(6.7)

I(ry,Q, ) is the boundary condition imposed at 7o = (xg, yo,%0). The ray path on which

the formal solution is defined is shown in Figure 6.3.

6.3 Decomposition of S and I in a magnetized multi-D media

As already discussed in chapter 4, a decomposition of the Stokes source vector S and
the intensity vector I in terms of the irreducible spherical tensors is necessary to simplify
the problem. In chapter 4, it was a generalization to the 3D non-magnetic case, of the
decomposition technique for the 1D transfer problems, developed by Frisch (2007, hereafter
HFO07). Here we extend our work presented in chapter 4 to include the magnetic fields.
A similar technique, but in the Fourier space was presented in Faurobert-Scholl (1991)
and Nagendra et al. (1998), who solved the Hanle scattering RT problem in 1D geometry.
The solution of polarized Hanle scattering transfer equation using the angle-averaged and

angle-dependent redistribution matrices was presented in Nagendra et al. (2002), where
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Figure 6.2: The atmospheric reference frame. The angle pair (6, ¢) define the
outgoing ray direction. The magnetic field is characterized by B = (I, 0p, xp),
where I' is the Hanle efficiency parameter and (65, xp) defines the field direc-

tion. © is the scattering angle.

a perturbation method of solution was used. A Polarized Approximate Lambda Iteration
method to solve similar problems, using the Fourier decomposition technique was presented
in Fluri et al. (2003b), but only for the case of angle-averaged PRD.

A general theory of PRD for the two-level atom problem with Hanle scattering was
developed by Bommier(1997a, 1997b). It involves the construction of PRD matrices that
describe radiative plus collisional frequency redistribution in scattering. It is rather dif-
ficult to use the exact redistribution matrix R in the polarized transfer equation. For
convenience of applications in line transfer theories, Bommier(1997b) proposed 3 levels
of approximations, to handle the R matrices. In approximation levels II and III, the R
matrices were factorized into products of redistribution functions of Hummer (1962), and
the multi-polar components of the Hanle phase matrix. The collisions enter naturally in
this formalism. It is shown that such a factorization of R can be achieved only in certain
frequency domains in the 2D (z,2') frequency space. In this chapter we refer to this way
of writing the PRD Hanle R matrix, as the ‘domain based PRD’. The definition of the
domains are given in Bommier(1997b, see also Nagendra et al. 2002; Nagendra et al. 2003;
Fluri et al. 2003b). We use the domain based PRD, but write the relevant equations in a
form suitable for our present context (multi-D transfer). We recall that in the special case

of non-magnetic scattering, the domain based PRD equations for R matrix naturally go to
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the Domke-Hubeny redistribution matrix (Domke & Hubeny 1988). We start by writing
Hanle phase matrix in the atmospheric reference frame in terms of the irreducible spherical
tensors for polarimetry, introduced by Landi Degl’'Innocenti & Landolfi (2004, hereafter
LLO04). In this formalism the (7, j)-th element of the Hanle phase matrix is given by

Pr(.9. By = 3 TE(.9) Y Ml (B)(-1)O T (7.9),
KQ Q'

where (7,7) = (1,2,3) and

1

T1i0T, (6.9)

MIQ(QI (B) - ei(Q/_Q)XB Z de//(GB)dg//Q/(_HB)
Q"

where the df;,, are the reduced rotation matrices given in LL0O4. The magnetic Hanle T'g
parameter takes different values in different frequency domains (see Appendix H). 722K (1,92)
are the irreducible spherical tensors for polarimetry with K = 0,1,2, —K < Q < +K
(see Landi Degl’Innocenti & Landolfi 2004). In this chapter, we consider only the linear
polarization. Therefore, K = 0,2 and @ € [—K,+K]|. For the practical use, we need
to further expand the Py matrix in each of the domains in terms of 75{ . The required
domain based expansions of the PRD matrices in terms of 725( were already given in HF07,
applicable there to the case of 1D Hanle transfer. We present here the corresponding
equations that are applicable to the multi-D transfer, which now become ¢ dependent
(in the 1D case, those phase matrix components were ¢ independent). We restrict our
attention in this chapter to the particular case of angle-averaged redistribution functions

(approximation level III of Bommier 1997b).

The ij-th element of the redistribution matrix in the atmospheric reference frame (Bom-
mier 1997b) can be written as
Rij(-ra x/a Q? Ql? B) = Z WK%K(i7 Q)
KQ
{rue,a)Piu(i. . B) + run(e,2/) Pl 2, B) }. (6.10)

The weights Wy depend on the line under consideration (see LL04). Here ry(x,2’) and
rmi(z, ') are the angle-averaged versions of redistribution functions (see Hummer 1962).
The quantities Pcfz(,n (7,¥, B) and Pcig(,m (7, Y, B) take different forms in different frequency
domains. They are described in Appendix H.
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Figure 6.3: The definition of the position vector r and the projected distances
r — (s — ¢/)Q which appear in Equation 6.7. 7o and r are the arbitrary initial
and final locations that appear in formal solution integral (Equation 6.7).
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Denoting G§ = dx0dgoG(r), where G(r) = eB,(r), we can write the i-th component

of the thermal source vector as

=3 THGEQGE(r). (6.11)

The line source vector can be decomposed as

Su(r, Q) =Y T3 (1, Q)85 (r, ), (6.12)

where

X +oo dﬂl .
Sou(r.x) = / % ZWK ru(z, © )PQ u(J, ¥, B)
7=0
rm (e, o) Py ¥, B) M (r, @, 2. (6.13)

Note that the components SQ (7, ) now depend only on the spatial variables (x,y,z), fre-
quency z. The (0, ¢) dependence is fully contained in 72-5( (7,€2). These quantities are listed
in LL0O4 (chapter 5, Table 5.6, p. 211). Substituting Equation (6.12) in Equation (6.7), the

components of I can be written as

L(r,Q,2) =Y TH @IS (r, Q,2), (6.14)

where
Ig(r, Qz) = Igo(ro, Q,z)e (D
+ /TI(T’Q) e = (r82) pngl(r’, )+ (1— pz)Sgc(r’, x)| dri(r', ). (6.15)
0
Here Ig o = Lo(ro, Q, 2)0k00go are the intensity components at the lower boundary. The

quantities Sg e = Se(r,x)0k0dgo denote the continuum source vector components. We

assume that S.(r,z) = B,(r). The ratio of the line opacity to the total opacity is given by

pe = Ki(1) () / Ktor (7, T). (6.16)

The monochromatic optical depth scale is defined as

T.(r, Q) = 1.(x,y,2,Q) = / Kiot (T — (s — 8" )Q, x) ds', (6.17)

S0

where 7, is measured along a given ray determined by the direction €2.
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Figure 6.4: An elemental cube, showing the transfer along a section of the
ray path, called a short characteristic (MOP). The quantities S, Koy at M
and P, and Zj; at M are computed using parabolic interpolation formulae as

M and P are non-grid points.

6.3.1 The irreducible transfer equation in multi-D geometry for the Hanle

scattering problem

Let Sg = pngl + (1 — px)Sg’c. Ig and Sg as well as the phase matrix elements
Phu(j, €Y, B) and PSy(j, €, B) are all complex quantities. Following the method of
transformation from complex to the real quantities given in HF07, we define the real ir-
reducible Stokes vector Z = (19, 12, I}, I}¥, I7*, I;¥)T and the real irreducible source
vector 8 = (89, SZ, ST, S¥, S3*, S3¥)T. It can be shown that the Z and S satisfy a

transfer equation of the form

—ﬁﬂ VI(r Q) = [T(r Q1) — 8(r,2)], (6.18)
where S(r,z) = p,Si(r,z) + (1 — p,)S.(r,z) with S.(r,2)=(B,(r),0,0,0,0,0)T and
Si(r,z) = By (r) + T (r,2). (6.19)

Here the polarized mean intensity vector is
1 +00 dsy . ~ G
j('f’,fE) = M /OO dJZ/\%\EW{MI(I)(B)TIKJ],[E,)
M (B)rm (o, ') b (@) T (r, ), (6.20)
and B = (B,(r),0,0,0,0,0) is the Planck vector. W is a diagonal matrix given by

W = diag{Wy, Wa, Wy, Wa, Wa, Wa}. (6.21)
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The matrix ¥ represents the phase matrix for the Rayleigh scattering, to be used in multi-
D geometries. Its elements are listed in Appendix J. The matrices MI(i)HI(B) in different

domains are given in Appendix I. The formal solution now takes the form
T (7,2) L
Z(r,Q,z) =I(ry,Q,z)e ™D 4 / e DS (¢! 1)dT (v, Q). (6.22)
0
Here Z(ry, 2, x) is the boundary condition imposed at (.

6.4 A 3D formal solver based on the short characteristics ap-

proach

This section is devoted to a discussion of 3D short characteristics formal solver. Here we
generalize to the 3D case, the 2D short characteristics formal solver that we had used in

chapter 5. A short characteristic stencil MOP of a ray passing through the point O, in a

Table 6.1: The 12-point Carlsson type B quadrature for the
azimuth angle ¢. The corresponding values of sin ¢, cos @,
sin 2 and cos2¢ are given for the purpose of discussion.
@; (in degrees) singp cosy sin2p cos2p
30 0.5 0.866 0.866 0.5
45 0.707  0.707 1 0
60 0.866 0.5 0.866 -0.5
120 0.866 -0.5 -0.866 -0.5
135 0.707 -0.707 -1 0
150 0.5 -0.866 -0.866 0.5
210 -0.5 -0.866  0.866 0.5
225 -0.707 -0.707 1 0
240 -0.866 -0.5 0.866 -0.5
300 -0.866 0.5 -0.866 -0.5
315 -0.707  0.707 -1 0
330 -0.5  0.866 -0.866 0.5

3D cube is shown in Figure 6.4. The point O represents a grid point along the ray path.

The point M (or P) represents an intersection of the ray with one of the boundary planes
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of a 3D cell. The plane of intersection is determined by the direction cosines of the ray.
The length As of the line segment MO (or OP) is given by

As = Az/u, if the ray hits the XY plane,
As = Ay/~, if the ray hits the X Z plane,
As = Ax/n, if the ray hits the Y Z plane.
(6.23)

Here Ax, Ay and Az are incremental lengths (positive or negative) between two successive
grid points on the X, Y and Z directions respectively. In the short characteristics method,

the irreducible Stokes vector Z at O is given by

To(r,Q,x) = Ty(r,Q, x) exp[—Any]
+iy(r, Q, )8y (r, ) + Yo (r, Q, 2)So(r, x) + Yp(r, Q,2)Sp(r,z), (6.24)

where Syiop are the irreducible source vectors at M, O and P. The quantity Zy; is
the upwind irreducible Stokes vector for the point O. If M and P are non-grid points,
then Sy p and Zy; are computed using a two-dimensional parabolic interpolation formula.
While computing them, one has to ensure the monotonicity of all the 6 components of these
vectors, through appropriate logical tests (see Auer & Paletou 1994). The coefficients v
depend on the optical depth increments in X, Y and Z directions. For a 2D geometry,
these coefficients are given in Auer & Paletou (1994). Here we have used a generalized

version of these coefficients, that are applicable to a 3D geometry.

6.5 Numerical method of solution

In this chapter we generalize the Pre-BiCG-STAB method described in chapter 5 to the
case of a 3D geometry. The present work represents also an extension of this technique
to the case of polarized RT in the presence of an oriented magnetic field. The essential
difference between the 2D and 3D algorithms is in terms of the lengths of the vectors. In a
2D geometry it is n, X n, X ny X nyz whereas in a 3D geometry it is n, X n, X nx X ny Xng,
where nx y 7z are the number of grid points in the X, ¥ and Z directions, and n, refers to the
number of frequency points. n,, is the number of polarization components of the irreducible
vectors. In the presence of a magnetic field, n, = 6 in both 2D and 3D geometries. In

non-magnetic problems, n, = 4,6 for 2D and 3D geometries respectively.
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Figure 6.5: The emergent, spatially averaged irreducible Stokes vector components formed in

a non-magnetic 2D medium. Different curves represent different values of the radiation azimuth

. The value of u = 0.11. The other model parameters are given in Section 6.6.1. The inset

panels show the far wing behavior of Z. The z grid for these inset panels is 0 < 2 < 600.
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6.5.1 The Preconditioner matrix

A description of the preconditioner matrix that appears in the Pre-BiCG-STAB method,
is already given in chapter 5. Here we give its functional form applicable to the problems
considered in this chapter. In chapter 5 a single preconditioner matrix was sufficient to
handle the non-magnetic line transfer problem with PRD. The presence of magnetic field
requires the use of domain based PRD matrices, for a better description of the PRD in line
scattering. The method requires preconditioner matrices to be defined, that are suitable

for each of the frequency domains. We denote the preconditioner matrices by M@,

~ (i - 1 * (2 * (T
MW =1 - P gy {Ax’(,I)ITH(x7 ) + Az, 55’)}7 (6.25)
where
* (1) sy . - (4) 7 / o
Ax’,H = EWMH (B)V(Q)Z(r, Q' 2", (6.26)
and
* (1) sy - - () T / o
Aw’,III = EWMIH (B)\I](Q )I('I", Q » L ) (627>

Here Z(r, ¥, 2’) is computed using a delta source vector as input. The expressions for the
matrices ]\;[I(Ii) and Ml(fl) in different domains are given in Appendix I. The matrices M@
are block diagonal. Each block is a full matrix with respect to x and z’. The matrices

M@ are diagonal with respect to other variables.
6.5.2 Computational details

To calculate the integral in Equation (6.19) and the formal solution in Equation (6.24), we
need to define quadratures for angles, frequencies and depths. For all the computations
presented in this chapter, Carlsson type B angular quadrature with an order n = 8 is
used. All the results are presented in this chapter for damping parameter a = 1073.
The number of frequency points required for a given problem depends on the value of
a and the optical thickness in the X, Y and Z directions (denoted by Tx, Ty and T7y).
A frequency bandwidth satisfying the conditions ¢(Zmax)Tx << 1, ¢(Tmax)Ty << 1 and
O(Tmax)T7z << 1 at the largest frequency point denoted by Zy.x has been used. We have
used a logarithmic frequency grid with a fine spacing in the line core region, and the near
wings where the PRD effects are important. We use a logarithmic spacing in the X, Y

and Z directions, with a fine griding near the boundaries. We find that with the modern
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solution methods used in the calculations give sufficiently accurate solutions for 5 spatial

points per decade.

Computing time depends on the number of angle, frequency and depth points considered
in the calculations and also the machine used for computations. We use the Intel(R)
Core(TM) i5 CPU 760 at 2.8 GHz processor running an un-parallelized code. For the
difficult test case of a semi-infinite 3D atmosphere the computing time is approximately an
hour for one iteration. Even for this difficult test case the Pre-BiCG-STAB method needs

just 18 iterations to reach a convergence criteria of 1075,

6.6 Results and discussions

In this section we present the results of computations to illustrate broader aspects of the
polarized transfer in 1D, 2D and 3D media. We present simple test cases (which can be
treated as benchmarks), to show the nature of these solutions. In all the calculations we

assume the atmosphere to be isothermal.

We organize our discussions in terms of two effects. One is macroscopic in nature—
namely the effect of RT on the Stokes profiles formed in 2D and 3D media. Another is
microscopic in nature—namely the effect of an oriented weak magnetic field on line scat-
tering (Hanle effect). We discuss how these two effects act together on the polarized line

formation.

6.6.1 The Stokes profiles formed due to resonance scattering in 2D and 3D

media

A discussion on the behavior of Stokes profiles formed in 1D media with PRD scattering
can be found in Faurobert (1988) and Nagendra et al. (1999). In chapter 5, the nature of
profiles in a 2D semi-infinite medium is compared with those formed in 1D semi-infinite
medium for CRD and PRD scattering (see Figures 5.8 and 5.9 in chapter 5). Here we
discuss the emergent, spatially averaged Z and (I,Q/I,U/I) in 2D and 3D media for PRD

scattering.

Figures 6.5 and 6.6 show the frequency dependence of the components of emergent,
spatially averaged Z in 2D and 3D media respectively. The model parameters are, Tx =
Ty =T; =T =2x10° a = 1073, I'y/Tg = 1074, I';/Tr = 107*, k./k; = 1077, and
i = 0.11. Our choice of collisional parameters represent a situation in which ry type

scattering dominates. Different curves in each panel represent different radiation azimuths
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(a) 1D; B=0 (b) 2D; B=0 (¢) 3D; B=0
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Figure 6.7: The emergent, spatially averaged (I,Q/I,U/I) in non-magnetic 1D, 2D and 3D

media. Different curves represent different values of the radiation azimuth . The value of

1= 0.11. The other model parameters are given in Section 6.6.1.

wi(1 =1,12)=60, 45, 30°, 300°, 315°, 330°, 120°, 135°, 150°, 240°, 225°, 210°.

I? is the largest of all the components. For the chosen model parameters, all the other
non-zero components are of the same order of magnitude. The components 17 and I¥

are zero in a 2D geometry due to symmetry reasons (see Appendix F for a proof).

The ¢ dependence of the Z comes from the ¢ dependence of the scattering phase
matrix (\TJ) elements. The spatial distribution of Z, on the top surface depends sensitively
on the monochromatic optical depths for the ray at these spatial points. This is a transfer
effect within the medium, for the chosen ray direction. In the line core frequencies (z <
3), the monochromatic optical depths are larger, resulting in a relatively uniform spatial
distribution of Z on the top surface. The ¢ dependence appears as either symmetric or
anti-symmetric with respect to the X-axis from which ¢ is measured. Thus the spatial
averaging leads to a weak dependence of Z on the azimuth angle ¢. When the averaging
is performed over sign changing quantities like the polarization components, it leads to

cancellation, resulting in vanishing of these components.

The ¢ dependence of Z in the line wings can be understood by considering the action

of the first column elements of the ¥ matrix on I9, which is the largest among all the
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components. The elements of ¥ matrix are listed in Appendix J. I{ is independent of ¢
because it is controlled by the element W, which takes a constant value unity. Similarly I3
is controlled by Ws; which is also independent of . However we see a weak ¢ dependence
of I¥ in the wings, which is due to the coupling of the last 4 components to I3, which are
of equal order of magnitude as I2, and are sensitive to the values of ¢. The ¢ dependence
of I 12 Y and 122’X elements in both 2D and 3D geometries is controlled by sin ¢ and cos2¢p
functions appearing in W4, and Wy elements respectively. The distribution of angle points
¢ in Carlson B quadrature is such that among the 12 ¢ values in the grid, sin ¢ takes only
6 distinct values, and cos 2¢ takes only 3 distinct values (see Table 6.1). The components
I and I,Y are non-zero in 3D geometry unlike the 2D case. Their magnitudes are
comparable to those of I 12 Y and 122 . The ¢ dependence of these components are controlled
by cos ¢ and sin 2 functions appearing in W3; and Wg; elements. In the far wings, all the
components of Z go to their continuum values, as shown in the inset panels of Figures 6.5
and 6.6. In a 1D geometry I reaches the value of B, (parameterized as 1 here) in the far
wings where the source function is dominated by B,. This is because of the fact that the
formal solution with B, as source function along a given ray leads to terms of the form
B,[1 — exp (—7,(r,2))]. In 1D medium 7,(r, ) = Tk /p. This implies that for semi-
infinite 1D medium, exp (—7,(7, Q)) = 0 so that I = B, in the far wings. However in semi-
infinite 2D and 3D media the distances traveled by the rays in a given direction at different
spatial points on the top surface are not always the same and therefore exp (—7,(r,€2)) is
not always zero unlike the 1D case. Further the radiation drops sharply near the edges due
to finiteness of the boundaries. Therefore when we perform spatial averaging of emergent
IY over such different spatial points on the top surface of a 2D medium (which is actually
a line), I§ will take a value smaller than B,. For a similar reason (averaging over a plane)
the value of I{ in the far wings in a 3D medium becomes even smaller than the value in
a 2D medium. All other components reach zero in the far wings because the radiation is

unpolarized in the far wings (because of an unpolarized continuum).

The way in which the components of Z depend on ¢ is different in 2D and 3D geometries
(compare Figures 6.5 and 6.6). This is a direct effect of spatial averaging. In a 2D medium,
spatial averaging of the profiles is performed over the line (Y, Z.,) marked in Figure 6.1,
whereas in a 3D medium the averaging is performed over the plane (X, Y, Z,,.x) marked in
Figure 6.1. The 2D spatial averaging actually samples only a part of the plane considered
for averaging in a 3D medium. Also, 2D geometry has an implicit assumption of front-

back symmetry of the polarized radiation field with respect to the infinite X axis in the
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Figure 6.8: Same as Figure 6.5 but for a magnetic 1D medium. The vector magnetic field
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non-magnetic case, namely

I(r,0,0,2)=1(r,0,m — p,x),

I(r,0, 7+ p,x)=1(r,0,2r — p,x),

Qr.0,¢,2) = Q(r,0,m— ¢, ),

Q(r,0,m+p,x) =Q(r,0,2r — ¢, ),

U(r,0,p,2)=-U(r,0,m —p,x),

Ur,0,m7+¢,x)=—-U(r,0,2n —¢,z),0 € [0,7],p € [0,7/2]. (6.28)

See Appendix F for a proof of Equation (6.28). However no such assumptions are involved

in 3D geometry.

Figures 6.7(a), (b) and (c) show I,Q/I,U/I profiles in non-magnetic 1D, 2D and 3D
media. Intensity I decreases monotonically from 1D to the 3D case, because of the leaking
of radiation through the finite boundaries in the lateral directions which is specific to RT in
2D and 3D geometries. In panels (b) and (c), different curves represent different ¢ values.
Only one curve is shown in panel (a), because of the axi-symmetry of the radiation field in
the 1D medium. For the same reason, |U/I|;p = 0. The ¢ dependence of |Q/I|sp sp and
|U/I|2p.sp directly follow from those of the components of Z shown in Figures 6.5 and 6.6,
and their combinations (see Appendix G in this chapter where we list the formulae used to
construct the Stokes vector (I, Q, U)T from the irreducible components of Z). At the line
center, [U/I]apsp ~ 0. This is because U/I is zero in large parts of the top surface and
the positive and negative values of U/I at z = 0 are nearly equally distributed in a narrow
region near the edges. A spatial averaging of such a distribution leads to cancellation
giving a net value of U/I approaching zero. This is not the case in wing frequencies of the
U/I profile (see discussions in Section 6.6.3 for spatial distribution of Q/I and U/I).

6.6.2 The Stokes profiles in 2D and 3D media in the presence of a magnetic
field

Figures 6.8, 6.9 and 6.10 show all the 6 components of Z in magnetized 1D, 2D and 3D me-
dia respectively. The vector magnetic field B is represented by (', 05, x5) = (1,90°,68°).
The corresponding non-magnetic components are shown as thin solid lines. Different line
types in Figures 6.9 and 6.10 correspond to different ¢. The irreducible components in
1D geometry are cylindrically symmetrical, even when there is an oriented magnetic field.
Therefore there is only one curve in each panel in Figure 6.8. When B = (0 the 4 com-

ponents Ii’%"y become zero due to axi-symmetry in 1D geometry (Figure 6.8). These
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components take non-zero values in the line core when B # 0. The magnitudes of I{ and
I? monotonically decrease from 1D to 3D. In the 2D case, the 2 components which were
zero when B = (, take non-zero values in the line core, when B # (0. Unlike 1D geometry
in 2D and 3D geometries, a non-zero B causes the last 4 components to become sensitive
to ¢. The components I in 2D and I7* and 7Y in 3D remain almost unaffected by B.
This behavior is particular to the present choice of B. For a different choice of B, the
behavior of the 6 components may differ from what is shown in these figures. In all the
geometries, the components go to their non-magnetic (Rayleigh scattering) values in the

wings, because the Hanle effect operates only in the line core region.

Figures 6.11(a), (b) and (c) show spatially averaged I, Q/I, U/I in 1D, 2D and 3D
geometries respectively. Due to the finiteness of the boundaries in 2D and 3D media the
value of spatially averaged I decreases monotonically from 1D to 3D. The dependence of
Q/I and U/I on ¢ in 1D medium is purely due to the ¢ dependence coming from the
formulae used to convert Z to I, @ and U (see Appendix G). In 2D and 3D media, the
v dependence comes from both, the ¢ dependence of the respective components of Z, and
also the above mentioned conversion formulae. The magnitudes of @)/ and U/I decrease
in 2D and 3D geometries due to the spatial averaging process. The wings of Q/I and U/I
in 1D are insensitive to ¢ due to the inherent axi-symmetry. In 2D they become more
sensitive to ¢ values. Again they become weakly sensitive to ¢ in 3D geometry. These
differences in sensitivities of /I, U/I to the azimuth angle ¢ in 2D and 3D geometries
is due to the way in which the spatial averaging is performed in these geometries (see

discussions above Equation (6.28)).

Polarization diagrams in 1D and 2D media

In Figure 6.12 we show polarization diagrams (see e.g., Stenflo 1994), which are plots of
Q/I versus U/I for a given value of frequency z, ray direction (u, ¢), and varying the field
parameters two out of three at a time. We take I' = 1, and vary 05 and xp values. For

the 2D case we show spatially averaged quantities.

For x = 0, the shapes of closed curves (loops) in the polarization diagrams are the same
in both 1D and 2D cases. When compared to the loops in 1D, the sizes of the loops in
2D are smaller by about 1% in the magnitudes of @)/I and U/I, which is due to spatial

averaging.

For x = 2.5, the shapes of the the loops in 2D are quite different from those for 1D. For

e.g., the solid curve in panel (d) is narrower than the one in panel (b) which correspond
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to O = 30°. On the other hand, the dash-triple-dotted curve in panel (d) is broader than
the one in panel (b), which correspond to 65 = 120°. The orientation of a given loop with
respect to the vertical line (/I = 0) is a measure of the sensitivity of (Q/1,U/I) to the
field orientation 5. The size of a loop is a measure of the sensitivity of (Q/I,U/I) to
the field azimuth yp. The values of |Q/I|op and |U/I|2p can be larger or smaller than
|Q/I]ip and |U/I|;p for x = 2.5. The sensitivity of the line wing (z = 2.5) polarization
to (0p, xp) is different in 1D and 2D geometries, when compared to the sensitivity of line
center (x = 0) polarization. This is because at z = 0 we sample mainly the outermost
layers of the semi-infinite media. At x = 2.5 we actually sample internal inhomogeneities
of the radiation field in (Y, Z) directions in the 2D case, and only those in the Z direction,
in the 1D case. We have noticed that the spatial distribution of Q/I,U/I at x = 0 is
relatively more homogeneous, than at x = 2.5 (see figures and discussions in Section 6.6.3
for spatial distribution of @/ and U/I).

6.6.3 The spatial variation of emergent ()//,U/I) in a 3D medium

In Figure 6.13 we show surface plots of /I and U/I formed in a 3D media. The region
chosen for showing the spatial distribution is the top surface plane (X, Y, Zyax)-

Figures 6.13(a), (b) demonstrate purely the effects of multi-D geometry on the (Q/I,U/I)
profiles. In Figure 6.13(a) Q/I shows a homogeneous distribution at the interiors of the
top surface (away from the boundaries) approaching a constant value (~ —3.6%). Large
parts of the top surface contribute to the negative values of @)/I and only a narrow region
near the edges contribute to positive values. The magnitudes of ()/I sharply raise near the
edges. This is due to the finite boundaries of the 3D medium. Maximum value of |Q/I|
in these figures is ~ 6%. In Figure 6.13(b) U/I is nearly zero at the interiors of the top
surface. Near the edges, the values of U/I sharply raise and |U/I| takes a maximum value
of ~ 20%.

Figures 6.13(c), (d) demonstrate the effects of magnetic field on the (Q/I,U/I) profiles.
The magnetic field vector is represented by B=(I",05, x5)=(1,30°,68°). The nature of
homogeneity at the interior and sharp raise near the edges of the 3D surface, in the values
of @Q/I and U/I remain similar in both the magnetic and non-magnetic cases. An important
effect of B is to significantly change the values of Q/I and U/I with respect to their non-
magnetic values. |Q/I| values are slightly reduced at the interior and /I now becomes
—2.3%. Near the edges |Q)/1]| is significantly enhanced and takes a maximum value of 15%.

The interior values of |U/I| continue to be nearly zero. The |U/I| is reduced at different



6.6. Results and discussions 169

(a) 1D; B=0 (b) 2D; B#0 (¢) 3D; B=0

Log I

U/I (%)

Frequency z Frequency z Frequency z

Figure 6.11: A comparison of emergent I, Q)/I and U/I profiles formed in a magnetized 1D
media with the emergent, spatially averaged I, Q/I and U/I formed in a magnetized 2D and

3D media. The model parameters are same as in Figure 6.8.

rates near different edges. Now the maximum value of |U/I| is 17%. We note that in 1D
geometry, for = 0.11, any magnetic field configuration always causes a decrease in |Q/!]|

and a fresh generation of |U/I| with respect to the non-magnetic values.

Figures 6.13(e), (f) demonstrate the effects of PRD on the (Q/I,U/I) profiles. For
this purpose we have chosen a wing frequency x = 5. The spatial distribution of @Q/I
and U/I is highly inhomogeneous at the wing frequencies. This effect can be easily seen
by comparing Figure 6.13(a) which exhibits large spatial homogeneity for « = 0, with
Figure 6.13(e) which exhibits large spatial inhomogeneity for x = 5. For z = 0, the optical
depth of the medium is large and therefore the radiation field in the line core becomes
homogeneous over large volumes of the cube. The spatial inhomogeneity of the @)/ at
x = b is actually caused by the the nature of PRD function used in our computations
(which is dominated by the 7y function). Due to the frequency coherent nature of ryp, the
photons scattered in the wings get decoupled from the line core radiation field. As the
optical depth of the medium in the line wings is smaller than in the line core, the wing
radiation field becomes more inhomogeneous and more polarized. Same arguments are

valid for the inhomogeneous distribution of U/I on the top surface of the 3D cube. This



170 Chapter 6. Hanle effect with partial redistribution in multi-D media

can be seen by comparing Figure 6.13(b) with Figure 6.13(f). We recall that under the
assumption of CRD, the values of /I and U/I are zero in the line wings (see Figure 5.9
of chapter 5 for a comparison of emergent, spatially averaged /I, U/I profiles for CRD
and PRD in a multi-D medium). The sharp increase in magnitudes of )/I and U/I near
the edges is larger for x = 5 when compared to those for z = 0. Maximum value of |Q/I|
is now 10% and that of |U/I| is 40%.

In Figure 6.14 we show spatial distribution of I, /I and U/I on the top surface of
two different kinds of 3D media. Here we have chosen B = 0 which is equivalent to the
choice of a vertical magnetic field parallel to the Z axis (because, for this field geometry
the Hanle effect goes to its non-magnetic Rayleigh scattering limit). In view of the possible
applications, we consider a cuboid with Tx = Ty = 2 x 105, T = 20 in the left panels (a,
b, ¢) and a cuboid with Tx = Ty = 20, Tz = 2 x 10° in the right panels (d, e, f). They
represent respectively a sheet and a rod like structure. For the chosen optical thickness
configurations, the radiative transfer effects are mainly restricted to the line core (x < 3)
for the ray emerging from the top surface. We show the results for z = 3 (in the left
panels) and = = 1 (in the right panels), the frequencies for which the magnitudes of @Q/I

and U/I reach their maximum values.

In Figures 6.14(a) and (d) the intensities reach saturation values in the interiors of the
top surface and drop to zero at two of the visible boundaries (where a boundary condition

of zero intensity is imposed for our chosen ray emerging at the top surface).

In Figures 6.14(b) and (c) we see that /I and U/I take values < 1% everywhere on the
top surface. The magnitude of /I and U/I for this case are relatively less than those for
the semi-infinite 3D atmospheres (compare with Figure 6.13). This can be understood using
the following arguments. We are showing the results for a ray with (u,¢) = (0.11,60°)
emerging from the top surface. The top surface for this figure refers to 7, = 0 where
Tz is the optical depth measured inwards in the Z direction. Using equations given in
Appendix G we can write approximate expressions for () and U at the top surface as

-3
=0.11,0 =60°,2) ~ —=12(p = 0.11, » = 60°, ), 6.29
Qu @ ) Wi o (1 @ ) (6.29)

V3

TIf’y(u = 0.11,¢ = 60°, z).
(6.30)

3
U(p =011, = 60°,z) ~ 5112”‘(;1 =0.11,¢ = 60°,z) +

I¢ is controlled by the element Wy = 3cos?f — 1 (see Appendix J) which appears in
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Figure 6.12: A comparison of the polarization diagrams in 1D and 2D media for two different
values of frequency x. In 2D, the spatially averaged quantities are shown. The magnetic field
parameters are given by I' = 1, five values of 6p in the range 30° to 150° in steps of 30°,
seventeen values of yp in the range 0° to 360° in steps of 22°.5. Different line types correspond
to different values of #p. Heavy square symbol represents ypg = 0, and as we move in the
counter-clockwise direction, yp takes increasingly larger values. The ray direction is specified
by (u,9)=(0.11,60°). The line types represent different 6p, namely (solid, dotted, dashed,
dot-dashed, dash-triple-dotted)=(30°,60°,90°, 120°, 150°).
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the scattering integral for S2. The factor Uy = 3cos?6 — 1 represents the probability
of scattering of photons incident from the direction §. For # = 0° or § = 180° (vertical
incidence) Wy is larger in magnitude compared to the cases § = 90° or § = 270° (lateral
incidence). For T, = 20 the medium is effectively optically thin (because €T, << 1)
in the Z direction, and therefore photons easily escape in this direction. Thus there are
smaller number of photons for incidence along the vertical direction when compared to
the effectively thick case. For T; = 2 x 10% or T, = 2 x 10° the medium is effectively
optically thick (because €Tz >> 1) in the Z direction and therefore leaking of photons in
this direction is reduced when compared to the case of T, = 20. In this way, for large
values of T, the probability of photons to be incident in the vertical direction is large.

Therefore, as T increases the values of 12 and hence Q/I increase.

For the chosen line of sight, Stokes U is generated mainly by 17 and I7¥. They are
controlled by W3, and W4y elements (see Appendix J) both of which depend on the factor
sin 20. This implies that ¥3; and Wy, are zero for both vertical and lateral incidence of
photons. These elements become larger when the incidence is predominant in the direction
of # = 45° or # = 135°. Using similar arguments as above we can understand the increase

in the values of U/I with increasing values of 1.

The spatial distribution of )/I and U/I is inhomogeneous in both left and right panels
for the chosen core frequencies, in contrast to the homogeneous distribution observed for
semi-infinite 3D atmospheres. The extent of inhomogenity is larger for the left panels
which correspond to smaller T; value than for the right panels. The spatial inhomogenity
could also occur due to different optical thicknesses along the 3 spatial directions leading
to different number of scatterings in the 3 directions (unlike the case of Figure 6.13 where
Tx =Ty = Ty). In other words, the inhomogeneities in @)/I and U/I can also be caused

by a differential leaking of radiation in the X, Y and Z directions.

6.7 Concluding remarks
This chapter is dedicated to certain extensions of our previous works (chapters 4 and 5)
on polarized RT in multi-D media with PRD.

First, we present a generalization of the Stokes vector decomposition technique devel-

oped in chapter 4, to include the magnetic fields (Hanle effect).

Secondly, we generalize to the magnetic 3D RT, the efficient iterative method called
the Pre-BiCG-STAB developed in chapter 5 for the non-magnetic 2D RT.
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Figure 6.13: The spatial distribution of (Q/I,U/I) on the top surface of a
3D medium. The @/I and U/I are plotted as a function of the grid indices of
7x and 7y. The ray direction is specified by (u, ¢)=(0.11,60°). Panels (a) and
(b) demonstrate purely the multi-D effects. Panels (¢) and (d) demonstrate
the magnetic field effects. Panels (e) and (f) demonstrate the PRD effects.
See Section 6.6.3 for details.
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Figure 6.14: The spatial distribution of (Q/I,U/I) on the top surface of a
3D media. The Q/I and U/I are plotted as a function of the grid indices of
7x and 7y. The ray (viewing) direction is specified by (u, ¢)=(0.11,60°). Left

panels represent a sheet structure and right panels represent a rod structure

when viewed along the £Z direction.
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Thirdly, we use the more efficient 2D and 3D short characteristics formal solutions,
with appropriate generalizations to the present context. With the linear formal solver used
in chapter 4, practically it is difficult to compute the solutions in semi-infinite media. It is
not the case with the short characteristics former solution method. Indeed, the solutions

presented in this chapter for the difficult case of semi-infinite media, prove this fact.

We present several benchmark solutions computed using the code, with all the above

mentioned generalizations. The main results of these solutions are the following.

The emergent (QQ/I,U/I) profiles in 1D media and the emergent, spatially averaged
(Q/I,U/I) profiles in 2D and 3D media differ significantly, both in non-magnetic and
magnetic cases. The differences are more pronounced in the wings of the (Q/I,U/I)
profiles. The differences between the emergent, spatially averaged (Q/I,U/I) profiles in
2D and 3D media are negligible in /I, but noticeable in U/I.

In the non-magnetic case, at line center, the spatial distribution of Q/I and U/I is
homogeneous in the interior of the top surface, but sharply raise near the edges. This is
purely a multi-D geometric effect. The presence of a magnetic field modifies this distribu-
tion by causing a depolarization (decrease in the magnitude) or re-polarization (increase
in the magnitude) of @/I and U/I. This is a natural consequence of the Hanle effect. In
the line wing frequencies, magnetic and non-magnetic spatial distributions look the same,
as Hanle effect is confined to the line core. However, the spatial distribution in the line
wing frequency is more inhomogeneous, and the sharp raise of @)/ and U/I near the edges
is more enhanced, as compared to those at the line center. This behavior at line wings
is mainly due to the PRD effects. These characteristics are not noticeable if the CRD

assumption is used in line formation studies.

We have developed efficient techniques to solve polarized RT in multi-D media with
PRD as the scattering mechanism. In future, we try to apply these methods to understand

the linear polarization observed in the spatially resolved structures on the Sun.

New Results

This chapter concerns the effect of weak magnetic fields on line scattering. We obtain and
study the first ever solution to polarized RT in magnetized multi-D atmospheres. The

important results in this chapter are listed below.
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1. We generalize the technique of Stokes vector decomposition in terms of the irreducible

spherical tensors 7ng , developed in chapter 4, to the case of RT with Hanle effect.

2. The fast iterative Pre-BiCG-STAB method for the solution of polarized 2D RT equa-

tion, developed in chapter 5 is now generalized to the case of RT in magnetized 3D media.

3. We use the efficient short-characteristics formal solution method for multi-D geometries,

generalized appropriately to the present context.

4. A comparison of emergent (I,Q/I,U/I) profiles formed in 1D media with the cor-
responding emergent, spatially averaged profiles formed in multi-D media shows that in
the spatially resolved structures, the assumption of 1D may lead to large errors in linear

polarization, especially in the line wings.

5. The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation

of the emergent (Q/1,U/I) profiles, which is more pronounced in the line wings.

6. The presence of a weak magnetic field modifies the spatial variation of the emergent

(Q/I,U/I) profiles in the line core, by producing significant changes in their magnitudes.



Chapter 7

Angle-dependent PRD in multi-D media:

Formulation

The contents of this chapter are based on the following publication:
Anusha, L. S., and Nagendra, K. N. 2011c, ApJ, 739, 40-48

7.1 Introduction

The observations of the solar atmospheres reveal a wealth of information about the spatially
inhomogeneous structures. Modern spectro-polarimeters with high spatial and polarimetric
resolution are able to distinguish the changes in the linearly polarized spectrum caused by
such structures. To model the spectro-polarimetric observations of such spatially resolved
structures, one has to solve a three-dimensional (3D) polarized line radiative transfer (RT)
equation. A historical account of the developments of RT in multi-dimensional (multi-D)
media is presented in detail in chapter 4 (see also Anusha & Nagendra 2011a). In the
previous three chapters we have been investigating the nature of linearly polarized profiles
formed in multi-D media taking account of the partial frequency redistribution (PRD) in
line scattering. In chapter 4 we developed a method of ‘Stokes vector decomposition’ in
multi-D geometry in terms of ‘irreducible spherical tensors’ 725( (see Landi Degl’Innocenti
& Landolfi 2004). It was a generalization to the multi-D case, of the decomposition tech-
nique developed in Frisch (2007, hereafter HF07) for the one-dimensional (1D) case. In
chapter 5 (see also Anusha et al. 2011a), we developed a fast numerical method called the
Stabilized preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB), to solve the polarized
RT problems in two-dimensional (2D) media. In chapter 6 (see also Anusha & Nagendra

2011b), we generalized the works in chapters 4 and 5 to include scattering in the presence

177
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of weak magnetic fields (Hanle effect) in a 3D geometry. In all these chapters we considered

only angle-averaged PRD functions.

The polarized Stokes line RT problems with angle-dependent PRD in 1D planar geome-
tries were solved by several authors (see Dumont et al. 1977; McKenna 1985; Faurobert
1987, 1988; Nagendra et al. 2002; Nagendra et al. 2003; Sampoorna et al. 2011). In
this formalism, a strong coupling of incident and scattered ray directions (€2’ and €2 re-
spectively) prevails in the scattering phase matrices as well as the angle-dependent PRD
functions, which brings in unmitigated numerical difficulties. To simplify the problem, a
method based on ‘decomposition of the phase matrices’ in terms of 722K combined with a
‘Fourier series expansion’ of the angle-dependent redistribution functions ry i (x, 2/, 2, ')
of Hummer (1962) was proposed for Hanle and Rayleigh scattering by Frisch (2009, here-
after HF09) and Frisch (2010) respectively. Sampoorna et al. (2011) developed efficient
numerical methods to solve angle-dependent RT problems for the case of Rayleigh scatter-
ing, based on the decomposition technique developed in Frisch (2010). Sampoorna (2011)
proposed a single scattering approximation to solve the more difficult problem of RT with
angle-dependent PRD including Hanle effect. However all these works are confined to the

limit of 1D planar geometry.

In this chapter (see also Anusha & Nagendra 2011c) we generalize to the multi-D case,
the Fourier decomposition technique developed in HF09 for the 1D case. In the first step
we decompose the phase matrices in terms of 7;5( as done in chapters 4 and 6. However
we now formulate a polarized RT equation for multi-D that also includes angle-dependent
PRD functions. We set up an RT equation in terms of a new set of 6-dimensional vectors
called as ‘irreducible source and the irreducible Stokes vectors’. In the second step, we
expand the rimr(z, 2/, Q, Q') redistribution functions in terms of a Fourier series with
respect to the azimuthal angle (¢) of the scattered ray. Then we transform the original RT
equation into a new RT equation which is simpler to solve because the latter has smaller
number of independent variables. This simplified (reduced) RT equation can be solved
by any iterative method like the Approximate Lambda Iteration (ALI) or a Bi-Conjugate
Gradient type projection method.

In Table 7.1 we list the important milestones in the specific area of ‘formulation and
solution of polarized RT equation’ with resonance scattering and/or Hanle effect in 1D
and multi-D media in different formalisms. The emphasis is on showing how the com-
plexity of the problem is reduced to manageable levels, by the concerted efforts of several

authors. It includes a brief historical account of the formulation and decomposition of po-
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larized phase matrices and the redistribution matrices for spectral lines. In the literature
on this topic, the term ‘phase matrix’ refers only to the angular correlations in the po-
larized light scattering (see e.g., the Rayleigh scattering polarized phase matrix described
in Chandrasekhar 1950). The phase matrices are in general frequency independent. The
‘redistribution matrix’ on the other hand, contains both frequency and angle correlations
between the incident and scattered photons. The formulation of the redistribution matrices
in the astrophysical literature (in the modern analytic form), dates back to the pioneer-
ing work of Omont et al.(1972, 1973). The references given here serve only to mark the

milestones. No pretension is made to give a full list of references.

In Section 7.2 we describe the multi-D RT equation in the Stokes vector formalism. An
irreducible RT equation for angle-dependent PRD functions in multi-D media is presented
in Section 7.3. In Section 7.4 an RT equation in multi-D geometry for the irreducible Fourier
coefficients of the Stokes source vector and the Stokes vector is established. Concluding

remarks are given in Section 7.6.

7.2 'Transfer equation in terms of Stokes parameters

For a given ray defined by the direction €2, the polarized RT equation in a multi-D medium

for a two-level model atom with unpolarized ground level is given by
Q- VI(r, Q1) = —[x(r)o(z) + wo(r)][L(r, @, z) — S(r,Q.2)] (7.1)

Analogous equations such as Equation (7.1) for the unpolarized case can be found in several
references (see e.g., Adam 1990; Mihalas et al. 1978; Pomraning 1973). For the polarized
case with PRD, the RT equations are given in chapters 4, 5 and 6. Here I = (I,Q,U)T
is the Stokes vector with I, () and U the Stokes parameters defined as in Chandrasekhar
(1950). The reference directions [ and r are marked in the top panels of Figure 7.1.
Positive value of () is defined to be in a direction parallel to [ and negative () in a direction
parallel to r. The quantity r = (x,y,z) is the position vector of the ray in the Cartesian
co-ordinate system (see bottom panels of Figure 7.1). The unit vector Q = (n,v,u) =
(sinf cos ¢ ,sind sin g, cosf) defines the direction cosines of the ray in the atmosphere
with respect to the atmospheric normal (the Z-axis), where 6 and ¢ are the polar and

azimuthal angles of the ray (see Figure 7.1).

The quantity x; is the frequency averaged line opacity, ¢ is the Voigt profile function
and k. is the continuum opacity. Frequency is measured in reduced units, namely z =

(v — 1)/ Avp where Avp is the Doppler width. The Stokes source vector in a two-level
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Table 7.1: Table describing the evolution of ideas in the past three decades to simplify the difficult
problem of formulating/solving the polarized line RT equation. In the text of the table, we use the follow-
ing abbreviations. RTE:radiative transfer equation; AA:angle-averaged; AD:angle-dependent; PM: phase

matrix; RM: redistribution matrix, CRD: complete frequency redistribution; PRD: partial frequency redistri-

bution.

Milestones

B = 0 (Rayleigh scattering)

B # 0 (Hanle effect)

(1) Formulation of PM

in Stokes vector formulation

Chandrasekhar (1946)
Hamilton (1947

Stenflo (1978)

(2) Stokes vector RTE : 1D/CRD

1947)
Rees (1978)

Faurobert-Scholl (1991)
Nagendra et al. (2002)

(3) Stokes vector RTE : multi-D/CRD

Paletou et al. (1999)

(4) Stokes vector RTE :
1D/PRD

Rees & Saliba (1982) : AA
Dumont et al. (1977) : AD

Nagendra (1986) : AA
Faurobert (1987) : AA/AD

Faurobert-Scholl (1991) : AA
Nagendra et al. (2002) : AA/AD

(5) PM decomposition

in terms of Té(

Landi Degl’Innocenti &
Landi Degl’Innocenti (1988)

Landi Degl’Innocenti &
Landi Degl’Innocenti (1988)

(6) Irreducible Stokes source
vector in Stokes vector RTE: 1D/CRD

Landi Degl’Innocenti
et al. (1987)

Landi Degl’Innocenti
et al. (1987)

(7) Irreducible Stokes source
vector in Stokes vector RTE:
multi-D/CRD

Manso Sainz &
Trujillo Bueno (1999)
Dittmann (1999)

Manso Sainz &
Trujillo Bueno (1999)
Dittmann (1999)

(8) Irreducible Stokes
vector RTE: 1D/CRD

Frisch (2007)

Frisch (2007)

(9) Formulation of polarized RM :

Omont et al. (1972

Domke & Hubeny (1988

Omont et al. (1973)
Bommier (1997a, 1997b)

(10) RTE with RM : 1D/AA

Nagendra (1994

Nagendra et al. (2002)

(11) RTE with RM :
multi-D/AA

(

(
Faurobert-Scholl (1991

(

2

Anusha et al. (2011a

Anusha & Nagendra (2011b)

(12) RTE with RM : 1D/AD

Faurobert (1987
Nagendra et al. (2002

Nagendra et al. (2002)
Sampoorna et al. (2008c)

(13) Fourier decomposition of
AD PRD functions: 1D

)
)
)
)
Anusha & Nagendra (2011a)
)
)
)
)

Frisch (2009, 2010

Frisch (2009)

(14) RTE with RM based on
Fourier expansions of
AD PRD functions : 1D

Sampoorna et al. (2011)

Sampoorna (2011)
Nagendra & Sampoorna (2011)

(15) a. RTE with RM : multi-D/AD
b. Fourier expansion of

AD PRD functions: multi-D

c. RTE with RM based on

Fourier expansions of

AD PRD functions : multi-D

Anusha & Nagendra (2011c) and
Anusha & Nagendra (2011d)

Anusha & Nagendra (2011c) and
Anusha & Nagendra (2011d)
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 7.1: In the top panels we show atmospheric reference frame. The an-
gle pair (0, ¢) define the scattered ray direction and (6, ') that of the incident
ray direction. The magnetic field is characterized by B = (I',0p, x5), where
I" is the Hanle efficiency parameter and (6p, xp) define the field direction. In
the bottom panels we show the definition of the position vector r and the
projected distances r — (s — s')€2 which appear in Equation (7.6). 79 and r
are the arbitrary initial and final locations that appear in the formal solution
integral (Equation (7.6)).
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Figure 7.2: Comparison of the exact (solid lines) and Fourier expansion (dash-triple-dotted lines) of

rrp and rppp functions with 5 terms retained in the series (Equation (7.35)).

model atom with unpolarized ground level (see e.g., Faurobert 1987; Nagendra et al. 2002)
is
ki(r)p(z)Si(r, 2, 2) + Ke(r)Se(r, 2)

S(r,Q,z) = k(1)) + ko(T)

(7.2)

S. is the unpolarized continuum source vector given by (B, (r),0,0)" with B, (r) being the
Planck function. The line source vector (see e.g., Faurobert 1987; Nagendra et al. 2002)

1s written as

~

too dY R(x,2’,Q, Q' B)
dx’ x
4w o(z)

R is the Hanle redistribution matrix with angle dependent PRD (see Section 4.2, approx-

I(r, 0, 2"). (7.3)

Si(r,Q,z) = G(r) +/

—00

imation level II of Bommier 1997b). B represents an oriented vector magnetic field. The
thermalization parameter € = I';/(I'g + I'7) with I'; and I'g being the inelastic collision
rate and the radiative de-excitation rate respectively. The damping parameter is computed
using a = ag[l+ (g +1'1)/T'g] where ag = I'g/47Avp and I'g is the elastic collision rate.
We denote the thermal source vector by G(r) = eB, (r) with B,(r) = (B,(r),0,0)". The
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solid angle element d€?' = sin 6’ df' dy' where 6 € [0, 7] and ¢ € [0,27]. The RT equation
along the ray path takes the form

dI(r,Q
TR sl D). 9,2) — S(r,0,2)]
(7.4)
where s is the path length along the ray and k. (7, ) is the total opacity given by
Kot (T, T) = Ki(1)o(x) + Ke(T). (7.5)

The formal solution of Equation (7.4) is given by

I(r.Q,2) = I(ro, 2, 2) exp {—/S/imt(r _(s— )0, x)ds’}

S0

+ / S(r— (5 — )0 O, 2)kns (1 — (5 — )2, ) exp {—//S/-%t('r (s 9, x)ds”} ds'
" s (7.6)

I(ry,Q, ) is the boundary condition imposed at 79 = (X, yo,%0). Here s is the distance
measured along the ray path (see bottom panels of Figure 7.1). Equations (7.1)—(7.6) can
be solved using a perturbation method (see for the corresponding 1D case, Nagendra et
al. 2002). However the perturbation method involves an approximation that the degree
of linear polarization is small (few % only). Under the situations where the degree of
polarization becomes large the perturbation method cannot be expected to guarantee a
stable solution. A numerical disadvantage of working in Stokes vector formalism is that the
physical quantities depend on all the angular variables (£2,€’). Added to this, the angle-
dependent polarized RT problem demands high angular grid resolution thereby requiring

enormous memory and CPU time.

7.3 Transfer equation in terms of irreducible spherical tensors

As shown in HF07, § and I can be decomposed into 6-dimensional cylindrically symmet-

rical vectors & and Z defined for a 1D geometry as

S = (89,55, 5%, 577, S3*, S3)7T
=19, 12, 1717, %, )T (7.7)

In chapters 4 and 6 generalizations of the technique of HF07 to the multi-D case are

discussed, for the case of angle-averaged PRD. We show here that the same decomposition
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Figure 7.3: Frequency dependence of real parts of fl(f )IH(:I:,Q:’ ,0,9). Solid, dotted, dashed, dot-
dashed and dash-triple-dotted lines respectively correspond to k = 0, k = 1, k = 2, kK = 3 and
k=4.

method can be applied to the corresponding angle-dependent PRD case, by replacing the
angle-averaged PRD functions with angle-dependent PRD functions. This leads to an
additional dependence of & on the scattered ray direction 2. The vectors Z and S satisfy

an RT equation of the form

_ﬁﬂ ’ Vl'(r,ﬂ,x) = [I(r,ﬂ,x) _S("">Q,l’)], (7.8)
where
S(r,Q,x) =p,Si(r,Q,z) + (1 — p,)Sc(r, ), (7.9)
with S.(r,z) =(B,(r),0,0,0,0,0) and
Pz = Hl(T)¢(I)/KtOt(T, I) (710)

The irreducible line source vector is given by

+oo
Si(r,Q,z) =eB(r) + @/ dx’j{
N (B, 2, 'y, !, 2, ) }@(Qf)z(r, 2,

d§¥ - 9 / / ’
1 W{MH(B, z, 2" )rp(z, o', 2, Q)
T

(7.11)
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with B(r) = (B,(r),0,0,0,0,0)” being the Planck vector. For brevity of notation hereafter
)=

we denote G(r B(r). W is a diagonal matrix written as

W = diag{Wy, Wy, Wy, Wy, Wy, Wy} (7.12)

rin are the well known angle-dependent PRD functions of Hummer (1962) which depend
explicitly on the scattering angle ©, defined through cos © = € - €’ computed using

cos © = pp' + /(1 — p2) (1 — p2) cos(¢' — ). (7.13)

The matrix U represents the reduced phase matrix for the Rayleigh scattering. Its elements
are listed in Appendix J. The elements of the matrices MII,IH(B ,x,2') can be found in

Bommier (1997b, see also Appendix K). The formal solution now takes the form
T2 (7,82) o
Z(r,Q,z) =I(ry,Q,z)e =P —|—/ e VS (! Q. x)drl (v, Q). (7.14)
0

Here Z(ry, 2, x) is the boundary condition imposed at ry. The monochromatic optical
depth scale is defined as

T.(r, Q) = 1,.(x,y,2,Q) = / Kiot (P — (s — 8 )Q, x) ds', (7.15)

S0
where 7, is measured along a given ray determined by the direction €2.

One can develop iterative methods to solve Equations (7.8)—(7.14). Because the physical
quantities (like §) still depend on €2, it is not numerically very efficient. In the next section
we present a method to transform the Equation (7.8) into a new RT equation, which is

simpler to solve.

7.4 Transfer equation in terms of irreducible Fourier coefficients

HF09 introduced a method of Fourier series expansion of the angle-dependent PRD func-
tions ripm(z, 2', 2, Q). Here we present a generalization to the multi-D case, the formu-
lation given in HF09.

Theorem: In a multi-D polarized RT including angle-dependent PRD and Hanle effect,

the irreducible source vector & and the irreducible Stokes vector Z exhibit Fourier expan-
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sions of the form

k=00
S(r. )= 7 & 8 (r.0.2),

k=—0oc0
k=00 (k
Z(r,Q,x)= Z et It )(r,Q,x),
k=—0o0
(7.16)
and that the Fourier coefficients 8" and 7" satisfy an RT equation of the form
1 ~ ~ -
- vir 9.0 =" r 9.0 - 8V, 0,2). (7.17)

Rtot (Ta ff)

Proof: The proof is given for the general case of a frequency domain based PRD (approx-
imation level IT) that was derived by Bommier (1997a, 1997b). Since the angle-dependent
PRD functions ry(z, 2/, Q, Q') are periodic functions of ¢ with a period 27, we can
express them in terms of a Fourier series

k=00

rim(z, ', Q, Q) = Z e'ke fl(f’}ﬂ(x,x'ﬁ,ﬂ'), (7.18)

k=—o00

. . (k .
where the Fourier coefficients ’I“I(I )IH are given by

27 d )
fl(f,)ln(%xl, 0, Q’) = /0 2—:? e ke 7“11,111($7$,7 Q, Q/)‘ (7.19>
We let o
G(r)= Y et "), (7.20)
k=—00
where g
" (r) :/ SF emike G(p). (7.21)
0 2m
Note that
~ Gg(r) ifk=0,
¢"r) = ) (7.22)
0 if £ #£0.
We can write .
Sr,r)=Y ¢ 8" (r,x), (7.23)



7.4. Transfer equation in terms of irreducible Fourier coefficients 187

where
5" (r,2) = 508.(r, 2) (7.24)

C

Substituting Equation (7.18) in Equation (7.11) and using Equations (7.24) and (7.9) we
get

S(r,Q,z) = kzoo e 8% (50, 2),
o (7.25)
where
S'(k)(r, 0,x) = prsf’“)(r, 0,x)+ (1 — px)Sik) (r,x), (7.26)
with

~ ~ 1 +oo dQY . (-
Sl(k)(T,Q,x) = g(k)(’r) + M/ dm'% ym W{MH(B,:E,x’)fﬂc)(x,x’,@, Q')

+ V(B 2,2 )il (e, 2,0, ) p ()T (r, ¥, ). (7.27)

Substituting Equation (7.27) in Equation (7.14) we get

k=00
I(r, Q)= Y ¢ I"(r 02) (7.28)
k=—o00
where
— (k) (k) o [T e a®
T (r,Qz)=T (ro,Q z)e ™" )+/ eV S (g, x)dr! (v, ), (7.29)
0
with
= (k)
v (’I"(), Q, ZL‘) = 5kOI(T07 Q, l’) (730)

Here S depends only on 7' but not the variable of integration 7. (v’, Q) which is mea-
sured along a given ray determined by the direction 2. Substituting Equation (7.29) in
Equation (7.27) we obtain

~ ~ 1 +oo dY . ¢ -
Sl(k)(r,g,x) = g(k)(’r) + M/ d:v'% g W{MH(B,:E,x’)fl(f)(x,m’,ﬁ, Q')

k/'=4o00 ,
4 N (B, 2, ")) (2, 2/, 6, n')}@(m S T ). (7.31)

k'=—o0
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Figure 7.4: Frequency dependence of imaginary parts of fl(f )HI(as,a:’ ,0,9). Solid, dotted, dashed, dot-
dashed and dash-triple-dotted lines respectively correspond to k=0, k=1, k=2, k=3 and k = 4.

Now from Equations (7.25) and (7.28) and Equation (7.8) it is straight forward to show
that the Fourier coefficients 8 *) and " satisfy an RT equation of the form

0. viPe 00 = Y, 0.2) - 8V, 0,2). (7.32)
Kot (T, )

This proves the theorem. Equation (7.18) represents the Fourier series expansion of the
angle-dependent redistribution functions rm(x, ', Q, Q). The expansion is with respect
to the azimuth ¢ of the scattered ray. In this respect our expansion method differs from
those used in Domke & Hubeny (1988), HF09, HF10 and Sampoorna et al. (2011), all of
whom perform expansion with respect to ¢ — ¢’, where ¢’ is the incident ray azimuth. The
expansion used by these authors naturally leads to axisymmetry of the Fourier components
i(k), because of the 1D planar geometry assumed by them. In a multi-D geometry the
expansion with respect to ¢ — ¢’ does not provide any advantage. In fact f(k) continue to
depend on ¢ due to finiteness of the co-ordinate axes X and/or Y in multi-D geometry,
under expansions either with respect to ¢ or ¢ — ¢’. The Fourier expansion of the 8§ in
terms of ¢ (or ¢ — ¢') leads to axisymmetric 8" in 1D as well as multi-D geometries.
Thus both the approaches are equivalent.
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7.4.1 Symmetry properties of the irreducible Fourier coefficients

From Equation (7.19) it is easy to show that the components fl(f }H satisfy the conjugation
property

HONY UM

T = (TH,III> : (7.33)
In other words the real and imaginary parts of fl(f )HI are respectively symmetric and anti-

symmetric about k = 0.
Using Equation (7.33) we can re-write Equation (7.18) as

T (2, ', 8, Q/) = fl(g)m(:c, 2’0, Q/)

k=00
+ Z{e’ik“" 771(;11?1(35, 7,0, ) + ek fl(f’)m(x, 2,0, )}, (7.34)
k=1
or
k=00
ri(z, o, Q, Q) = (2 — Sro)Re{e™ {1y (z. 2,0, )}, (7.35)
k=0

In Equation (7.35) the Fourier series constitutes only the terms with & > 0. This is useful
in practical applications. With this simplification we can show, following the steps similar

to those given in Section 7.4, that Equation (7.16) now becomes

k=00
S(r,Q.z) = > (2~ b) Re{c*?EY (1.0, 1)},
k=0
k=00 ~ (K
I(r,Q,2) =S (2 - di) Re{e™T" (r, 0, 2)}, (7.36)
k=0
where
3% r,0,0) = p.8" (r,0,0) + (1 - p)E (r,2), (7.37)
with
5 (r,2) = 6108.(r, ) (7.38)
and

~ ~ 1 +oo dSY . ¢ -
Sl(k)(r,ﬁ,:c) = g(k)(r) + —/ dz’ x 7{ W{MH(B,J:,x’)fl(f)(x,:c’,Q,Q')

o(7) J Adm
A A k'=+c0 o
+MIH(B,x,a:')f§fl>(x,m',e,Q’)}xy(m 3" (2 - Gw0) Refe* TN (r 2 0)).
k'=0

(7.39)
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Figure 7.5: Emergent, spatially averaged I,Q/I,U/I profiles computed for
a test 2D RT problem with angle dependent PRD using two methods, namely
the one which uses (6, k) space (solid lines) and the other which uses the
(0, ¢) space (dotted lines) Both the approaches use the Pre-BiCG-STAB as
the iterative method. Both methods produce nearly identical results, proving
the correctness of the proposed Fourier decomposition technique for angle-
dependent PRD problems in multi-D RT. The results are plotted for 4 = 0.1

and ¢ = 27°. The details and other model parameters are given in Section 7.5.
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The components of S(k) and .’i'(k) in general form countably infinite sets!. We have
verified that for practical applications it is sufficient to work with five terms in the Fourier
series (k € [0, +4]). Figure 7.2 shows a plot of the ryyip functions computed using an exact
method (as in Nagendra et al. 2002), and those computed using Equation (7.35) with
k € [0, +4], namely keeping only the 5 dominant components in the series expansion. A
similar comparison of the exact and series expansion methods for ry is presented in Domke
& Hubeny (1988), who also show that 5 dominant components are sufficient to accurately

represent angle dependent ry; function.

In Figures 7.3 and 7.4 we study the frequency dependence of the real and imaginary
parts of fl(f iﬂ(x,x’ ,6,€) for a given incident frequency point (2’ = 1 for fg: ) and ' =0
for fl(ﬁ)). We show the behaviour of five (k = 0,1,2,3,4) Fourier components. Note that

~(0) o
T are real quantities.

Equations (7.32) and (7.29) together with Equations (7.39), (7.38) and (7.37) can be
solved using an iterative method. In the next chapter (see also Anusha & Nagendra 2011d)
we develop a fast iterative method (Pre-BiCG-STAB) and present the solutions of polarized
RT in multi-D geometry including Hanle effect with angle-dependent PRD.

After solving for 8 ®) and Z% we can construct & and T using the Equation (7.36).

Since & and Z are real quantities these expansions reduce to the following simpler forms.

S(r,Q,x) = 200(2 — ko)
X { cos(ke)Re{8" (r,0, 1)} — sin(kp)Zm{S" (r,0, g;)}}, (7.40)
and
Z(r,Q,z)= 3 (2 — ko)
><{ cos(kgo)Re{i(k)(r, Q )} — sin(k;go)Im{i'(k)(r, Q, ZL’)}}, (7.41)

where 8 = (59, S3, ST, S7¥, 53%, Sy and T = (I§, IZ, I}™, I}, 1™, I;¥)T.

Once we obtain & and Z, the Stokes source vector and Stokes intensity vector can be

'If a set has an one-to-one correspondence with the set of integers, it is called as a countably infinite
set.
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deduced using the following formulae (see Appendix B of HF07 and also chapter 4).

1
I(r,Q,z2) = 1)+ —=(3cos’ 0 — 1)1}

2v2
—V/3cosfsin O(17* cos p — I sin )

3
—I—%(l — cos2 0) (I3 cos 2p — 1Y sin 2¢),

(7.42)
Q(r,Q,x) = —i(l —cos?0)I3
) S & 2\/5 0
—V/3cosfsin O(17* cos p — I sin )
3
—\/7_(1 + cos? 0) (I3 cos 2p — I3Y sin 2¢),
(7.43)
Ur,Q,z) = V3sin (I sin g 4+ 1Y cos )
+v/3 cos O(15* sin 2¢ + 127 cos 2¢p). (7.44)

The quantities 19, I2, I7*, I7Y, I2*, IV also depend on r, Q, z. Similar formulae can also
be used to deduced S from S.

7.5 Numerical considerations

The proposed Fourier series expansion (or Fourier decomposition) technique to solve multi-
D RT problems with angle-dependent PRD functions essentially transforms the given prob-
lem in (6, ) space (see Section 7.3) into (6, k) space (see Section 7.4). Let n, denote the
number of azimuths () used in the computations and n; the maximum number of terms
retained in the Fourier series expansions. In (6, ) space the source terms 8 depend on
n, whereas in (6, k) space the source terms S g depend on ng. In Figure 7.2 we have
demonstrated that it is sufficient to work with n, = 5 (i.e., k € [0,4]), whereas for 2D
RT problems it is necessary to use n,=8, 16, 24 or 32 depending upon the accuracy re-
quirements of the problem. Since ny is always smaller than n,, the computational cost is

reduced when we work in the (6, k) space.

In addition to the computation of rim(z, 2, 2, Q') functions, we need to compute

fl(f )HI(x, x',0,€) in the (0, k) space. This additional computation does not require much of
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CPU time. Moreover, if we can fix the number of angles and frequency points to be used
in the computations, it is sufficient to compute these functions only once, which can be
written to a file. In subsequent transfer computations this data can be simply read from
the archival file.

To demonstrate these advantages, we have compared the CPU time requirements for
the two methods, namely the one which uses (6, ) space and the other which uses the
(0, k) space. Both the approaches use the Pre-BiCG-STAB as the iterative method to
solve the 2D RT problem. We find that with n, = 32, the CPU time required to solve a
given problem in (6, k) space is 7 times lesser than that required to solve the same problem
in (0, ) space. For practical problems requiring more number of azimuthal angles, the

advantages of using Fourier decomposition technique is much larger.

To demonstrate the correctness of the proposed Fourier decomposition technique for
multi-D RT, we consider a test RT problem in 2D medium. A complete study of the
solutions of 2D RT problems with angle-dependent PRD will be taken up in the next
chapter. Figure 7.5 shows the emergent, spatially averaged Stokes profiles formed in a
2D media, computed using the two methods mentioned above. The model parameters
are: the total optical thickness in two directions namely Ty = T, = T = 20, the elastic
and inelastic collision rates respectively are 'y /T = 1074, I';/T'r = 1074, the damping
parameter of the Voigt profile is a = 2x 1073. We consider the pure line case (k. = 0). The
internal thermal sources are taken as constant (the Planck function B, = 1). The medium
is assumed to be self-emitting (no incident radiation on the boundaries). We consider the
case of zero magnetic field. The branching ratios for this choice of model parameters are
(o, O, 3)) = (1,1,1). These branching ratios correspond to a PRD scattering that uses
only fl(f ) (x,2',0,€) function. We use a logarithmic frequency grid with 2., = 3.5 and a
logarithmic depth grid in Y and Z directions of the 2D medium. We have used a 3-point
Gaussian p-quadrature and a 32-point Gaussian ¢-quadrature. In Figure 7.5 we show the
results computed at ¢ = 0.1 and ¢ = 27°. The fact that both the methods give nearly
identical results proves the correctness of the proposed Fourier decomposition technique
for multi-D RT.

7.6 Concluding remarks

In this chapter we formulate polarized RT equation in multi-D media that includes angle-
dependent PRD and Hanle effect. We propose a method of decomposition of the Stokes

. . . . . . ok
source vector and Stokes intensity vector in terms of irreducible Fourier components & *)
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and i(k), using a combination of the decomposition of the scattering phase matrices in
terms of irreducible spherical tensors ’7;5( and the Fourier series expansions of angle-
dependent PRD functions. We also establish that the irreducible Fourier components
S.(
like an Approximate Lambda Iteration (ALI) or a Biconjugate-Gradient type projection
method.

g and f(k) satisfy a simple RT equation, which can be solved by any iterative method

New Results

The AD PRD in line scattering is considered to be a challenging problem in astrophysics.
Inclusion of AD PRD in multi-D RT is a formidable problem which we have solved in this

chapter. The important results of this study are as follows.

1. We have formulated the polarized RT equation in multi-D media that takes into account
Hanle effect with AD PRD functions.

2. We have generalized here to the multi-D case, the method of Fourier series expansion

of AD PRD functions originally developed for RT in 1D geometry.

3. We show that the Stokes source vector S = (S, Sg, Sy)? and the Stokes vector
I =(I,Q,U)" can be expanded in terms of infinite sets of components S(k), z" respec-

tively, k € [0, 4o00].

4. We show that the components S ® become independent of the azimuthal angle (¢) of

k
the scattered ray, whereas the components l'( ) remain dependent on ¢ due to the nature

of RT in multi-D geometry.

5. We also establish that S'(k) and i(k) satisfy a simple transfer equation, which can
be solved by any iterative method like PALI or a Biconjugate-Gradient type projection

method, provided we truncate the Fourier series to have a finite number of terms.



Chapter 8

Angle-dependent PRD in multi-D media:

Radiative transfer

The contents of this chapter are based on the following publication:
Anusha, L. S., & Nagendra, K. N., 2012, ApJ, 746, 84-99

8.1 Introduction

The solution of polarized line transfer equation with angle-dependent (AD) partial fre-
quency redistribution (PRD) has always remained as one of the difficult areas in the astro-
physical line formation theory. The problem stems from the inextricable coupling between
frequency and angle variables, which are hard to be represented using finite resolution
grids. Equally challenging is the solution of polarized line radiative transfer (RT) equation
in multi- dimensional (multi-D) media. There existed lack of formulations that reduce the
complexity of multi-D transfer, when PRD is taken into account. In previous three chapters
namely chapter 4, 5 and 6 (see also Anusha & Nagendra 2011a; Anusha et al 2011a; Anusha
& Nagendra 2011b), we formulated and solved the transfer problem using angle-averaged
(AA) PRD. In chapter 7 (see also Anusha & Nagendra 2011c), we formulated a Fourier
decomposition technique which cleverly simplifies the problem of ‘multi-D RT with AD
PRD’. The Fourier decomposition technique for transfer in one-dimensional (1D) media
including Hanle effect and AD PRD was formulated by Frisch (2009). This technique was
extended to handle multi-D transfer in chapter 7. In this chapter we apply the technique
presented in chapter 7 to establish several benchmark solutions of the corresponding line
transfer problem. A historical account of the work on polarized RT with AD PRD in 1D

planar media, and the related topics is given in detail, in Table 7.1. Therefore we do not

195
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repeat here.
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Figure 8.1: The definition of the spatial location r and the projected dis-
tances (s — ') which appear in the 2D formal solution integral (Equa-
tion (8.12)). 7o and r are the initial and final locations considered in the formal
solution integral. The values of the variable along the ray satisfy so < s’ < s.

In Section 8.2 we present the multi-D polarized RT equation in a two-dimensional (2D)
medium, expressed in terms of irreducible Fourier coefficients, denoted by i'(k) and S (k),
where £ is the index of the terms in the Fourier series expansion of the Stokes vector I
and the Stokes source vector S. Section 8.3 describes the numerical method of solving
the concerned transfer equation. Section 8.4 is devoted to a discussion of the results.

Concluding remarks are presented in Section 8.5.

8.2 Polarized transfer equation in a multi-D medium

The multi-D transfer equation written in terms of the Stokes parameters and the relevant
expressions for the Stokes source vectors (for line and continuum) in a two-level atom
model with unpolarized ground level, involving the AD PRD matrices is well explained
in Section 7.2. All these equations can be expressed in terms of ‘irreducible spherical

tensors’ (see Section 7.3). Further, in Section 7.4 we developed a decomposition technique
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to simplify this RT equation using Fourier series expansions of the AD PRD functions.
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Figure 8.2: RT in a 2D medium. We assume that the medium is infinite in
the direction of the X-axis and has a finite dimension in the direction of the
Y-axis and the Z-axis. The top surface is marked.

Here we describe a variant of the method presented in chapter 7, which is more useful
in practical applications involving polarized RT in magnetized two-dimensional (2D) and

three-dimensional (3D) atmospheres.

8.2.1 The radiative transfer equation in terms of irreducible spherical tensors

Let I = (1,Q,U)" be the Stokes vector and S = (S, Sg, Sy)T denote the Stokes source
vector (see Chandrasekhar 1950). We introduce vectors 8 and Z given by

S = (89,55, 57, 57, S, S5
T =10, 1% 17, I3%, ;7). (8.1)

These quantities are related to the Stokes parameters (see e.g., Frisch 2007) through
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Figure 8.3: The emergent, surface averaged components of Z in non-magnetic (the first two columns) and
magnetic (the last two columns) 2D media for 4 = 0.11 and ¢ = 0.5°. The actual values of the components

are scaled up by a factor of 10%. Solid and dotted lines represent respectively the AA and the AD PRD.

In the first two columns (for B = 0), I?™* and I;¥ are zero for the AA PRD (solid lines) and the other
10 components are non-zero (four AA components and six AD components). In the last two columns, the

magnetic field parameters are (I'p, 05, xp) = (1,90°,60°). All the components are important for B # 0.
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1
I(r,Q,2) = I+ ——=(3cos* 0 — 1)1}
(rQa) = 1§+ 5 )1

—V/3cosOsin (17 cos p — I sin )

3
+\/7—(1 — cos? 0)(13* cos 2p — I2¥ sin 2¢),

(8.2)
Q(r,Q,z) = —i(l —cos? )12
) W E, 2\/5 0
—V/3cosOsin O(17* cos p — I sin )
3
—g(l + cos? 0) (I3 cos 2p — I3 sin 2¢p),
(8.3)
U(r,Q,z) = V3sin (17 sin ¢ + 1Y cos p)
+v/3 cos (I3 sin 2¢ + I3 cos 2¢). (8.4)

We note here that the quantities I3, I2, I, I7Y, I7* and I>” also depend on the variables
r, Q and z (defined below).

For a given ray defined by the direction €2, the vectors & and Z satisfy the RT equation
(see Section 7.3)

1
——Q-VI(r,Q )= Z(r,Qz)—8S(r,Q x). 8.5

sy VIO ) = (. 2x) - S(r. Q.2 5)

It is useful to note that the above equation was referred to as ‘irreducible RT equa-
tion’ in chapter 7. Indeed, for the AA PRD problems, the quantities Z and S are
already in the irreducible form. But for the AD PRD problems, Z and & can fur-
—(

ther be reduced to Z

sition vector of the point in the medium with coordinates (x,y,z). The unit vector

k) ok . . . . .
and & ~ using Fourier series expansions. Here r is the po-

Q= (n,7,1) = (sinf cosp,sinf sing, cosf) defines the direction cosines of the ray with
respect to the atmospheric normal (the Z-axis), where 6 and ¢ are the polar and azimuthal

angles of the ray. Total opacity ki (7, x) is given by

Htot(ra :L‘) = 1{1(1“)¢(:L‘) + ’iC(r)’ (86)

where k; is the frequency averaged line opacity, ¢ is the Voigt profile function and k. is
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Figure 8.4: Same as Figure 8.3 but for ¢ = 89°.
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the continuum opacity. Frequency is measured in reduced units, namely x = (v — 1) /Avp
where Avp is the Doppler width.

For a two-level atom model with unpolarized ground level, §(r, €2, z) has contributions

from the line and the continuum sources. It takes the form
S(r,Q,z) = p,Si(r,Q,z) + (1 — p,)S.(r, ), (8.7)

with
Pz = Ki(1)P(x) /Kot (T, ). (8.8)

The line source vector is written as

1 teo
Si(r,Q,z) =G(r) + M/—oo dx 7{
+MIH(B7I7I/)THI(I7I/7979/)}®<Q/)I(T7Q/Vr/)a (89)

dQ, I~ - / / ’
; W{MH(B,x,a:)rH(x,:c,Q,Q)
78

with G(r) = (eB,(r),0,0,0,0,0)" and the unpolarized continuum source vector S.(r, )
=(S.(r,),0,0,0,0,0)7. We assume that S.(r,z) = B,(r) with B,(r) being the Planck
function. The thermalization parameter ¢ = I';/(I'r + I';) with I'; and I'r being the
inelastic collision rate and the radiative de-excitation rate respectively. The damping
parameter is computed using a = ag[l + (I'g + I';)/T'r] where ag = I'g/47Avp and I'g
is the elastic collision rate. The matrix ¥ represents the reduced phase matrix for the
Rayleigh scattering. Its elements are listed in Appendix J. The elements of the matrices
My i(B, x,2') for the Hanle effect are derived in Bommier (1997a, 1997b). In Appendix K

we write them in a form suitable for our calculations. W is a diagonal matrix written as
W = diag{Wy, Wy, Wy, Wy, Wy, Wy} (8.10)

Here the weight Wy = 1 and the weight W5 depends on the line under consideration (see
Landi Degl'Innocenti & Landolfi 2004). Here we take Wy = 1. 7y are the AD PRD
functions of Hummer (1962) which depend explicitly on the scattering angle ©, defined
through cos © = Q - €’ computed using

cos © = pp' + /(1 — p2) (1 — p2) cos(¢' — ). (8.11)
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Figure 8.5: The emergent, spatially averaged components of Z " in non-magnetic (the first two columns)
and magnetic (the last two columns) 2D media for g = 0.11 and ¢ = 89°. The actual values of the compo-
nents are scaled up by a factor of 10%. Solid lines represent the components of Z for the AA PRD, plotted
here for comparison. The dotted curves represent the components Z (O). The thick curves with dashed, dot-

dashed, dash-triple-dotted and long-dashed line types respectively represent Re [f(l)] , Re [i' (2)} , Re [i'(S)}
and Re [1?(4)] Similarly the thin curves with dashed, dot-dashed, dash-triple-dotted and long-dashed line

types respectively represent Zm [i'(l)}, Im [1(2)}, Im [i'(g)} and Zm [i'(4)}. In the last two columns, the
magnetic field parameters are (I'p, 05, x5) = (1,90°,60°).
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The formal solution of Equation (8.5) is given by

Z(r,Q, 1) = I(ry, Q, ) exp {—/S/{tot(r —(s— ), x)ds’}

S0

+ / S(r— (s — )0, Q. )k (1 — (5 — '), ) exp {—[wr (-, :U)ds"} s’

S0 /

(8.12)

The formal solution can also be expressed as
T2 (7,82) L
Z(r,Q,z) =I(ry, Q,z)e =P +/ e VS (¢ Q. x)drl (v, Q). (8.13)
0

Here Z (¢, €2, x) is the boundary condition imposed at the boundary point ry = (X, Yo, Zo)-

The monochromatic optical depth scale is defined as

Q) = (%, v,2, Q) :/ (7 — (5 — §), 2) d, (8.14)
S0

7.(r, Q) is the optical thickness from the point 7y to the point  measured along the ray.

In Figure 8.1 we show the construction of the vector ' = r — (s — s')€2. The point ', tip

of the vector 7/, runs along the ray from the point rq to the point r as the variable along

the ray varies from sg to s. In chapters 4-7, the figure corresponding to Figure 8.1 was

drawn for a ray passing through the origin of the coordinate system.

In chapter 7 we have shown that using Fourier series expansions of the AD PRD func-
tions ri(x, ', Q, Q') with respect to the azimuth (¢) of the scattered ray, we can trans-
form Equations (8.5)—(8.13) into a simplified set of equations. In the non-magnetic case,
the method described in chapter 7 can be implemented numerically, without any modifica-
tions. In the magnetic case, it becomes necessary to slightly modify that method to avoid
making certain approximations which otherwise would have to be used (see Section 8.2.2
for details).

8.2.2 A Fourier decomposition technique for domain based PRD

In the presence of a weak magnetic field B defined by its strength B and the orientation
(0B, xB), the scattering polarization is modified through the Hanle effect. A general PRD
theory including the Hanle effect was developed in Bommier (1997a,1997b). A description
of the Hanle effect with the AD PRD functions is given by the approximation level II

described in Bommier (1997b). In this approximation the frequency space (z, ') is divided
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Figure 8.6: Same as Figure 8.5 but for ¢ = 89°.
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into five domains and the functional forms of the redistribution matrices is different in each

of these domains. We start with the AD redistribution matrix including Hanle effect namely

A A

R(z,2',Q, 2, B) = W{MH(B, z, 2 )ry(x, o', Q, Q)
V(B 2, 2 Yz, 2, 2, ) }ﬁ!(ﬂ’). (8.15)
We recall here that the dependence of the matrices MII,III on z and 2’ is related to the

definition of the frequency domains. Here R is a 6 x 6 matrix. The Fourier series expansions

of the functions ry iz, ', Q, ') is written as

x>

=00

ri(z, o, Q, Q) = (2 — 0ro)Refe™ iy 1y (z,a',0, )}, (8.16)
k=0
with
k 2m dgp )
711(1}11(1’733@97 Q) = / o e rom (2, 2, 2, ). (8.17)
0

Applying this expansion we can derive a polarized RT equation in terms of the Fourier

(k)

coefficients 7" and 8" (see Section 7.4 for details) namely

—ﬁg VI 2 = T, 0 0) — 8 (r.0,2)), (8.18)
where
S(r,Q,x) = k:OO(Q - 6k0){ cos(kyp)Re [S(k)(r, 9, x)] —sin(ky)Zm [S(k)('r, 9, x)] },
w (8.19)
and
Z(r,Q,x)= k°°(2 - 5k0){ cos(ky)Re [i'(k)(r, Q,x)] —sin(kp)Zm [f(k)(r, Q,x)} }
- (8.20)

Equation (8.18) represents the most reduced form of polarized RT equation in multi-D
geometry with the AD PRD. Hereafter we refer to f(k

coefficients’. Z *) and S *) are 6-dimensional complex vectors for each value of k. Here

) and S(k) as ‘irreducible Fourier

S(k)(r, 0,x) = pxgl(k)('r, 0,z)+ (1 — pI)SEk) (r,x), (8.21)
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Figure 8.7: Emergent, spatially averaged @)/ profiles for a 2D medium with 7y = Tz = 20, for a line of
sight © = 0.11. Different panels correspond to different values of ¢ marked in the panels. Solid and dotted
lines correspond to the AA and the AD profiles for B = 0. Dashed and dot-dashed lines correspond to the
AA and the AD profiles in a magnetic medium with magnetic field parameter (I', 05, x5) = (1,90°,60°).
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with
8" (r,2) = 608, (r, 1), (8.22)
and
~ (k) ) 1 Feo ,j{dQ’
S, (r,0,2)=G (T)+_¢(x) /_OO dx pm
2 (k) k=00 o~ (K)
xR (1,20, B) Y (2 0po) Re{e®¥T" (r, ', 2)}. (8.23)
k’'=0

Here Q(k)(r) = edro B, (r) and

~(k

R )(af,x’,e,ﬂ',B) = W{MH(B,Q:,x')fl(f)(:c,x',H,Q')
+ N (B, v, ) (2, 2,0, ) I (), (8.24)

: : G :
Clearly, in the above equation the matrix R  is independent of the azimuth (¢) of the
scattered ray. We recall that MHJH matrices have different forms in different frequency
domains (see Bommier 1997b, Nagendra et al. 2002 and Appendix K in this thesis). In
the approximation level-II of Bommier (1997b) the expressions for the frequency domains
depend on the scattering angle ©, and hence on € and Q' (because cos©® = € - ).
Therefore to be consistent, we must apply the Fourier series expansions to the functions
involving © which appear in the statements defining the AD frequency domains of Bom-
mier (1997b). This leads to complicated mathematical forms of the domain statements.
To a first approximation one can keep only the dominant term in the Fourier series (cor-
responding to the term with & = 0). This amounts to replacing the AD frequency domain
expressions by their azimuth (p)-averages. A similar averaging of the domains over the
variable (¢ — ¢) is done in Nagendra & Sampoorna (2011), where the authors solve the
Hanle RT problem with the AD PRD in 1D planar geometry. These kinds of averaging
can lead to loss of some information on the azimuth (¢) dependence of the scattered ray
in the domain expressions. A better and alternative approach which avoids any averaging

of the domains is the following.

Substituting Equation (8.16) in Equation (8.15) we can write the ij-th element of the

R matrix as

Eol

Rij(z, 2, Q,Q, B) =Y (2 o)Re{e™ R (2,270, B)}, i.j=12,...,6,
k=0
(8.25)
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- 2 (k)
with Rg;) being the elements of the matrix R given by Equation (8.24). Through the 27-

periodicity of the redistribution functions ri(z, 2, €2, Q') each element of the R matrix
becomes 2m-periodic. Therefore we can identify that Equation (8.25) represents the Fourier

series expansion of the elements I?;; of the R matrix, with jok) being the Fourier coefficients.
2 (k)
Thus, instead of computing R using Equation (8.24) it is advantageous to compute its

elements through the definition of the Fourier coefficients, namely

_ 2 d )
R(k)(x,x,, 0, Q) = / ay 6—2k(pmj
0

i 2

X {(MH)M(B, z, 2 Y (x, o, Q, Q) + (M) (B, z, 2" )rm (z, 2, Q, Q')} (8.26)

Here W;; are the elements of the W matrix and the matrix elements (MILIH)ij are computed
using the AD expressions for the frequency domains as done in Nagendra et al. (2002),

without performing azimuth averaging of the domains.

8.3 Numerical method of solution

A fast iterative method called the preconditioned Stabilized Bi-Conjugate Gradient (Pre-
BiCG-STAB) was was introduced in chapter 3. It was developed for 2D transfer with
PRD in chapter 5. An AA PRD in the absence of a magnetic field was considered. An
extension to a magnetized 3D medium with the AA PRD was taken up in chapter 6. In
all these chapters, the computing algorithm was written in the n-dimensional Euclidean
space of real numbers R”. In this chapter, we extend the method to handle the AD PRD
for a magnetized 2D media. In this case, it is advantageous to formulate the computing
algorithm in the n-dimensional complex space C". Here n = n, X n, X ng X ngy X ny X ngz,
where ny ; are the number of grid points in the Y and Z directions, and n, refers to
the number of frequency points. ny is the number of polar angles () considered in the
problem. n, is the number of polarization components of the irreducible vectors. n, = 6
for both non-magnetic and magnetic AD PRD cases. nj is the number of components
retained in the Fourier series expansions of the AD PRD functions. Based on the studies
in chapter 7 we take ny = 5. Clearly the dimensionality of the problem increases when we
handle the AD PRD in line scattering in comparison with the AA PRD (see chapters 4
and 5). The numerical results presented in this chapter correspond to 2D media. For 3D
RT, the dimensionality escalates, and it is more computationally demanding than the 2D
RT. The computing algorithm is similar to the one given in chapter 5, with straightforward

extensions to handle the AD PRD. The essential difference is that we now use the vectors
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Figure 8.9: Panel (a) shows emergent (I,Q/I,U/I) profiles formed in an 1D medium and the
panel (b) shows the emergent, spatially averaged (I,Q/I,U/I) profiles formed in a 2D medium.
The solid and dotted lines represent respectively the AA and the AD profiles for B = 0. The
dashed and dash-triple-dotted lines represent respectively the AA and the AD profiles for B # 0,
with the magnetic field parameterized by (I',0p, x5) = (1,90°,60°). The results are shown for
p = 0.11 and ¢ = 89°. For the panel (a) we take Tz = T = 20 and for the panel (b),
T, =Ty =T = 20.
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in the complex space C". The algorithm contains operations involving the inner product
(,). In C™ the inner product of two vectors w = (uy, ug, - - -, u,)? and v = (vy,v9, - - -, v,) T

is defined as .
(u,v) = Zuivf, (8.27)
i=1

where * represents complex conjugation.
The Preconditioner matrix

The preconditioner matrices are any form of implicit or explicit modification of the original
matrix in the system of equations to be solved, which accelerate the rate of convergence of
the problem (see Saad 2000). As explained in chapter 6, the magnetic case requires the use
of domain based PRD, where it becomes necessary to use different preconditioner matrices
in different frequency domains. In the problem under consideration the preconditioner
matrices are complex block diagonal matrices. The dimension of each block is n, x n,, and
the total number of such blocks is n/n,. The construction of the preconditioner matrices
is analogous to that described in chapter 6, with the appropriate modifications to handle

the Fourier decomposed AD PRD matrices.

8.4 Results and Discussions

In this section we study some of the benchmark results obtained using the method pro-
posed in this chapter (Sections 8.2.2 and 8.3) which is based on the Fourier decomposition
technique developed in chapter 7. In all the results, we consider the following global model
parameters. The damping parameter of the Voigt profile is a = 2 x 1072 and the continuum
to the line opacity k./k; = 1077. The internal thermal sources are taken as constant (the
Planck function B,(r) = 1). The medium is assumed to be isothermal and self-emitting
(no incident radiation on the boundaries). The ratios of elastic and inelastic collision rates
to the radiative de-excitation rate are respectively I'y/T'r = 107* T';/Tr = 107*. The ex-
pressions for the redistribution matrices contain the parameters a and S) and are called
as branching ratios (see Bommier 1997b). They are defined as
I'r

a=—
I'pr+Te+1I7

(8.28)

r
(K) _ R
= I+ DE 4T, (8.29)
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with D© = 0 and D® = I'p, where ¢ is a constant, taken to be 0.379 (see Faurobert-
Scholl 1992). The branching ratios for the chosen values of I'y/T'z, I';/Tr and DY) are
(o, B, 33)) = (1,1,1). They correspond to a PRD scattering matrix that uses only
fﬂc ) (x,2,0,€) function. In other words we consider only the collisionless redistribution
processes. We parameterize the magnetic field by (I'p, g, xg). The Hanle I'g coefficient

(see Bommier 1997b) takes two different forms, namely

=T =pYT, Tp=T"=al, (8.30)
with Sre
e
I = 8.31
gJ 2 eFR’ ( )

where e B/2m, is the Larmor frequency of the electron in the magnetic field (with e and m,
being the charge and mass of the electron). We take I'g = 1 for computing all the results
presented in Section 8.4. In this chapter we restrict our attention to effectively optically
thin cases (namely the optical thicknesses Ty = T = 20). They represent formation of

weak resonance lines in finite dimensional structures.

We show the relative importance of the AD PRD in comparison with the AA PRD
considering (1) non-magnetic case (B = 0), and (2) magnetic case (B # 0).

In Figure 8.2 we show the geometry of RT in a 2D medium. We assume that the medium
is infinite along the X-axis, and finite along the Y- and Z-axes. The top surface of the
2D medium is defined to be the line (Y, Zyax), as marked in Figure 8.2. We obtain the
emergent, spatially averaged (I,Q/I,U/I) profiles, by simply performing the arithmetic

average of these profiles over this line (Y, Z,.x) on the top surface.
8.4.1 Nature of the components of Z and i'(k)

Often it is pointed out in the literature that the AD PRD effects are important (see e.g.,
Nagendra et al. 2002) for polarized line formation. For multi-D polarized RT the AD PRD
effects have not been addresses so far. Therefore we would like to quantitatively examine
this aspect by taking the example of polarized line formation in 2D media, through explicit
computation of Stokes profiles using the AD and the AA PRD mechanisms for both B = 0
and B # 0 cases. The Stokes parameters () and U contain inherently all the AD PRD
informations. In order to understand the actual differences between the AD and the AA
solutions one has to study the frequency and angular behaviour of the more fundamental
quantities, namely Z and i(k), which are obtained through multi-polar expansions of the
Stokes parameters.
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In Figures 8.3 and 8.4, we plot the components of the real vector Z=(I7, IZ, [f’x, Ilz’y,

I7*, I;Y) which are constructed using the 6 irreducible components of the nine vectors
-(0) = (1) = (1) -(2) =(2) =(3) =(3) = (4)
z ,Re[z },Im[z ],Re[z ],Im[l' },Re[z },Im[z ],Re[z ] and

Im [fw . For each k, T " s a 6-component complex vector (1”'8(’“), I *) I ), Y ®
o> ) LY (k)). Thus in Figures 8.5 and 8.6 there are 54 components plotted in 6 panels,

with each panel containing 9 curves (see the caption of Figure 8.5 for line identifications).
In Figures 8.3— 8.6 the first two columns correspond to the B = 0 case and the last two
columns correspond to the B # 0 case. Here we have chosen u = 0.11 and two examples
of ¢ namely 0.5° and 89°. Z and 7" are related through Equation (8.20) which can
be re-written by truncating the Fourier series to five terms, as discussed and validated in

chapter 7. Equation (8.20) can be approximated by

k=4
T~I" +3 2Re [i(’“’] , (8.32)
k=1
for o = 0.5° and
T~7" 2 {Im [i“)} + Re [i@’] —TIm [i(g)] ~Re [1(4’] } (8.33)

for ¢ = 89°.

Non-magnetic case

In general the component I (and hence Stokes I parameter) is less sensitive to the AD
nature of PRD functions. Only for certain choices of (6, ), does [I§]ap differ noticeably
from [I]aa. The other polarization components exhibit significant sensitivity to the AD
PRD. For the present choice of (0, ¢), in the second column of Figure 8.3 we see that
[I7¥]ap and [I7Y]aa are nearly the same. We have verified that they differ very much for
other choices of (0, ¢). Thus the differences between the AD PRD and the AA PRD are

disclosed only when we consider polarization components and not just the I component.

In the following we discuss the important symmetry relations of the polarized radiation

field for a non-magnetic 2D medium.
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Symmetry relations in non-magnetic 2D media:

In chapter 5 we have shown that [[[*]as and [[;¥]sa are identically zero in non-
magnetic 2D media (shown as solid lines in the first two columns of Figures 8.3 and
8.4). This property of I 12 * and [22 Y in a non-magnetic 2D medium arises from the symme-
try of the Stokes I parameter with respect to the infinite axis of the medium (X-axis in
our case), combined with the y-dependence of the geometrical factors 75 (i, ) (see Ap-
pendix F, Equations (F.9) and (F.10)). Such a symmetry property is valid if the scattering
is according to CRD or the AA PRD where the angular dependence of the source vectors
occurs only through the angular dependence of (I, Q,U) and that of 722K (7,€2). For the AD
PRD, in addition to these two factors, the angle-dependence of the PRD functions also
causes change in the angular behaviour of the source vectors. Thus the AD 7y 1y functions
depend on ¢ in such a way that [I7*|ap and [Iz¥]ap are not zero in general (shown as
dotted lines in the first two columns of Figures 8.3 and 8.4). Using a Fourier expansion of

the AD 71 r functions we have proved this fact in Appendix L.

Table 8.1: The dominant Fourier components contributing to each of the 6
irreducible components of Z in a non-magnetic 2D medium, shown as cross
symbols.
k=0 k=1 k=2 k=3 k=14
~0(k)
0 2 - - B -
~g(k) o _ _ _ _
Re ~12 (k) X X - - -
-’Z:m ~fax(k) _ _ _ _ _
Re ~127y(k) X _ _ _ _
Im ~f7Y(k) _ X _ _ _
Re ~22 (k) X - p'e - -
Im ;~227X(k) _ _ _ _ _
Re ~227Y(k) _ _ _ _ _
Im ~22aY(k) _ _ X _ _

)

~ (k
The components of I( also exhibit some interesting properties. In Table 8.1 we list
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the dominant Fourier components contributing to each of the 6 components of Z in a non-
magnetic 2D medium (shown as crosses). In the following we describe the nature of these
Fourier components. Of all the components f§ *) and f§ ®), only 1}? © and fg ©) (dotted lines
in the first two columns of Figures 8.5 and 8.6) are dominant and they are nearly same as
[I¥]ap and [I2]ap respectively (dotted lines in the first two columns of Figures 8.3 and 8.4).
f§<°) is an important ingredient for Stokes Q. The components 1:12;( Y®) are ingredients for

both Stokes Q and U. It can be seen that except I YO 311 other T 12;< YO Hlay an important
role in the construction of the vector Z. For fi’;{(k), k # 0, only Re [ff’x(l)} and Re [ﬁj”((?)}
(thick dashed and thick dot-dashed lines respectively) are dominant. For I 122y ® k£ 0,

only Zm [jf,y(l)} and Zm [IZ’Y(”] (thin dashed and thin dot-dashed lines respectively)
are dominant. This property is true for other choices of (6, ) also. From this property
it appears that, in rapid computations involving the AD PRD mechanisms, it may prove
useful to approximate the problem by using the truncated, 9-component vector (fg (0), fg (0),
O 2O Re [I?’X(l)}, Im []Nf’ym}, Re [INQQ’X(Z)], Im [IZ’Y(?)}) and obtain sufficiently
ac(curate solution with less computational efforts. When the 6-component complex vector
z

computations are expensive.

g for each value of £k = 0,1,2,3,4, having 54 independent components is used, the

Magnetic case

When we introduce a non-zero magnetic field B, the shapes, signs and magnitudes of
Zaaap change (see the last two columns of Figures 8.3 and 8.4). [I7*]aa and [I3Y]aa
which were zero when B = 0, now take non-zero values. With a given B # 0, except I{,
the behaviors of all the other components for the AD PRD are very different from those
for the AA PRD. Because the Hanle effect is operative only in the line core (0 < 2 < 3.5),

all the magnetic effects are confined to the line core.

For B = 0 only some of the components of " play a significant role. For B # 0, all
the components of Z N can become important (see the last two columns of Figures 8.5 and
8.6). This property has a direct impact on the values of Q/I and U/I.

8.4.2 Emergent Stokes Profiles

In Figures 8.7 and 8.8 we present the emergent, spatially averaged QQ/I and U/I profiles
computed using the AD and the AA PRD in line scattering for non-magnetic and magnetic
2D media. We show the results for g = 0.11 and sixteen different values of ¢ (marked on

the respective panels). For the optically thin cases considered in this chapter the AD PRD
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effects are restricted to the frequency domain 0 < z < 5. To understand these results
let us consider two examples (¢ = 0.5° and 89°). For ¢ = 0.5° we can approximate the

emergent () and U using Equations (8.3) and (8.4) as

3 V3
=011, =05 2) & ———J2 — 2% 8.34
Qu ¥ ) 22 0 5 12 ( )
and
U(p =011, =0.5°z) ~ V31, (8.35)
For ¢=89° also we can obtain approximate expressions for () and U given by
3 V3
=0.11,¢0 =89°,2) ~ ———J2 4 L2~ 8.36
Qu ¥ ) /2 0 5 12 ( )
and
U(p=0.11, 0 = 89°,2) ~ V3 I~ (8.37)

Angle-dependent PRD effects in the non-magnetic case

In both the Figures 8.7 and 8.8, the solid and dotted curves represent the B = 0 case. It
is easy to observe that the differences between these curves depend on the choice of the

azimuth angles ¢ for Q/I, while for U/I the differences are marginal.
The @/I profiles:

For ¢ = 0.5° the [Q/I]ap and [Q/I]aa nearly coincide. But for ¢ = 89° they differ
by ~ 1% (in the degree of linear polarization) around x = 2, which is very significant.
From Equations (8.34) and (8.36) it is clear that [Q/I]ap and [@Q/I]aa are controlled by
the combinations of the components I3 and I*. We can sce from the first two columns
of Figure 8.3 that for ¢ = 0.5°, I? and I2* have comparable magnitudes for both the
AA and the AD PRD. Further, [IZ]aa < 0, [I5%]aa > 0, [[Z]ap > 0 and [I;*]ap < 0.
From Equation (8.34) we can see that in spite of their opposite signs, because of their
comparable magnitudes, the combinations of I35 and 122 ™ result in nearly same values of
(Q/I]ap and [Q/I]aa. When ¢ = 89° the components [I2]aa, [[Z]ap, [I37]aa and [Io]ap
are of comparable magnitudes. Whereas [[2]aa and [I2™]s4 have opposite signs, [I2]ap and
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[13*]ap have the same sign. Therefore from Equation (8.36) we see that [Q/I]ap differs
from [Q/I]an for ¢ = 89°.

To understand the behaviors of the components of 12 and I22 * discussed above, we can
refer to Figures 8.5, 8.6 and Table 8.1. The component fg(o) contributes dominantly to
I2, and is almost identical to I because the contribution from i§ ) with k =1,2,3,4 are

negligible (for both the values of ¢). When ¢ = 0.5°, apart from jQQvX (0)

, the component
Re [f; * (2)} makes a significant contribution to I, and 1:22 *(®) with other values of k vanish

(0)

(graphically). Re [f; * (2)} makes nearly equal and opposite contribution as f22 * when

¢ = 0.5°. When ¢ = 89°, the contribution of I-™? is larger than that of Re [IEX (2)] . Also,

the components i§ © and f22 *©) have the same sign for both the values of . Therefore
From Equations (8.32) and (8.33) we can see that I and I2* have opposite signs for
© = 0.5° but have the same signs for ¢ = 89°.

The AD and the AA values of /I sometimes coincide well and sometimes differ sig-
nificantly. This is because, the Fourier components of the AD PRD functions fﬂc %H with
kE = 0 essentially represent the azimuthal averages of the AD ryy 1 functions and are not
same as the explicit angle-averages of the AD 7y functions. The latter are obtained by
averaging over both co-latitudes and azimuths (i.e., over all the scattering angles). The
p-dependence of the AD 7y functions are contained dominantly in the fﬁ{ )HI terms and
the ¢-dependence is contained dominantly in the higher order terms in the Fourier expan-
sions of the AD 7y functions. For this reason the AA PRD cannot always be a good
representation of the AD PRD, especially in the 2D polarized line transfer. This can be
attributed to the strong dependence of the radiation field on the azimuth angle (¢) in
the 2D geometry. As will be shown below, the differences between the AD and the AA

solutions get further enhanced in the magnetic case (Hanle effect).
The U/I profiles:

When B =0, [U/I|ap and [U/I]|aa profiles for both values of ¢ (0.5° and 89°) do not
differ significantly. Equations (8.35) and (8.37) suggest that U has dominant contribution
from I for ¢=0.5° and I?™ for 89°. Looking at the first two columns of Figure 8.5, it
can be seen that 177 ) nearly coincide with [I?¥]xa for ¢ = 0.5°. Except I2¥(), [2¥®
for k # 0 make smaller contribution in the construction of [I>¥]xp. Thus [I7¥]aa and

[I7¥]ap nearly coincide for p=0.5° (see the first two columns of Figure 8.3). Thus [U/I]ap
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and [U/I|aa are nearly the same for ¢=0.5°. When ¢=89° (the first two columns of
Figure 8.4), [I7*]ss vanishes. For each k, I; X8 approach zero, as does [I7¥] ap, which is
a combination of I?’X(k). Thus [U/I]ap and [U/I]aa both are nearly zero for ¢=89°. We

can carry out similar analysis and find out which are the irreducible Fourier components of

i-(

to generate Q and U to interpret their behaviors.

k
) that contribute to the construction of Z and which of the components of Z contribute

Angle-dependent PRD effects in the magnetic case

The presence of a weak, oriented magnetic field modifies the values of Q/I and U/I in the
line core (z < 3.5) to a considerable extent, due to Hanle effect. Further, it is for B # 0
that the differences between the AA and the AD PRD become more significant. In both
the Figures 8.7 and 8.8, the dashed and dot-dashed curves represent B # 0 case. As usual,
there is either a depolarization (decrease in the magnitude) or a re-polarization (increase
in the magnitude) of both @/I and U/I with respect to those in the B = 0 case. The
AD PRD values of /I and U/I are larger in magnitude (absolute values) than those of
the AA PRD, for the chosen set of model parameters (this is not to be taken as a general

conclusion). The differences depend sensitively on the value of B.
Comparison with 1D results:

In Figures 8.9(a) and (b) we present the emergent (1,()/I,U/I) profiles for 1D and 2D
media for 4 = 0.11 and ¢ = 89°. For 2D RT, we present the spatially averaged profiles.
The effects of a multi-D geometry (2D or 3D) on linear polarization for non-magnetic and
magnetic cases are discussed in detail in chapters 4, 5 and 6, where we considered polarized
line formation in multi-D media, scattering according to the AA PRD. We recall here that
the essential effects are due to the finite boundaries in multi-D media, which cause leaking
of radiation and hence a decrease in the values of Stokes I, and a sharp rise in the values
of @/I and U/I near the boundaries. Multi-D geometry naturally breaks the axisymmetry
of the medium that prevails in a 1D planar medium. This leads to significant differences in
the values of @Q/I and U/I formed in 1D and multi-D media (compare solid lines in panels
(a) and (b) of Figure 8.9). As pointed out in chapters 4, 5 and 6, for non-magnetic case,
U/I is zero in 1D media while in 2D media a non-zero U/I is generated due to symmetry
breaking by the finite boundaries. For the (6, ¢) values chosen in Figure 8.9(b) [U/I]aais

nearly zero even for non-magnetic 2D case, which is not generally true for other choices of
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(0, ¢) (see solid lines in various panels of Figure 8.8). The effects of the AD PRD in Q/I
and U/I profiles are already discussed above for non-magnetic and magnetic 2D media.
They are similar for both 1D and 2D cases. For the non-magnetic 2D media, we can see
the AD PRD effects even in U/I, which is absent in the corresponding 1D media. In 1D,
one has to apply a non-zero magnetic field B in order to see the effects of the AD PRD
on U/I profiles.

The magnitudes of [Q/I]ip in the non-magnetic case and of [Q/I]ip, [U/I]ip in the
magnetic case are larger in comparison with the corresponding spatially averaged [Q/I]ap
and [U/I]op. This is again due to leaking of photons from the finite boundaries and the

effect of spatial averaging (which causes cancellation of positive and negative quantities).

8.4.3 Radiation anisotropy in 2D media—Stokes source vectors

In Figures 8.10 and 8.11 we present spatial distribution of S7, Sg and Sy on the plane of
the 2D slab for two different frequencies (z = 0 and x = 2.5 respectively). The spatial
distribution of source vector components Sq and Sy represent the anisotropy of the radi-
ation field in the 2D medium. It shows how inhomogeneous is the distribution of linear

polarization within the 2D medium.

In Figure 8.10 we consider = = 0 (line center). For the chosen values of (6, ) the spatial
distribution of Sy is not very different for the AA and the AD PRD. Sy and Sy for both
the AA and the AD PRD have similar magnitudes (Figures 8.10(b),(c) and 8.10(e),(f)),
but different spatial distributions. The spatial distribution of Sg and Sy is such that the
positive and negative contributions with similar magnitudes of S and Sy cancel out in
the computation of their formal integrals. Therefore, the average values of /I and U/I
resulting from the formal integrals of Sp and Sy are nearly zero at z = 0 for both the AA
and the AD PRD (see dashed and dot-dashed lines at = 0 in Figure 8.9(b)).

In Figure 8.11 we consider x = 2.5 (near wing frequency). Again, S; does not show
significant differences between the AA and the AD PRD. For Sg, the AA PRD has a
distribution with positive and negative values equally distributed in the 2D slab but the
AD PRD has more negative contribution. This reflects in the average values of @)/, where
[Q/I]an approach zero due to cancellation, while [Q/I]ap values are more negative (see
dashed and dot-dashed lines at = = 2.5 in Figure 8.9(b)). The positive and negative values
of Sy are distributed in a complicated manner everywhere on the 2D slab for the AA
PRD. For the AD PRD, the distribution of Sy is positive almost everywhere, including the

central parts of the 2D slab. Such a spatial distribution reflects again in the average value
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of U/I (shown in Figure 8.9(b)), where [U/I]aa have smaller positive magnitudes (due to

cancellation effects) than the corresponding [U/I]|ap.

8.5 Conclusions

In this chapter we have further generalized the Fourier decomposition technique developed
in chapter 7 to handle the AD PRD in multi-D polarized RT (see Section 8.2.2). We have
applied this technique and developed an efficient iterative method called Pre-BiCG-STAB

to solve this problem (see Section 8.3).

We prove in this chapter that the symmetry of the polarized radiation field with respect
to the infinite axis, that exists for a non-magnetic 2D medium for the AA PRD (as shown
in Appendix F) breaks down for the AD PRD (see Appendix L).

We present results of the very first investigations of the effects of the AD PRD on the
polarized line formation in multi-D media. We restrict our attention to freestanding 2D
slabs with finite optical thicknesses on the two axes (Y and Z). The optical thicknesses
of the isothermal 2D media considered in this chapter are very moderate (7" = 20). We
consider effects of the AD PRD on the scattering polarization in both non-magnetic and
magnetic cases. We find that the relative AD PRD effects are prominent in the magnetic
case (Hanle effect). They are also present in non-magnetic case for some choices of (6, ¢).
We conclude that the AD PRD effects are important for interpreting the observations of

scattering polarization in multi-D structures on the Sun.

Practically, even with the existing advanced computing facilities, it is extremely diffi-
cult to carryout the multi-D polarized RT with the AD PRD in spite of using advanced
numerical techniques. Therefore in this chapter we restrict our attention to isothermal 2D
slabs. The use of the AD PRD in 3D polarized RT in realistic modeling of the observed
scattering polarization on the Sun will be numerically very expensive and can be taken up

in future only with highly advanced computing facilities.

New Results

The important results obtained in chapter 8 are as follows.
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1. We reduce the Stokes vector transfer equation to a simpler form using a Fourier decom-
position technique for multi-D media developed in chapter 7.

2. A fast numerical method is also devised to solve the concerned multi-D transfer problem.

3. The numerical results are presented for a 2D medium with a moderate optical thickness

(effectively thin), and are computed for a collisionless frequency redistribution.

4. We have shown that the AD PRD effects are significant, and can not be ignored in
a quantitative fine analysis of the line polarization. These effects are accentuated by the
finite dimensionality of the medium (multi-D transfer). The presence of magnetic fields

(Hanle effect) modifies the impact of these two effects to a considerable extent.
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Chapter 9

Last scattering approximation: Case study
with Ca 14227 A

The contents of this chapter are based on the following publication:
Anusha, L. S., Nagendra, K. N., Stenflo, J. O., Bianda, M., Sampoorna, M., Frisch, H.,
Holzreuter, R., and Ramelli, R., 2010a, ApJ, 718, 988-1000

9.1 Introduction

The Car1 4227 A line shows the largest degree of linear polarization in the Second Solar
Spectrum (the linearly polarized spectrum of the Sun that is due to coherent scattering
processes). The Hanle effect, a magnetic field modification of this linear polarization, was
first observed on the Sun in the core of this line by Stenflo (1982). Enigmatic behaviors
of the line wing polarization were observed not only in active regions (see Bianda et al.
2003) but also in the quiet regions of the Sun (see Sampoorna et al. 2009, hereafter S09).
These observations motivated a modeling of CaT1 4227 A line by an extension of the Last
Scattering Approximation (LSA) method, originally formulated by Stenflo (1982). It is
shown in S09 that the unexpected wing features cannot be interpreted in terms of the Hanle
effect, which was thought to become operative in the line wings through a combination
of frequency redistribution and elastic collisions (Nagendra et al. 2002; Sampoorna et al.
2007).

The idea behind the LSA introduced in Stenflo (1982) is that the observed polariza-
tion (/I can be evaluated by considering only one single scattering process in which the

observed Stokes I plays the role of the incident radiation field. Its center to limb variation

227
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provides the angular distribution needed to calculate the anisotropy of the radiation field
which is the ultimate source of the linear polarization. The purpose of LSA type methods
is to derive the linear polarization from Stokes I, avoiding the solution of the full scale
polarized radiative transfer (RT) equation which is always somewhat computationally ex-
pensive and may still be beyond the capabilities of existing computers, for example if one

deals with three-dimensional (3D) calculations.

The modeling strategy in S09 is based on an extension of LSA method introduced in
Stenflo (1982) for frequency coherent scattering (incident and scattered beams are keeping
the same frequency). For the analysis of the Cal 4227 A line, frequency changes at each
scattering are taken into account. They are described by an angle-dependent Hanle-Zeeman
partial frequency redistribution (PRD) matrix. In addition the anisotropy of the radiation
field is made frequency dependent. It is deduced from the center to limb variation of Stokes
I at a set of wavelengths along the intensity profile. With this procedure it is possible to
model the observed Q)/I profile in the far line wings and the characteristic maxima of /1
in the near line wings. However, the other features of the (/I profile (the line center peak
itself, and the core minima) cannot be reproduced. The PRD matrix used in S09 provides
a good representation of frequency redistribution in the line core and the line wings and
hence cannot be held responsible for the failure of the modeling at the line center. So
we embarked in the construction of new LSA approximations which can take into account
RT effects that are neglected when the polarization is deduced from the observed intensity

only.

In this chapter (see also Anusha et al. 2010a) we present three different LSA approx-
imations. We refer to them for clarity, as LSA-1, 2 and 3. LSA-3 and LSA-2 take into
account RT effects, LSA-2 being a degraded version of LSA-3. LSA-3 is very similar to the
single scattering approximation introduced in Frisch et al. (2009). LSA-1 is very similar to
the LSA approximation used in S09. All these approximations are computationally much

faster than a full polarized RT calculation.

We validate the performance of LSA-1 to LSA-3 by comparing their predictions for
the ratio )/1 of the Car 4227 A line with the solution of a full polarized RT equation,
which we refer for brevity as the RT approach. For the RT approach, we use the numerical
code developed by D. Fluri (see e.g., Fluri et al. 2003a; Holzreuter et al. 2005), which
can take into account multi-level atoms and solar atmospheric models. We also compare
the predictions of the LSA-3 and of RT calculations with recent observations of the Cat
4227 A line taken at IRSOL in January 2010. With both methods we can fit rather well
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the triplet peak structure of the @)/I profile present around the line center. A qualitative
explanation for this triplet structure observed in strong chromospheric lines such as Ca1
4227 A and Na1 D, 5890 A (see Gandorfer 2000; 2002; 2005) can be found in Holzreuter et
al. (2005). For the comparison with the observations we have incorporated in the LSA-3
approximation and RT calculation the effect of a micro-turbulent magnetic field. It is a
very straightforward generalization (see e.g., Faurobert-Scholl 1993, 1994; Holzreuter et al.
2006). We note that all the approximations presented in this chapter can be generalized
to the case of the Hanle effect due to an oriented field (i.e., U # 0).

In Section 9.2 we present the polarized RT equations, which serve as starting point for
the RT approach and the LSA-3 and LSA-2 approximations. We describe in Section 9.3
the observations and the solar atmospheric models which are used for testing the RT
calculation and the LSA-3 approximation. In Section 9.4 we briefly discuss the wavelength
and depth dependence of the radiation field anisotropy. The basic equations of LSA-1,
2, and LSA-3 are given in Section 9.5. Section 9.6 is devoted to comparisons between
Q) /1 profiles calculated with the LSA-3 approximation and a full RT approach and also to
comparisons with observations. The concluding remarks are presented in Section 9.7. A

brief discussion on PRD matrices is given in the Appendix M.

The mathematical symbols in this part (part - III) of the thesis (chapters 9 and 10)
slightly differ from those in other two parts of the thesis. This is because of the fact that in
part - I and part - II we deal with isothermal atmospheres and in part - I1I we use realistic

(or standard) model solar atmospheres, model atom etc.

9.2 The Radiative Transfer (RT) approach

Throughout this chapter we use the standard notation of line formation theory (Mihalas
1978; Stenflo 1994). As we work with solar model atmospheres, all the physical quantities
explicitly depend on the altitude z in the atmosphere. The polarized RT equation in

one-dimensional (1D) planar axisymmetric medium, is written in standard notation as
oI\, i, 2)
S
2

where the Stokes vector I = (I,Q)”. The Voigt profile function is denoted by ¢. The
dependence on ¢ on z comes from the damping parameter a = I'y/47Avp. The ra-

= _{/fl(z)(é()‘v Z) + Kc()‘v Z) + Uc()‘a Z)] [I(Anu’a Z) - S<)‘7 s Z)] ) (91)

diative and collisional broadening are included in I'\,;. The Doppler width is Avp =

\/ 2kgT /M, —I—vgurb/ Ao in standard notations. Here, x; is the line averaged absorption

coefficient, o, and k. are the continuum scattering and continuum absorption coefficients
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Figure 9.1: The CCD image of the Stokes parameters in a spectral window around the Ca 14227
A line. The observations are made with the spectrograph slit placed parallel to the north limb
(about 6” inside around the spatial position 60”). Due to the curvature of the solar limb, the end
points of the slit are closer to the limb when compared to the center of the slit. This explains the
decrease in intensity and increase in the wing amplitude of Q/I when moving away from the center
of the slit. In addition, seeing and guiding cause the image to oscillate and thus the distance of the
limb from the spectrograph slit changes continuously. When recording an image, we average the
measurements from different p values. In our case the averaged value p = 0.1 has a rms of about
0.011 in pu.
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respectively. The total opacity coefficient is Kot (A, 2) = Ki(2)P(\, 2) + (A, 2) +Re(A, 2). In
a two-level atom model with unpolarized ground level, the total source vector S = (Sy, Sg)”
is defined as
(05— OISO ) 000 10 B
Ktot (A, 2

(9.2)

Here B = (By,0)T, with B, being the Planck function at the line center wavelength. The

line source vector S; = (S, Sg,)" is given by

1_6 +1d,u / / o
S\, z) =eB(\, z) + ANRO N,y i 2) TN 1, 2). (9.3)

Here the redistribution matrix R(/\, N, 1/, z) is the angle-averaged Domke-Hubeny PRD
matrix for the non-magnetic scattering, given in Equation (M.7), of the Appendix M. The
thermalization parameter € is defined by € = I'; /(I'r+1I';), where I'g and I'; are respectively
the radiative and inelastic collision rates. In Equation (9.3), (X, i') refer to the incoming

ray, and (A, ) refer to the outgoing ray.

The scattering part of the continuum source vector S, = (S;., Sg.)? is defined by

A

&wma:[fﬂ&wuﬂmma, (9.4)

1

where Py is the Rayleigh phase matrix defined in the Appendix M. For simplicity, fre-

quency coherent scattering is assumed in the continuum. We define the total optical depth

scale as dTy = —kiot (A, 2)dz. The formal solution of Equation (9.1) can be written as
Ty — ™ { — d
I()\,M,T,\) = IO()‘a,uaTA) eXp |:_ ( > T)\):| +/ eXp |:_ (TX T)\):| S()\ H, TA) TA
p o p T
(9.5)
for > 0, and

IO 1) = To(\, 1, 0) exp (-%) _ /0 exp {— (Tﬁ;“ﬂs& I Tk)d;& (9.6)

for p < 0. In the above equations I is a radiation field incident on the medium. At the
lower boundary Iy(\, u, T\) = (Ba(Ty),0)". We assume that no radiation is incident on the
upper free boundary (7, = 0). Equations (9.1)—(9.6) are used in Section 9.5 to construct
three different levels of LSA and to compute the polarized spectrum I (A, i, 7).

The polarized spectrum is calculated by a two-stage process described in Holzreuter et
al. (2005). In the first-stage, a multi-level PRD-capable MALI (Multi-level Approximate
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Figure 9.2: The model atmospheres that are tested in this chapter in our attempt to fit the observed
(I,Q/I) profiles. Line types: solid-FALA; dotted-FALC; dashed-FALF; dot-dashed-FALX. We find that
FALX model atmosphere provides a reasonable fit to the observations. FALX represents the coolest
model, with the chromospheric temperature minimum located around 1000 km above the photosphere
(panel a). Panel (b) shows the depth dependence of Planck function at the line center wavelength. The
thermalization parameter e remains small and almost constant in the chromospheric layers (panel c).
The ratio of continuum scattering coefficient to the monochromatic line absorption coefficient at the line
center reflects the contribution of continuum scattering to the total polarization (panel d). For the FALX

model that we use here the continuum scattering polarization is particularly large in the chromospheric

layers, compared to other model atmospheres.
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Lambda Iteration) code of Uitenbroek (2001, hereafter referred to as RH-code), solves
the statistical equilibrium equation and the unpolarized RT equation self-consistently, and
iteratively. The RH-code is used to compute the intensity, opacities and the collision rates.
The angle-averaged redistribution functions of Hummer (1962) are used in the RH-code. In
the second stage, the opacities and the collision rates are kept fixed, and the Stokes vector
(I,Q)T is computed perturbatively by solving the polarized RT equation with the same
angle-averaged redistribution functions as in the RH-code. For simplicity, in this stage a
two-level atomic model is assumed for the particular transition of interest. Such a two stage
approach is justified, when the degree of linear polarization is small, so that it does not
affect the population of the levels under consideration. A perturbation technique of this
type is used in Faurobert (1987) and Nagendra et al. (2002) for isothermal atmospheres,
and is shown to work well. In Section 9.6 we present the theoretical model profiles of
(I,Q/I) computed by the RT approach.

9.3 The details of observations and solar model atmospheres

9.3.1 The observation of (I,Q/I) in the
Ca 14227 A line

The data acquisition was done using the ZIMPOL-2 polarimeter (Gandorfer et al. 2004)
at IRSOL in Switzerland. For details of the instrumentation facilities used for obtaining
the results shown in this chapter, see Bianda et al. (2003). As several details related to

the data acquisition are given in S09, we do not elaborate them here.

Figure 9.1 shows the observations taken during January 2010 near the solar north pole
(about 6” inside the limb around spatial position 60”). The spectrograph slit was 60 pum
wide (0.5” wide on the disk) and 190” long. The resulting CCD images are 140 pixel high
in the spatial direction, with a pixel corresponding to 1.35”, and 770 pixel wide in the
wavelength direction, with a pixel corresponding to 5.3 mA. The total exposure time was

10 minutes (120 single recordings of 5 seconds each).

Figures 9.7(a) and (c) show the intensity and the )/ profiles obtained by averaging
the Stokes I and Stokes ()/I images in Figure 9.1 over the spatial interval 13”7 to 417
where the average distance from the limb corresponds to g = 0.1 value. The limb distance
is calculated with the help of slit-jaw images registered during the integration time. Note
that due to seeing effects the position of the limb is oscillating with a rms of 1.1”7 which

corresponds to a rms of about 0.011 in .
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Figure 9.3: The anisotropy factor k. In panel (a) the solid and dashed lines show the theoretically
computed kg for FALX model at 7y = 0 and at 7, = u = 0.1 respectively. The dotted lines in
both the panels show the kg computed from observations (as in S09). In panel (b) we show kg at
various heights within the solar atmospheric model (FALX). For all the heights above the temperature
minimum (1000 km), k¢ is shown by the heavy solid line. The other line types are: dot-dashed line =
500 km; dash-triple-dotted line = 200 km; and long-dashed line = —40 km, which correspond to the
photospheric layers.

The intensity image shows the broad line of Ca 1 at 4227 A, which is nearly 90 %
saturated at the line center, with broad wings interspersed by the blend lines (see also the
dotted line in Figure 9.7(a)). The polarization signatures seen in )/ are due to resonance
scattering. Especially, worth noting are the PRD peaks (at A ~ 4226.2 A and )\ ~ 4227.1
A ) with unequal heights, in the near wings and the depolarization of Q)/I at the wavelength
positions of the blend lines. Further, the depth of the core minima (at A ~ 4226.6 A and
A =~ 4226.8 A) adjacent to the central peak (at Ay = 4226.727 A ) are significant. The line
core is defined as the region between \ ~ 4226.6 A and \ ~ 4226.8 A . The Q/I in the far

wings gradually approaches the continuum polarization (see dotted lines in Figure 9.7(c)).

Although observations are made in the so called quiet regions, Figure 9.1 shows pro-
nounced and spatially varying U/I signals in the line core, which is due to rotation of
the plane of linear polarization by the Hanle effect in the presence of an oriented magnetic
field. Some spatial variations in (Q/I,U/I) along the slit length are seen in the near wings.
They were referred to as wing signatures in S09. In this chapter however we focus only
on modeling the average ()/I spectrum corresponding to the interval 13" to 41”. The V/I
signal in Figure 9.1 is also weak, showing that the longitudinal components of the resolved

magnetic field are weak in the observed locations on the solar disk.
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9.3.2 The smearing effect

The polarimetric observations for this chapter were done with a slit width of 60 um. To
take into account the finite slit width, a convolution of the theoretical (I, Q) profiles with
a slit spectral response function becomes necessary. For simplicity we assume this function
to be a Gaussian. The observed profiles are also broadened by macro-turbulent velocity
fields. We account for both the broadening effects by using a Gaussian function with a
total width at half maximum of 40 mA. The main source of smearing is due to the macro-
turbulent velocity fields. The smearing due to the instrumental broadening is quite small

(about 10 mA ) in comparison.

9.3.3 The model atmosphere and the model atom

Figure 9.2 shows the run of some physical parameters as a function of height in several
model atmospheres of the Sun - namely FALA, FALC, FALF (Fontenla et al. 1993) and
FALX (Avrett 1995) that we have tested in our attempts to fit the (I,Q/I) data. The
meaning of the abbreviations, and the nature of the atmospheric models are described in
the given references. Basically all these models represent the quiet solar atmosphere. For
instance, FALA, FALC and FALF represent respectively the super granular cell center, the
average quiet Sun and the bright network region on the solar atmosphere. FALX is a cool
model that was proposed by Avrett (1995) to study the CO molecular observations. We
have retained the FALX model for our investigation on the LSA approximations because

it appeared that it could provide a reasonable fit to the observations.

In the multi-level RH-code, a Ca1 model atom consisting of 20 levels, with 17 line
transitions and 19 continuum transitions is considered. The main line is treated in PRD.
The angle-averaged PRD functions of Hummer (1962) are used for this purpose. All
other lines of the multiplet are treated in complete frequency redistribution. However, for
computing the polarization, we restrict ourselves to a two-level atom model for the main line
transition. The relevant PRD matrix used for computing /1 is given in Equation (M.7).
All the blend lines are treated in LTE in the RH-code. Therefore, the blend line absorption

coefficient is implicitly included in the continuum absorption coefficient ..

9.4 The anisotropy factor kg(\, i, 7))

It is well known that the key factor which determines the shape of the emergent polarization

profile is the anisotropy of the diffuse radiation field within the atmosphere. It is expressed
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by the parameter kg, introduced in Stenflo (1982). kg is the factor by which classical
scattering polarization is reduced due to angular averaging over the incident radiation, as

compared with the case of unidirectional incident radiation. It is given by

ko i 7a) = 2—%(1 2RO ), (9.7)
with
JE(A, ) \/_/ dp/ (3p* — 1)I(\, i, 7). (9.8)

Here 1 is the direction of the incident radiation field and p the direction of the scattered
beam. The parameter kg thus takes care of actual angular distribution of the radiation
field. The integration is over all the incident directions y'. Combining Equations (9.7) and
(9.8) one recognizes the factor (3/8)(1 — u?)(3u? — 1) as the (2, 1) element of the Rayleigh
phase matrix (see Appendix M).

Figure 9.3 shows the anisotropy factor kg for the Ca 14227 A line. The dotted lines in
both the panels show kg computed empirically through a polynomial fit to the observed
center to limb variation of the intensity I (see S09). In this way it represents the observed
anisotropy at the surface (7,=0). The other line types in Figure 9.3(a) correspond to the
k¢ calculated using I(\, i, 7,) obtained from the RH-code. Throughout this chapter we use
the FALX model atmosphere (Avrett 1995). A good agreement between the theoretically
computed kg at 7,=0 (solid line), and the observationally derived k¢ (also at 7,=0) is
a measure of the realism to which the FALX model mimics the solar atmosphere. The

dashed line is the kg computed at the monochromatic optical depth 7, = p for p = 0.1.

Figure 9.3(b) shows the run of the anisotropy factor kg within the solar atmospheric
model FALX. The line types correspond to different heights. The long-dashed line rep-
resents the deepest layers (—40 km below the photosphere), where the radiation field
approaches the Planck function due to thermalization, and therefore kg approaches zero.
The dot-dashed and dash-triple-dotted lines represent the kg in the photospheric layers
(500 km and 200 km respectively). In these layers kg seems to be most sensitive to the
optical depth stratification. For all the heights from the temperature minimum at 1000
km and above, the radiation field saturates to nearly a constant value with respect to the
depth, and hence the kg plots for all these heights merge into a single curve represented
by the heavy solid line (in other words kg becomes independent of depth). Holzreuter
et al. (2005) have presented a detailed analysis of the correspondence between the depth
dependence of the anisotropy and the shape of the emergent ()/I spectra of this line.
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Figure 9.4: A comparison of Q/I computed by LSA-3 approach (solid lines) with the exact
solution (dash-triple-dotted lines) computed by the RT approach (the benchmark), for different
values of u. The global scaling parameters s for the LSA-3 is 1 for all the panels.

The similar argumentation can be used to understand the anisotropy plots presented in

Figure 9.3. Hence we do not elaborate further on this aspect.

9.5 The Last Scattering Approximations (LSA)

The concept of LSA implies that one first determines Stokes I, either through observations
or with a numerical calculation in which the polarization is neglected. This is possible
for the Second Solar Spectrum because the polarization is a few percent at most. One
then assumes that a single scattering of this intensity field suffices to properly evaluate the
observed linear polarization. This LSA concept has been used in Stenflo (2005), for the
solar continuum polarization, in S09 for the Ca 14227 A line, in Belluzzi et al. (2007) for
the Ba 11 Dy and Dy lines, the ratio (/I being deduced from the observed Stokes I. In
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Figure 9.5: A comparison of @/I for different LSA approaches (solid lines) and the exact
solution computed by the RT approach (dash-triple-dotted lines). Notice that different levels of

LSA require different extents of the global scaling parameter s (= 1, 1.6 and 0.9 respectively for
LSA-3, 2 and 1).

Faurobert & Arnaud (2002) for the scattering polarization of molecular emission lines, the

photospheric intensity field used is a solution of an unpolarized RT equation.

In this chapter we present different levels of approximations based on the concept of
LSA. From the most sophisticated one to the most simple one they are LSA-3, LSA-2,
and LSA-1. A common point to these approximations and what makes them interesting
is that they allow one to obtained separately Stokes I and Stokes (). In contrast, in the
full RT method, I and @ are calculated simultaneously. In LSA-3 and LSA-2 we first
calculate Stokes I(A, u, 7)) at all the depth points in a solar model atmosphere, ignoring
the contribution of Stokes ) in the source terms Sr; and Sr. (see Equations (9.3) and
(9.4)). In LSA-1 we use for Stokes I the observed intensity. To obtain the polarization, we
keep only the terms depending on the intensity in the equations for the source terms Sg;

and Sg . (see Equations (9.3) and (9.4)). Once Sy has been obtained, one can either solve
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a simple RT equation to calculate Stokes (), this is the LSA-3 approximation, or evaluate
Stokes ) with an Eddington—Barbier relation, this is the LSA-2 approximation. For LSA-1

we use a somewhat different method for the calculation of Stokes @ (see below).

The approximations LSA-3 and LSA-2 are directly related to the iterative method
introduced in Frisch et al. (2009) for the calculation of the linear polarization. In this
method, as done here, one neglects the polarization for the calculation of Stokes I but
the polarization is kept in the )-component of the source term and an integral equation is
established for this S¢. Its solution can be written as a series expansion in the mean number
of scattering events. The first term, which gives the value of after a single scattering of the
incident radiation field depends only on Stokes I and is identical to our approximation.
The following terms in the expansion take into account additional scattering events. They

can be calculated iteratively.

We now describe in details the LSA-3, LSA-2 and LSA-1 approximations.
9.5.1 LSA-3

As explained in Section 9.5, we neglect the contribution of Q(\, i, 7y) in the right hand
side of the equations for Sy (A, i, 75) and Sg (A, i, 7»). Therefore Equation (9.3) can be

written as
I—e¢ i d:u/ * / / / /A
[STi(A, 1, T2)]Lsa—3 = m/ 7/ AN Ruy (AN, iy 2) TN, (s 7o) + €Ba(Ta),
) -1 0
(9.9)
for S[J and
1—e¢ i d:u/ >~ / / / o
[SQ,I(/\7 I, TA)]LSA—3 = m / 7/ X R21(>\7 DT 7Z) ](/\ y b 77'X)- (9‘10)
) -1 0

for Sg;. Here, 7\ and 7y stand for 7,(z) and 7y/(z). This remark holds also for Equa-
tions (9.15), (9.17), (9.23) and (9.24) below.

LSA-3 with angle-averaged partial redistribution

In this section we restrict our attention to the use of angle-averaged version of the Domke-
Hubeny redistribution matrix (see Equation (M.7)). For this particular choice, the redis-

tribution matrix elements can be written as

Ruy N, i, 2) = RO N, 2) + RO N, 2) PP (1, 1)), (9.11)
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and
Roy (M N, !, 2) = RO N, 2) P2 (u, 1)), (9.12)
where
R(O) ()\7 )‘,7 Z) = VCOhTII<)\7 )‘/7 Z) + (1 - ’Ycoh)TIH<)\7 )\/a Z)a (913>
RPN, N, 2) = Walyeonrn(N N, 2) + (1 = Yeon)kerm(A, N, 2)]. (9.14)

Substituting Equation (9.11) in Equation (9.9), we obtain

1—¢ ee
[S70(N\, Ta)]Lsa—s = €Ba(7y) + 502 / ANRON N, 2)J(N, 7v), (9.15)
) 0
where
! d/"t, / /
J()\,T/\/> = 7[()\,”,7’)\/). (916)
1

In Equation (9.15), the contribution from R(2)P1(f) is neglected because it is of the order
of the polarization and hence much smaller than the contribution from the term R(©).J.
Substituting Equation (9.12) in Equation (9.10) we get
3 1—e o
Soi(\ 11, T g= —— 1— 2 / ANRP (NN, 2)J2 N, ), 9.17
[Sas (0 mlisas = 5550 - ) | X2 BN 7v), (9.17)

where JZ(N,7y) is defined in Equation (9.8).

So far we considered only the line source functions. Clearly, the continuum is also
polarized and needs to be included appropriately. The LSA concept can again be applied

to obtain a simpler expression for S7. and Sg . namely

1SN ) lusams = J(A, T, (9.18)

and
3
[SQ.c(A, 14, Tx)]Lsa—3 = 2—\/5(1 — 1) G (A, 7). (9.19)

The total source functions [S;(A, 7a)|Lsa—s and [So(A, g, Ta)]usa—s can be computed by
substituting Equations (9.15), (9.17), (9.18) and (9.19) in Equation (9.2). Finally we
obtain an approximate formula for the emergent /I by using S; and Sg computed above

in the formal solution expression (Equation (9.5)), namely

Ty d /
[%(A’M)]LSA;{ - 5/ jeXp ( ;)[SQ()HM,T;)]LSA:;

/ / TA @eXp< %) X [Sr(A ) esa-s. (9.20)
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Figure 9.6: A comparison of QQ/I computed by the LSA-3 approach (solid lines) and the
observations taken during January 2010 (dotted lines). The scaling parameter sops=1.4, 1.8, 1.1
and 1.35 respectively for the panels (a), (b), (c) and (d). Panels (b) and (d) are based on an
increase of the elastic collision rate I'g, yw by a factor of 1.5, which improves the fit significantly.
The fit of the core peak is optimized by using a micro-turbulent magnetic field of strength 15,
25, 10 and 15 G for panels (a)-(d).
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In the denominator of the above equation, we have neglected the contribution from incident
intensity at the lower boundary. The quantity s is a global scaling parameter. It is a free
parameter which is used to achieve a fit of the /I computed by LSA approach with the
Q)/I computed from the RT benchmark. Ideally it should be unity. But in practice it
can take values either smaller or slightly larger than unity. It can therefore be used as a

measure of the goodness of the last scattering approximations (see Section 9.6.2).

In the RT approach we compute polarization by perturbation. First we give initial
unpolarized source vector as input and calculate the Stokes vector using a formal solution.
A new source vector is then computed using the improved Stokes vector — and this process
is repeated. In LSA-3 we avoid this perturbative loop. For the calculation of Stokes [
we ignore the polarization. The component Sg of the source function is deduced from the
explicit expressions given in Equations (9.17), and (9.19) which involve only integrations
over directions and frequencies of Stokes /. Stokes () can then be calculated by using a

formal solver.

LSA-3 with angle-dependent partial redistribution

In this section we present a formula for /I which can be used in the case of angle (u)
dependent (however azimuthally averaged) redistribution matrices given in Equation (M.6).

In this case the redistribution matrix elements can be written as

Rll()\a >\/7 s ,ula Z) = R(O)()‘a )‘/7 122 ,ula Z) + R(2) (>\7 )‘/7 s ,u/> Z>P1(12) (,ua ,LL/), (921)

R21(>\7 )\/7 K, ,u/, Z) = R(2) ()\7 )‘/7 22 /vL/7 Z)PQ(? (/“L7 ,LL/) (922)

In the above Equations R (X, N, i, i/, ) and R (X, X, i, i’ 2) have the same form as the
functions R(O(\, X', z) and R® (), X', z) given in Equations (9.13) and (9.14), but with the
replacements r (A, N, 2) = rim(A, N, p, 1, 2). We recall that angle-dependent partial
redistribution (in the presence of a magnetic field) was used in S09. A simple formula
for Q/I was given in S09 by assuming g/ = 1 in the expression for the redistribution
matrix elements. We can apply the same approximation to the redistribution functions
RO N, p, 1!, z) and R (X, N, i, i/, ). With this approximation we now obtain

1— oS
[SI,Z<)‘7,U7T/\)]€é)A—3 = GB)\<T)\) + € / dXR(O)()\,X,u,u’ = 1,Z)J()\/,7')\/), (923)

¢(>‘7 Z) 0
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and

l1—e¢ > / / / /
[SQ,Z()‘a/LaT/\)]ééDA—?) ( )2\/—( ILLQ)/ d\ R(Q)(AaA s My b= 172)‘]02()\ aT)\’)~
0

(9.24)

The symbol AD refers to the case of angle (1) dependent partial redistribution. The above
equations along with Equations (9.18) and (9.19) can be used to compute the total source
source functions S; and Sg. The @)/I can be calculated from Equation (9.20) using these
Srand Sg.

9.5.2 LSA-2: Eddington-Barbier approximation

We proceed exactly as with LSA-3 but use the Eddington—Barbier approximation to cal-
culate @) and I once Sg and S; have been determined. We also set the thermalization

parameter € = 0. Equation (9.20) is replaced by

Qo] =S

_ 2
I LSA—2 St(N, Talzapn) (929)

where z) , denotes the point in space where 7, = p, for a given A and a given p. Equation
(9.25) is the polarized analogue of the Eddington-Barbier relation for Stokes I (see Mihalas
1978, p. 39).

9.5.3 LSA-1: semi-empirical approach

In LSA-1 we use the observed center to limb variation (CLV) of the Stokes I to calculate
the anisotropy factor kg and, as done in S09, assume that the ratio (/I may be written

as

P(N) ¢

Q
h“ﬂ&ﬁ4=4a§:6WM*%WmH+ax:5

, (9.26)

with
Zaa(h s Ohsas = 55(0 uﬂA«MR<AMﬁMW)

2
// ANRONN)I(N, 1, 0), (9.27)

where R® and R are taken to be independent of depth and are computed for a damping

parameter corresponding to a chosen value of I'g/I'gr and I';/T'g set to zero. As in S09,
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Figure 9.7: A comparison of (I,Q/I) spectra computed using the RT approach (solid lines)
and the observations taken during January 2010 (dotted lines). Thick solid lines correspond to
the case of I'g yw enhanced by a factor of 1.5. Thin solid lines are without any such enhancement
of g vw. In the panel (c) we require sops =1.4 (for thin solid line) and 1.8 (for thick solid line).
In the panel (d) we require sops = 1.1 (for thin solid line) and 1.35 (for thick solid line). In
panel (c), thin and thick solid lines correspond to Biyp = 20 G and 30 G respectively. Similarly
Biurb =15 G and 20 G for the thin and the thick solid lines in panel (d). The continuum intensity
I, is chosen at \ = 4228.8 A




9.6. Results and Discussions 245

Table 9.1: The values of free parameters used in modeling the observed @/1

spectra.

Approach Figure p C  Sobs DBiurb

LSA-3  96(a) 01 1 14 15
RT 97(c) 01 1 14 20
LSA-3  9.6(b) 01 15 1.8 25
RT 97(c) 01 15 18 30
LSA-3  96(c) 03 1 11 10
RT 97(d) 03 1 11 15
LSA-3  9.6(d) 03 15 1.35 15
RT 97(d) 0.3 15 135 20

['g/Tg is treated as a free parameter. In Equation (9.26), C' is the ratio of continuum to
the line averaged opacity, P¢ is the continuum polarization. Here, s, C' and Py are treated
as free parameters for a chosen value of I'g /T'gr. We refer to S09 for details on the use of
LSA-1 to model the Ca 14227 A line wings in the Q/I spectra.

9.6 Results and Discussions

In this section we first show how well the approximate solutions introduced above compare
with the exact RT solution. Subsequently we also demonstrate how the formulae for @/
derived under different levels of LSA approach can be used in a preliminary analysis of the
observed @)/I spectra.

9.6.1 Theoretical validation of the LSA approaches

In this section we use the exact RT solution as a theoretical benchmark. In Figure 9.4,
we compare LSA-3 solutions with the benchmark RT solution for different values of .
Figure 9.4 shows that the agreement between the LSA-3 approximation and the full RT
calculation is excellent, except for the central peak and wing minima. We stress that in this
figure the scaling factor is s = 1. The differences in the line core region are due to the fact
that we have neglected the contribution of () in the expression of Sg;. This contribution
plays a significant role in the line core (Frisch et al. 2009). Figure 9.4 shows also that the
LSA-3 approach is valid for any value of p.



246 Chapter 9. Last scattering approximation: Case study with Ca 1 4227 A

Figure 9.5 shows a comparison of /I computed by the RT approach (dash-triple
dotted lines) and different levels of the LSA approach (solid lines) for ;1 = 0.1. Panel (a) of
Figure 9.5 is identical to panel (a) of Figure 9.4. As the LSA-3 approximation has already
been discussed above, we concentrate now on LSA-2 and LSA-1. Figure 9.5(b) shows
that LSA-2 which makes use of the Eddington—Barbier relation can fit the line wings,
including the near wing maxima, rather well, provided one applies a scaling factor s = 1.6.
We note here that we obtain essentially the same /I profile if the Eddington—Barbier

approximation is used for the calculation of () only.

In the line core, LSA-2 is clearly not an acceptable approximation. We recall that the
Eddington—Barbier approximation which amounts to replace an integral of the form
I(p) = [3° S(r)e™™/*(dr/p) by I(1) = S(u), provides an exact value of I(u) when S is a
linear function of 7. So the accuracy of this approximation will depend on the departures
of S(7) from linearity. For the line Ca 14227 A Sg(\, i1, 72) has a non-monotonic variation
when A is around the line center. So the failure of Eddington-Barbier approximation in
this wavelength range is not surprising. In the line wings S (A, i, 7») increases regularly
towards the surface, following the increase in the anisotropy of the radiation field (see
Figure 9.3(a)) but the increase is much faster than linear. Therefore the Eddington-Barbier
approximation underestimates the value of ) and a scaling factor s = 1.6 is needed to fit
the RT calculation. A comparison between the panels (a) and (b) in Figure 9.5 clearly
shows that the depth dependence of the anisotropy factor kg has to be taken into account
for a proper modeling of the line center peak. For strong chromospheric lines such as Ca
14227 A an accurate non-LTE treatment of the line formation is needed to calculate this

depth dependence with accuracy.

Figure 9.5(c) shows that LSA-1 can be made to fit the top envelops of the PRD peaks
of Ca 14227 A line, blend lines and the far wing continuum polarization, with a proper
choice of the free parameters, as it does in S09. The free parameters used in Figure 9.5(c)
to compare the LSA-1 and RT solution are: s = 0.9, C' = 2.1 x 1073 and Pr = 0.0013, for a
chosen I'g /T'g = 10. We recall that LSA-1 requires no numerical solution of RT equations

and is independent of the atmosphere model.

9.6.2 Observational validation of the LSA-3 and the RT approaches

In Figures 9.6 and 9.7 we compare the observations with predictions from the LSA-3 and
from the RT calculation for ;= 0.1 and p = 0.3. Figure 9.6 shows /I computed by the
LSA-3 approximation. Figure 9.7 shows the )/ profiles and also the intensity profile from



9.6. Results and Discussions 247

the RT approach. [ is actually computed using the polarized RT approach. However this

I does not differ very much from the intensity computed by the unpolarized RH-code.

Three free parameters are used in the modeling procedure. They are (i) an enhancement
parameter ¢, associated with the elastic collision rate I'g yw (of the van der Waal’s type),

(i) a global scaling parameter sqps, and (iii) a micro-turbulent magnetic field Byyyp-

With an appropriate choice of these 3 free parameters we can achieve a reasonable fit
of the theoretical /I profile with observations for all the wavelengths. We first choose a
value of ¢ not far from unity (here we have chosen ¢ = 1 and ¢ = 1.5), then determine sqpg
by a fit to the wings and finally By, by a fit of the core peak. The choice of s is done
by requiring an overall simultaneous fit to the PRD peaks and the blend line minima over
the entire /I wings. The values of the 3 free parameters used in Figures 9.6 and 9.7 are
listed in Table 9.1.

The role of global scaling parameter s,,s in modeling the /I profile

To compare the theoretical (/I with the observed /I profile as the new benchmark, we
introduce a new scaling parameter denoted Sgps, which multiplies both the LSA-3 and RT
profiles. sqs is different from s, which was used as the scaling parameter when the RT

solution was the benchmark (see Figs. 9.4 and 9.5). It is defined as

[(Q/I)Wing]observed
Pobs = [(Q/I)Wing]theory ‘ (928)

While one might expect that sops should be close to unity, Figs. 9.6(a) and 9.6(c) require

Sobs = 1.4 and 1.1 respectively. Figures 9.6(b) and 9.6(d) need even larger values of
Sobs, Namely 1.8 and 1.35, respectively. Such increased values of s, become necessary to
account for the depolarization caused by the enhancement of I'y yw (the necessity for an
enhancement of the elastic collision rates in our model fitting is discussed below). The
values of sqps needed for the LSA-3 and the RT approach are the same (see Figs. 9.7(c)
and 9.7(d), Table 9.1). Note that for g = 0.3 the value of sqps is closer to unity than for
u=0.1.

The rationale behind the use of the scaling parameters can be explained as follows:
When comparing two Q)/I spectra, either LSA with RT (for which the scaling factor s
is introduced) or LSA and RT with observations (for which the scaling factor sqps is in-
troduced), there are two aspects of the comparison: (1) The relative shapes of the @/
spectra, and (2) the absolute /I amplitudes. Aspect (1) is much more important than

aspect (2), for various reasons: (a) The relative shapes between observations and theory
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(RT and LSA) can be brought to good agreement, in contrast to the absolute amplitudes.
(b) For magnetic field determinations, one should not use the absolute /I core amplitude,
but instead the ratio between core and wing amplitudes (see below). With this differential
approach any global scale error divides out, greatly reducing effects of model deficiencies.
(c) The absolute Q/I amplitudes are, in addition to the model deficiencies, directly af-
fected by observational errors in the p value. These observational errors divide out with

the differential approach.

The parameter sq is essential for a comparison of the relative shapes of the theoretical
Q)/I profiles with the observed ones when sq,s differs from unity. The circumstance that
Sobs for both RT and LSA-3 differs significantly from unity is an indicator of deficiencies
in the modeling of this particular line. Another indicator that there is indeed a modeling
problem is the relatively poor fit of the theoretical Stokes I profiles with the observed
Stokes I. The discrepancies are particularly large for 4 = 0.1. Possible causes for sqs to
deviate from unity are
(i) the choice of the model atmosphere,

(ii) the use of 1D geometry to represent the solar atmosphere,

(iii) the use of angle-averaged redistribution functions, and

(iv) observational uncertainties in the value of p.

The parameter s.,s absorbs all these as well as possible unknown sources of errors. In
addition, the degree of deviation from unity of the scaling factors s and sqps can be used

as a measure of the goodness of the model fit.
The role of elastic collision rate 'y ,w in modeling the (/I wings

We have found that in fitting the ()/I wing shape, an enhanced value of I'g yw becomes
necessary. We denote this enhancement parameter by c. It is used as a source of additional
broadening. In Figures 9.6(a) and 9.6(c) we have set ¢ = 1. In Figures 9.6(b) and 9.6(d),
we have used ¢ = 1.5. One can notice a substantial improvement in fitting the shape of the
Q/I profile, when going from ¢ = 1 to ¢ = 1.5, in particular in reproducing the asymmetry
of the wing maxima. Similar enhancement was also applied by Faurobert-Scholl (1992), to
fit the observed )/I wing polarization. The justification for this can be found in Derouich
et al. (2003) and Barklem & O’Mara (1997) who respectively show that the old theories
of D@ and elastic collision rate I'g actually underestimate I'g vw. An enhanced value of
I'gvw causes depolarization (decrease of /I in magnitude) in the line wings which are
formed in the deeper layers of the atmosphere, where collision rates are higher. This wing

depolarization can be compensated by using an appropriate value of s.,s, to obtain the
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actual magnitude of )/ in the wings.

In Figures 9.7(c) and 9.7(d) we show a comparison of the /I computed by the RT
approach and the observations. In these two panels also one can notice the improvement
in fitting the shape of the /I wings when ¢ = 1.5 (thick solid lines), as compared to the

case of ¢ = 1 (thin solid lines).
The role of micro-turbulent magnetic field By,,;, in modeling the )/I core peak

Once a reasonable fit to the Q/I wings is achieved, we focus on obtaining a good fit to the
Q/I at the line core. This can be done by using an appropriate value of By, which is the

third free parameter.

In other words, By, can be determined by demanding that

[(Q/I)core]observed o [(Q/I)core]theory,BturbyéO

- , (9.29)
[(Q/I)wing]observed [(Q/])wing]theory
should be satisfied. We can rewrite Equation (9.29) as
[(Q/I)COTG]Observed = Sobs[(Q/I)core]theory,Bturb#O7 (930)

where sops is defined in Equation (9.28). In Equation (9.29), [(Q/I)core)theory,Byup0 15
obtained either from LSA-3 or from the RT approach. It depends on fp (which is a
function of By ), defined in Equation (M.11) through the modified phase matrix elements.
The value of By, is found by solving Equation (9.30). The described procedure is a
differential approach to determine By, because we use the ratio of core peak to the wing

peak amplitudes, instead of the absolute core peak amplitudes.

The set of values of By, deduced from the LSA-3 approach are systematically smaller
than those deduced from the RT approach (see Table 9.1). This is essentially due to
the underestimation of the core peak values by the LSA-3 (see Figures 9.4, 9.5(a)). This
underestimation of By, when using LSA-3 instead of a full RT calculation is not specific
to the Ca 1 4227 A line. It will appear whenever one uses a LSA-3 approximation rather

than a full RT approach to evaluate the linear polarization of the strong resonance lines.

9.7 Concluding remarks

In this chapter we develop a mathematical framework for the last scattering approximation
(LSA) approach, starting from the polarized RT (RT) equation. We derive simple formulae
for Q/I by applying a few approximations to the governing equations of the RT approach.
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LSA-1 is the simplest approach, which is based on observationally derived anisotropy
at the surface (it was used in S09 to explore the wing signatures observed in Ca 1 4227 A
line). It ignores the depth variation of all the physical quantities. For this reason LSA-1
fits only qualitatively the PRD peaks and the envelopes of the wings in the /I spectra.
The line core itself as well as the core minima could not be reproduced using LSA-1. In this
chapter we aim at modeling various features (including the line core) of the observed @/
spectra of this line, in a greater detail. To this end, we generalize the LSA-1 by introducing
2 more levels of LSA, namely LSA-2 and LSA-3. We find that the LSA-2 approach, which
takes into account the anisotropy factor at the atmospheric heights where the condition
7n = i (for a given p and a given \) is satisfied, is insufficient to reproduce the line core
region. The only way to adequately model the core region without using the full polarized
RT approach is through LSA-3. This is because, unlike LSA-1 and LSA-2, LSA-3 takes
into account the run of the anisotropy factor over the optical depth, apart from taking the

depth dependence of other concerned physical quantities.

We validate the LSA approaches, by comparing with the exact RT approach. The
advantage of LSA-3 (also LSA-2) approach is that it is sufficient to solve the unpolarized
RT equation only once to obtain accurate values of I(\, p, 7), opacities and collision rates
throughout the atmosphere. These are subsequently used as inputs to the approximate
LSA formulae to evaluate the emergent )/I spectra. In this way we avoid solving the
exact polarized RT equation — which is computationally more expensive. As for the timing
efficiency, LSA-1 is 21 times faster than the LSA-2; 25 times faster than the LSA-3 and 58
times faster than the RT approach. The main advantage of LSA-1 is that it does not need
the solution of the unpolarized RT (the inputs from which are needed by LSA-2, LSA-3
and also the polarized RT). LSA-2 is 5 times faster than LSA-3, and 38 times faster than
the RT approach. LSA-3 is 8 times faster than the RT approach. Therefore, compared
with the full scale polarized RT approach, the LSA approaches are quite efficient.

To illustrate the usefulness of LSA-3 approach in modeling the second solar spectrum,
we compare both the LSA-3 and the RT solutions with the recently observed Q)/I spectra
of Ca14227 A line. These recent observations are made in the quiet regions on the Sun. In
the modeling efforts both the LSA-3 and the RT approaches require three free parameters,
namely an enhancement parameter c, associated with the elastic collision rate I'gyw; a
global scaling parameter s.,s that accounts for all the known and unknown sources of

errors; and a micro-turbulent magnetic field strength Bim,.

LSA-1 can only be useful for certain qualitative studies of wing effects, like what is
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done in S09, for exploring the existing of the wing Hanle effect, or a study of quantum
interference in the Ca 11 H and K lines (see Stenflo 1982). Although LSA-2 can be used to
perform wing analysis in the same way as LSA-1, it is not computationally as advantageous
as LSA-1. As for LSA-3, it gives a reasonable fit to the observed @/ throughout the line
profile (including the line core). Thus the main advancement of this chapter compared to
S09 is that we have improved the fit to the important features of the observed @)/ spectra
like (i) core peak, (ii) asymmetric core minima, (iii) asymmetric PRD peaks in the near

wings, (iv) blend line polarization, and (v) far wing polarization.

In this chapter, we have shown that LSA-3 can provide a fit to the observed Q/I spec-
tra, which is nearly as good as the RT approach itself. As mentioned above, this can be
achieved at a much less computational cost. Thus, LSA-3 may be applied
(i) to interpret the second solar spectrum and the Hanle effect in lines with PRD,

(ii) to test different theories of the elastic collisions,
(iii) to explore the formation of the Second Solar Spectrum in media where 3D RT effects
have to be taken into account,

(iv) to estimate the strength of micro-turbulent magnetic fields in the solar chromosphere.

New Results

This chapter concerns developing three levels of last scattering approximation methods
and their comparison with RT solutions and also with observations. The following are the

important results obtained in chapter 9.

1. We explore three different approximation levels for LSA and compare each of them with

the benchmark represented by the solution of the full polarized RT, including PRD effects.

2. The simplest approximation level is LSA-1, which uses the ‘observed’ center to limb
variation of the intensity profile to obtain the anisotropy of the radiation field at the sur-

face, without solving any RT equation.

3. The next two approximation levels use the solution of the unpolarized RT equation

to derive the anisotropy of the incident radiation field and use it as input. In the case
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of LSA-2 the anisotropy at level 7, = p is used, the atmospheric level from which an ob-
served photon is most likely to originate (here 7, is the monochromatic optical depth at
wavelength A and p = cos @, with 6 being the heliocentric angle). LSA-3 on the other hand

makes use of the full depth dependence of the radiation anisotropy.

4. The Q/I formula for LSA-3 is obtained by keeping the first term in a series expansion

of the @-source function in powers of the mean number of scattering events.

5. Computationally, LSA-1 is 21 times faster than LSA-2, which is 5 times faster than
the more general LSA-3, which itself is 8 times faster than the exact polarized RT approach.

6. Comparison of the calculated QQ/I spectra with the RT benchmark shows excellent
agreement for LSA-3, including good modeling of the Q/I core region with its PRD ef-
fects. In contrast both LSA-1 and LSA-2 fail to model the core region.

7. The RT and LSA-3 approaches are then applied to model the observed /I profile of
the Ca1 4227 A line in quiet regions of the Sun.

8. Apart from a global scale factor, both give a very good fit to the /I spectra for all

the wavelengths, including the core peak and blend line depolarization.

9. We conclude that LSA-3 is an excellent substitute for full polarized RT and can be used

to interpret the second solar spectrum, including the Hanle effect with PRD.

10. It also allows the techniques developed for unpolarized 3D RT to be applied to mod-

eling of the second solar spectrum.

Further studies related to the work presented in this chapter are published in:

1. Sampoorna, M., Stenflo, J. O., Nagendra, K. N., Bianda, M., Ramelli, R., & Anusha, L.. S.,
2009, ApJ, 699, 1650-1659

2. Anusha, L. S., Stenflo, J. O., Frisch, H., Bianda, M., Holzreuter, R., Nagendra, K. N.,
Sampoorna, M., & Ramelli, R., in the proceedings of Solar Polarization Workshop 6
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(SPW6), 2010c, 437, 57
3. Bianda, M., Ramelli, R., Stenflo, J. O., Anusha, L. S., Nagendra, K. N., Sampoorna, M.,
Holzreuter, R., & Frisch, H. in the proceedings of Solar Polarization Workshop 6
(SPW6), 2010, 437, 67
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Chapter 10

Forward scattering Hanle effect in the
Ca 14227 A line

The contents of this chapter are based on the following publication:
Anusha, L. S., Nagendra, K. N., Bianda, M., Stenflo, J. O., Holzreuter, R., Sampoorna,
M., Frisch, H., Ramelli, R. and Smitha, H. N. 2011b, ApJ, 737, 95-112

10.1 Introduction

Ca 14227 A is a preferred line for the exploration of scattering polarization and the
determination of the weak magnetic fields in the lower chromosphere (Bianda et al. 1998a,
1998b). This line exhibits the largest degree of linear polarization in the visible spectrum
near the limb (Stenflo 1982; Gandorfer 2002; Bianda 2003; Bianda et al. 2003; Sampoorna
et al. 2009; Bianda et al. 2010). A detailed modeling of non-magnetic limb observations
of this line has been performed recently and are presented in chapter 9 (see also Anusha
et al. 2010a, 2010c). The idea of using the Hanle effect near the disk center to measure
chromospheric magnetic fields was proposed by Trujillo Bueno (2001). In a one-dimensional
(1D) axially symmetric atmosphere with no oriented magnetic fields (meaning fields not
parallel to the symmetry axis i.e., the atmospheric normal), the scattering polarization is
zero when the line of sight is parallel to the atmospheric normal (4 = cos@ = 1, where
0 is the heliocentric angle). However, in the presence of an oriented magnetic field, the
Hanle effect produces a non-zero scattering polarization. This is usually referred to as
the forward scattering Hanle effect. The first observational evidence for this effect was
provided by Trujillo Bueno et al. (2002), who observed it in the He 1 10830 A line. For
the Ca 14227 A line, Joos (2002) and Stenflo (2003a) showed that the forward scattering

255
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Hanle signatures observed near the disk center (x = 0.96) can be used for the analysis
of weak, horizontal chromospheric magnetic fields. An extensive theoretical study of the
linear polarization in the Ca 11 IR triplet performed by Manso Sainz & Trujillo Bueno

(2010) confirms the usefulness of this effect as a diagnostic tool.

We have performed new full Stokes profile observations of the Ca 1 4227 A line near
disk center, to explore different regions of varying magnetic activity, from very quiet to
moderately active. Details of the observations are given in Bianda et al. 2011. In this
chapter (see also Anusha et al. 2011b) we present an analysis of these observations. The
observed circular polarization (V/I) signals indicate that we are observing a solar region
with weak longitudinal magnetic flux, which allows us to apply the “weak field approxima-
tion” of the Zeeman effect to model the observed V/I profiles (see e.g., Stenflo 1994; Landi
Degl’Innocenti & Landolfi 2004) and thereby determine the longitudinal component of the
magnetic flux density. In the weak field approximation V/I is proportional to the deriva-
tive of the emergent intensity with respect to wavelength, which can be obtained directly
from the observed intensity. Thus the longitudinal component of the vector magnetic flux
density is uniquely determined by the observed Stokes V' and I, without any model depen-
dence. Since however only one field component is constrained this way, there are multiple
solutions (ambiguities) for the field vector itself. When p # 1 these ambiguities can be
eliminated using the observed linear polarization (@)/I and U/I) profiles as additional con-
straints. When p = 1 (disk center) these ambiguities cannot be eliminated, because all the
Stokes parameters remain unchanged under the transformation yp — xp + 7, where xp
represents the magnetic field azimuth in the atmospheric co-ordinate system (polar Z-axis
along the atmospheric normal). To model the observed Q)/I and U/I profiles the polar-
ized radiative transfer (RT) equation is solved assuming the presence of an oriented vector
magnetic field, taking into account partial frequency redistribution (PRD). A standard
model atmosphere and a multi-level model atom are used. The solutions at the line center
wavelength are used to construct polarization diagrams (i.e., Q/I versus U/I plots; see
e.g., Stenflo 1994). The observed line center data are placed on the polarization diagrams
to extract a single vector magnetic field for which the observed and theoretical /I and
U/I amplitudes at line center agree. Thus the magnetic field values extracted from the V/I
profiles with the weak field approximation, together with the Hanle polarization diagrams
of @/I and U/I at the line center, allow us to nicely reproduce the entire wavelength
dependence of the observed /I, U/I and V/I profiles. The idea of using a combination
of the Zeeman and Hanle effects in magnetic field diagnostics has been explored in several

papers in the past (see e.g., Bommier et al. 1981; Landi Degl’Innocenti 1982; Ben-Jaffel
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Figure 10.1: The scattering geometry. €’ and Q define respectively the
directions of the incoming and outgoing beams. © is the scattering angle.
The Z-axis is along the atmospheric normal. B defines the orientation of the

magnetic field vector.

et al. 2005).

For modeling the observed (/I and U/I profiles the transverse Zeeman effect can be
ruled out for various reasons: (1) the transverse field strengths would have to be more
than an order of magnitude stronger than the longitudinal field, implying that all fields
would need to “hide” in the transverse plane, which is a very contrived situation. (2) Even
then the transverse Zeeman effect is unable to reproduce the /I and U/I line shapes
with the observed strong 7 component. (3) The forward scattering Hanle effect provides
a natural explanation of the observed (/I and U/I, including their profile shapes, with
field strengths of the same order as those indicated by the model-independent Stokes V/I
fitting for the line-of-sight component.

In Section 10.2 we briefly describe the theoretical framework of polarized RT used in
our calculations. In Section 10.3, details on the observations, the solar atmospheric model,

and the model atom are given. Section 10.4 is devoted to a description of the modeling
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procedure. The results and discussions are presented in Section 10.5. Concluding remarks
are given in Section 10.6.

10.2 The Radiative Transfer (RT) formulation

For our modeling procedure, we have solved non-LTE RT equations for the Hanle effect

and for the Zeeman effect but under the weak field approximation.
10.2.1 Radiative transfer with the Hanle effect
Stokes parameters formulation

We use the standard notation of line formation theory (Mihalas 1978; Stenflo 1994). The
Stokes vector RT equation for a two-level model atom with unpolarized ground level in a
1D planar medium in the presence of weak field Hanle effect may be written as

oI(\, €,

p PO ()00 2) weh2) + o0 2] L 9.2) — SR )], (101)
where I = (I,Q,U)7 is the Stokes vector and S = (57, S, Sy)” the source vector. Here
Q = (0, ) defines the ray direction with 6 and ¢ being the inclination and azimuth of the
scattered ray (see Figure 10.1). The Voigt profile function is denoted by ¢. The dependence

of ¢ on z comes from the damping parameter a = 'y /47 Avp. Here
It =Tr+Te+17, (10.2)

with I'g being the radiative de-excitation rate. For the Ca 1 4227 A line I'p = 2.18 x
10857t 'y and I'; are the elastic and inelastic collision rates respectively. I'g is computed
taking into account the van der Waal’s broadening (arising due to elastic collisions with
neutral hydrogen) and Stark broadening (arising due to interactions with free electrons).
I'; includes the inelastic collision processes like collisional de-excitation by electrons and
protons, collisional ionization by electrons, and charge exchange processes (see Uitenbroek
2001, and the multi-level atom computer program provided by him). The Doppler width
Avp = \/2kBT/Ma + vfmb/)\o, where kp is the Boltzmann constant, 7" is the temperature,

M, is the mass of the atom, vy, is the micro-turbulent velocity (taken as 1 km/s) and Ag is

the line center wavelength. r; is the wavelength averaged line absorption coefficient, while
0. and k. are the continuum scattering and continuum absorption coefficients, respectively.

Other atomic parameters are given in Section 10.4.1 and Appendix N.
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Positive Q direction
for theory

Q
Radius vector " . .
Positive Q direction

for observations

S

Figure 10.2: Figure showing the slit position on the solar disk and the defini-
tion of the rotation angle a. The numbers 1, 2,...,8 represent 8 positions within
the slit, from which the spatially averaged observed profiles are extracted for
the theoretical modeling. The average value of u corresponding to the slit
position is 0.93. The positive @ direction for the theoretical calculations is

defined to be perpendicular to the radius vector.

The total opacity coefficient is kot (\, 2) = Ki(2) (A, 2) + 0c(A, 2) + Ke(A, 2). In a two-

level model atom with unpolarized ground level, the total source vector S is defined as

Ri(2)p(\, 2)S1(A\, Q, 2) + 0c(A, 2)Se(A, Q, 2) + Ke(A, z)B,\(z)U'

A, Q =
S(’ 7Z) /‘ftot(}\az)

(10.3)

Here U = (1,0,0)7 and B, is the Planck function at the line center. The line source vector

1S

oo sy
S\ Q,2) :eBA(z)UjL/ Jq{R()\,X,Q,Q’,z,B)I(X,Q’,z) :

dX. 10.4
- (10.4)
Here R is the Hanle redistribution matrix (Bommier 1997b). B is the vector magnetic
field taken to be a free parameter. The continuum scattering source vector is
asy
4’

S.(\Q,z) = 7{15(9,9')1@, ', 2) (10.5)
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Figure 10.3: The CCD image of the Stokes parameters in a spectral window around the Ca 1
4227 A line. The recording was made on October 15, 2010. See Section 10.3 for more details.

where P is the Rayleigh scattering phase matrix (Chandrasekhar 1950). For simplicity,
frequency coherent scattering is assumed for the continuum. The thermalization parameter
¢ is defined by € = I';/(T'r + I';). In Equation (10.4) (X, €') and (A, ) refer to the
wavelength and direction of the incoming and the outgoing ray, respectively.

Spherical irreducible tensors decomposition

In general the Stokes source vector S and the Stokes vector I in Equation (10.1) depend
on © = (6,¢). As shown in Frisch (2007), the vectors S and I can be decomposed into
6 cylindrically symmetric components, Zj and 8§, with K = 0,2 and Q € [-K, +K], if

one represents them in terms of the spherical irreducible tensors for polarimetry defined in,
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e.g., Landi Degl'Innocenti & Landolfi (2004). With these components one can construct
an irreducible source vector & and an irreducible Stokes vector Z. This decomposition is
useful because 8 becomes independent of the ray direction and Z becomes independent of

the azimuthal angle ¢. The transfer equation for Z may be written as
OL(\, t, 2)
9
z

In a two-level model atom with unpolarized ground level, the total irreducible source vector
S is defined as

= —Kiot(\, 2) [Z(A\, p, 2) — S(N, 2)]. (10.6)

Ki(2)0(N, 2)S1(\, 2) + 0c(N, 2)S(A, 2) + ke(A, 2) Br(2)U
Kot (A, 2) )

Here U = (1,0,0,0,0,0)T. The irreducible line source vector is

S\, z2) = (10.7)

+001 +1 R
Si(\,2) = eBr(2)U + / 5 RN, 2, BYW(u\I(N, 1, 2) dp” dX'. (10.8)

1

Here p/ represents the incoming ray directions. The irreducible polarized continuum scat-

tering source vector is
IR
S.0v2) =5 [ BWOZO ) (10.9)
~1

R is the angle-averaged PRD matrix in the irreducible basis for the Hanle effect (see Bom-
mier 1997a, 1997b) given in Equation (N.1) of Appendix N. The matrix ¥ is the Rayleigh
scattering phase matrix in the irreducible basis. Its elements are given in Appendix A
of Frisch (2007, see also Faurobert-Scholl 1991). We define the total optical depth scale
through dry, = —ket (A, 2)dz.

The formal solution of Equation (10.6) can be written as

_ Ty o /
I\ p, ) = Zo(\ p, T) exp [— (T)‘ T’\)] +/ exp [— (T’\ T’\)]S(A,T/’\)ﬂ’
u . u u
(10.10)

for > 0, and

TX /I d /
I()\,/L, TA) :IO<)‘7,U7O> exp (_%) _/ exp |i_ (T/\ TA):|S()‘7T//\>%> (1011)
0 H

for u < 0. Z, represents a radiation field that is incident on the medium. We assume that

no radiation is incident on the upper free boundary (7, = 0), while at the lower boundary
Ty, Zo(\, 1, Ty) = (B\(T)),0,0,0,0,0)T.



262 Chapter 10. Forward scattering Hanle effect in Ca 14227 A line
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Figure 10.4: Polarization diagrams for two values of B (10G, 15G), 6 € [100°,125°],
xB € [0°,360°], for o = 0.9, and at line center. The solid, dotted, dashed, dot-
dashed, dash-triple-dotted and long dashed lines of the loops respectively correspond to
65=(100°,105°,110°,115°,120°,125°) in panels (a) and (b). The points corresponding to xp = 0
are marked by small square symbols. We move along the curves in the counter-clockwise direc-
tion as xp is increased from 0° to 360°. The line center observations of @}/ and U/I are marked
as big squares-i, where ¢ = 1, ..., 8 stand for 8 locations on the slit. The observations were done
on October 15, 2010.

The redistribution matrices used here are defined under the approximation level III of
Bommier (1997b, see our Appendix N) We take into account the depth dependence of the
branching ratios that appear in the redistribution matrix 7%, in contrast to Nagendra et al.
(2002) and Fluri et al. (2003b) where these coefficients were kept independent of depth,
because only isothermal atmospheres were considered. The polarized Hanle RT equation
is solved for the irreducible Stokes vector Z. The Stokes vector (I,Q,U)” can then be
deduced from Z (see e.g., Frisch 2007; Anusha & Nagendra 2011a). The components of Z
are (19, I3, I7™, IV, I;*, I;¥). If the magnetic field is zero, or micro-turbulent, only the
two components I and I? are non-zero. It is easy to see on the expression of Stokes @
that @ = 0 at the disc-center (¢ = 1) and maximum at the limb (x = 0) and that U = 0.
The same argument applies to S§ and S3. When the magnetic field is non-zero and has
some fixed orientation, then all the 6 components are non-zero. Therefore Stokes () will
be non-zero at disc center and U will be non-zero with contributions coming from the four

components 17, I, I2*, I2¥. This is referred to as forward scattering Hanle effect.
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Figure 10.5: Same as Figure 10.4, but for the values of the field strength B = 30 G (panel
(a)) and B = 50G (panel (b)). The solid, dotted, dashed, dot-dashed, dash-triple-dotted and
long dashed lines of the loops respectively correspond to 6p=(130°,135°,140°,145°,150°, 155°)
in panel (a) and 8p=(155°,160°,165°,170°,175°) in panel (b).

10.2.2 Radiative transfer with the Zeeman effect

The non-LTE Zeeman-effect line transfer equation for the Stokes vector (I,Q,U, V)T is
given by
I(\ Q2 -
HACDLZ) _ fr2 By IOL0.2) -~ SO0 ). (1012
z

where K is the absorption matrix. In Appendix O we give the relevant trigonometric

1

functions that are required to write the Zeeman absorption matrix in the atmospheric
reference frame. The general form of S(), z) for a multi-level model atom can be found in
Landi Degl'Innocenti & Landolfi (2004). We recall that Equation (10.1) is the Hanle RT
equation written for the Stokes parameters (1, Q, U)T (Stokes V is not included because it is
not generated by the weak-field Hanle effect). Stokes I is not very sensitive to the magnetic
field in the weak field limit (see Eq. (10.13) below). Stokes () and U are generated due
to scattering in the presence of a weak magnetic field B. Equation (10.12) is the Zeeman
RT equation written for the Stokes vector (I,Q,U,V)T. The Stokes parameters ) and
U appearing in Equations (10.1) and (10.12) are the same quantities and can therefore
have contributions from both the Hanle and Zeeman effects. However, for the range of
fields indicated by the observed V/I amplitudes (see below), Stokes @ and U generated
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from the transverse Zeeman effect are negligible, and therefore Stokes V' decouples from
Stokes ) and U in Equation (10.12). In the weak field limit the RT equation for the

Table 10.1: List of the ratio Ay /ANp for various B values

B 10 20 30 40 20 60 70 80 90
Alg/AXp 0.003 0.005 0.008 0.01 0.013 0.016 0.019 0.022 0.024
B 100 500 1000 2000 3000
Alg/ANp 0.027 0.134 0.269 0.538 0.807

linear polarization (Equation (10.1)) thus decouples from the RT equation for the circular
polarization (Equation (10.12)). With the assumption of height independent magnetic
fields the weak field approximation (see e.g., Stenflo 1994; Landi Degl’Innocenti & Landolfi
2004) is defined as

AXg
— 10.13
where
AXg(mA) = 4.67 x 10794 \2B, (10.14)

with geg being the effective Lande factor (geg = 1 for the Ca 1 4227 A line). The line
center wavelength ), is given in A and B in Gauss. A)p is the Doppler width expressed

in wavelength units.

For the Ca I atom AXp = 31 mA at the top of the FALC model atmosphere (where
T = 9257 K). We get AXg = 8.33487 x 1073B. The Zeeman splitting equals the Doppler
width for a field strength of about B = 3720 G . In Table 10.1 we list the ratio Ay /AXp
for various B values. For B < 40G, we have Ay /AXp < 1%, so for B > 50G the ratio
ANy /AXp starts to become significant.

Under the weak field approximation (Equation (10.13)) V/I is simply given by
V(A ) 1 OL(\, )

= —AM 10.1
) ~T0um | M T ] (10.15)
where (), p) is the emergent Stokes I profile, and
cosy = cosfp cosf + sinfpsinf cos(p — xp). (10.16)

Here B, 6 and xp represent the strength, inclination and azimuth of the magnetic field

vector (see Figure 10.1). In all our calculations we set ¢ = 0° and cosf = u = 0.9. Use of
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Table 10.2: The values of (B, 6, xp) derived from the model fits to the observed
Q/I, U/I and V/I data sets.

Observation point 1 2 3 4 5 6 7 8
B (G) 15 15 10 30 50 50 30 30

0p (degrees) 125 110 125 155 160 165 115 135
x5 (degrees) 56 191 101 236 68 45 293 360

B cosy -47 -10.6 -5.8 -27.6 -394 -39.5 -6.8 -9.8

Equation (10.15) allows us to bypass the numerically expensive task of solving the Zeeman

RT equation for a range of B, 05 and xp values.

10.3 Polarization observations of Ca 1 4227 A line

The data acquisition was done with the ZIMPOL-3 polarimeter (Ramelli et al. 2010) at
IRSOL in Switzerland. More observational details will be given in Bianda et al. (2011).
The observations were obtained on 15 October 2010 near the active solar region NOAA
1112 (S19 W5). Figure 10.2 shows the position of the spectrograph slit, which was 60 pm
wide (0.5 arcsec on the disk) and subtended 184 arcsec. The slit orientation was parallel to
the geographical north limb. The resulting CCD images are 140 pixels high in the spatial
direction, with a pixel corresponding to 1.3 arcsec, and 1240 pixels wide in the wavelength
direction, with a pixel corresponding to 5.3mA . The total exposure time was about 8 min
(500 single recordings of 1s each). These observations correspond to an average p value of
0.93. Note that p values determined for near disk center observations are more accurate
compared to those determined near the limb. Figure 10.3 shows the CCD image of the
Ca 14227 A line. From the Stokes profiles in Figures 10.7-10.10 we can see that the
orders of magnitude of the observed /I, U/I and V/I are in the range 0.1%-1%. This
indicates that the observed regions are weakly magnetized. We have selected a set of 8
observed Stokes profiles for analysis. Each of these profiles is a result of averaging over
three to four pixels along the slit (to reduce noise). These 8 profiles represent different
spatial locations on the solar disk, and therefore are expected to have different magnetic
fields. Henceforward these 8 locations are referred to as location (or observation point) 1
to 8. Other near disk center observations have been performed at IRSOL. They can be

modeled with the same strategy.
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Figure 10.6: Illustration of the sensitivity of the QQ/I and U/I profiles to the magnetic field
orientation. Panel (a) shows the dependence of the @)/I and U/I profiles on p for a fixed
value of yp = 55°. Solid, dotted, dashed, dot-dashed and dash-triple-dotted curves represent
0p=5°, 30°, 60°, 70°, 90°, respectively. Panel (b) shows the dependence of Q)/I and U/I profiles
on xp for a fixed value of g = 80°. Thick solid, dotted, dashed, dot-dashed, dash-triple-
dotted, long-dashed and thin solid curves represent yp=11°, 34°, 56°, 68°, 79° 101° and 113°,

respectively.

The positive Q/I direction for the observations is defined to be parallel to the slit
direction (or parallel to the geographical north limb), whereas the positive @)/ direction
for the RT problem is defined to be perpendicular to the radius vector. For each point on the
slit, the observational data must therefore be converted to the system where positive @)/1
is oriented perpendicular to the solar radius passing through this point (see Figure 10.2).
So for each point, if (Q’,U’)T denotes the original observed data, (Q,U)T for a system

where positive /1 is oriented perpendicular to the solar radius is given by

Q _ CO‘S 200 sin 2« " Q' ’ (10.17)
U —sin2a  cos 2« U’

where « is the angle between the slit direction and the vector perpendicular to the radius
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vector (see Figure 10.2).

We note that Stokes I and V' are unaffected by the rotation angle « (see Equation (13.3)
of Stenflo 1994).

Spectropolarimetric observations of the Ca1 4227 A line at the limb have revealed wing
polarization anomalies (see Bianda et al. 2003; Nagendra et al. 2002; Nagendra et al. 2003;
Sampoorna et al. 2009), which have been referred to as the “wing Hanle effect enigma”.
The work of Sampoorna et al. (2009) has shown that according to the best theoretical
approaches now available, it is impossible to explain these wing anomalies in terms of the
Hanle effect, and therefore alternative mechanisms have been qualitatively invoked. The
wing Hanle effect enigma basically means that the signals that are measured close to the
limb are characterized by a faint depolarization in the QQ/I wings, while the U/I wings
exhibit /1 like shapes, with amplitudes that are small fractions of the @)/I amplitudes.
Our observations indicate that while the signals can be easily found near the solar limb,
they quickly become rare when moving toward the disk center. All the polarization effects
that we observe and try to model near disk center for the forward-scattering Hanle effect
are concentrated in the inner wings, near the line core, while the wing anomalies observed
near the limb would be located significantly further out, in the outer wing region. As we
do not observe any polarization effects near disk center in these outer wing regions, neither
in Q/I, nor in U/I, all that we are dealing with in the forward scattering case has nothing
to do with the wing Hanle effect enigma, it is an entirely unrelated phenomenon. This fact
further indicates that the wing signatures measured near the limb are not related to the

Hanle effect, but have a different physical origin.

10.4 Modeling procedure

The theoretical polarized spectrum is calculated with a two-stage process similar to the one
described in Holzreuter et al. (2005). In the first stage a multi-level PRD-capable MALI
(Multi-level Approximate Lambda Iteration) code of Uitenbroek (2001, hereafter called
RH-code), solves the statistical equilibrium equation and the unpolarized RT equation
self-consistently and iteratively. The RH-code is used to compute the intensity, opacities,
and the collision rates. In the second stage, the opacities and the collision rates are kept
fixed, and the vector Z is computed perturbatively by solving the polarized Hanle transfer
equation. The Stokes vector I can then be deduced using the irreducible vector Z. For
simplicity, in the second stage a two-level atomic model is assumed for the particular

transition of interest.
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(1) B=15G, 6,=125°, x,=56° (2) B=15G, 6,=110°, x,=191°

i" 0.6

/1(%)

u/I(%)

~
N
=
N
-0.1F
-0.2F
-0.3
4226.0 4226.5 4227.0 4227.5 4226.0 4226.5 4227.0 42275
Wavelength ( A) Wavelength ( &)

Figure 10.7: Illustration of the best fit of the theoretical model profiles (solid lines) to the
observed profiles (dotted lines) for the observation points 1 (on the left panels) and 2 (on the
right panels). The theoretical Q/I, U/I profiles are computed from the Hanle effect and the V/I
profiles from the weak field approximation of the Zeeman effect. In the left panels the thin solid
lines represent the profiles computed under the assumption of complete frequency redistribution
(CRD). The observed V/I profiles show signatures in the wings that are due to Fe blend lines,
but here we model only the V/I that is generated by the Ca 14227 A line.
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Figure 10.8: Same as Figure 10.7 but for the observation points 3 and 4.

10.4.1 The model atmosphere and the model atom

We use the FALC model atmosphere Fontenla et al. (1993), which we find to be better for
reproducing the observed linear polarization profiles from the Hanle effect. For comparison
we also show theoretical profiles computed with the FALX model atmosphere Avrett (1995;
see our Figure 10.11).

In the multi-level RH-code, the atomic model of Cart is consisting of 20 levels, with
17 line transitions and 19 continuum transitions. The main line is treated in PRD, using
the angle-averaged PRD functions of Hummer (1962). All other lines of the multiplet

are treated in CRD. However, for computing the polarization we restrict ourselves to a
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two-level atom model for the main line transition. All the blend lines are assumed to be
depolarizing. They are treated in LTE in the RH-code. Therefore, the blend line absorption

coefficient is implicitly included in the continuum absorption coefficient k..

In this chapter the RT equations are solved for 1 = 0.9. We have verified that one can
retain this single p value to analyze all the observation points along the slit. The vector
magnetic field B = (B, 0p, xp) is a free parameter. In all the calculations B is assumed
to be uniform with height. We also assume that it is filling all the space for reasons that

are explained in Section 10.5.6. Our modeling procedure can be described in three steps.

10.4.2 Step 1. Polarization profiles for V/I

In this step we first derive the value of B cos~y (longitudinal component) that is uniquely
determined by the observed V/I profile when compared with the derivative of the observed
Stokes I profile (cf. Equation (10.15). We then compute ensembles of (B, 05, xp) values
that all reproduce the uniquely determined B cos~y. These ensembles are model indepen-
dent because they are directly based on the observed V/I and I profiles. For more details
see Section 10.5.1.

10.4.3 Step 2. Polarization diagrams for (/I and U/I at line center

While Step 1 fixes the value of the line-of-sight component of B by using Stokes V', the
components in the transversal plane are entirely unconstrained. To determine all three
components of the field vector we need two additional observables, namely the observed
Q/I and U/I. We generate theoretical polarization diagrams for ()/I and U/I at the line
center computed using the RT equation with the Hanle effect (see Equation (10.1)) for the
sets of B values already extracted in Step 1. The observed line center values of )/ and
U/I are marked on these diagrams. With the polarization diagrams we can remove the

ambiguities in the (B, 0p, xp5) values. For more details see Section 10.5.2.

10.4.4 Step 3. Polarization profiles for /I and U/I

In this step we compare the observed profiles with the theoretical profiles calculated with
the (B, 0p, xp) values extracted from Steps 1 and 2. Although in Step 2 we use the /1
and U/I values only at line center, it turns out that these (B, 0, xp) values are also able
to reproduce the wavelength dependence of the observed @ /I and U/I profiles in the line

core. For more details see Section 10.5.3.
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Figure 10.9: Same as Figure 10.7 but for the observation points 5 and 6.

10.5 Results and Discussions

In this section we discuss the results of the modeling procedure described in the previous

section.

10.5.1 V/I profiles from the Zeeman effect

Here we discuss in more detail how Step 1 is performed (Section 10.4.2). For the compu-
tation of the V/I profiles in Step 1 using Equation (10.15) we consider a grid of magnetic
field parameters (B, 6p, xg), which are in the range B € [0G,50G]| in steps of 5 G,
0p € [0°,180°] in steps of 5°, and yp € [0°,360°] in steps of 11.25°. For the computa-
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tion of the derivative of the intensity with respect to the wavelength in Equation (10.15)
we use the observed Stokes [ itself. For differentiation we use an in-built subroutine (in
the idl programing language) that performs a numerical differentiation using a 3-point
Lagrangian interpolation. For a given location and a given field strength, we get several
sets of (fp, xp) values (a minimum of 0 to a maximum of 120 sets) consistent with the
observed V/I profiles.! The field strengths derived here always correspond to weak values
of B (10 G-50 G), consistent with the fact that the observed V/I signals are in the range
0.1% to 0.9%. We have investigated the behavior of the V/I profiles in the full range of
B € [0G,50G], 05 € [0°,180°]. For each observation point the V/I model fitting restricts
the values of B and 0p to be respectively in the smaller sub-intervals of [0G,50G] and
[0°,180°]. No such restriction is imposed on the xp values.

10.5.2 Polarization diagrams from the Hanle effect

The values of (B, 0p, xp) deduced from Stokes V' should also fit the observed @/I and
U/I profiles. For field strengths below a few hundred G the transverse Zeeman effect does
not produce any significant )/ and U/I. The observed @/I and U/I can however be
generated by the Hanle effect and hence provide us with independent constraints. We
compute the theoretical Stokes profiles (1, Q/I,U/I) considering only the Hanle effect (see
Equation (10.1)) with (B, g, xp) in the range restricted by the V/I model fitting. Since
in the weak field approximation the transfer equation for Stokes V' decouples from the
transfer equation for (I,Q,U)T, Hanle scattering does not produce any V/I signal unless

there exists an initial source of the circular polarization.

We recall that the polarization diagrams are plots of )/I versus U/I for given values
of field strength B, wavelength A and line of sight defined by p,¢ (see e.g., Bommier
1977; Landi Degl’Innocenti 1982; Bommier et al. 1991; Faurobert-Scholl 1992; Stenflo
1994; Nagendra et al. 1998). The values of (0p, xp) are varied in finite steps. A closed
curve (hereafter loop) is produced in the (Q/I,U/I) plane as yp is varied from 0° to 360°.
Each value of fp corresponds to a different loop. The size and tilt of the polarization
pattern in a loop with respect to the vertical (Q)/I = 0 line) depend on the value of B and
0p. Examples of polarization diagrams are shown in Figures 10.4 and 10.5 for B = 10G,
B = 15G, B = 30G and B = 50G. They are constructed with the theoretical /I and

U/I values at line center calculated with u = 0.9 and ¢ = 0°. Different loops correspond

IThe values of g are actually defined in a local coordinate system attached to each observation point.
Corrections for this effect are not taken into account. They are smaller than 10% as the slab is 184 arcsec
for a solar diameter of 1920 arcsec.
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to different values of 85 € [100°,175°], incremented in steps of 5°. In each of the loops
the small square symbol corresponds to the first grid point yp = 0, and as we proceed in
the anti-clockwise direction, xp takes values between 0 and 360 in steps of 11.25 degrees.
The observed @/I and U/I at line center, averaged over three pixels in the wavelength
domain (in order to reduce noise) are marked in the diagrams as big squares-i, where
1 =1,...,8 stand for the 8 locations on the slit. We recall that we refer to these 8 locations
as observation point 1 to 8. We find that among the different solution sets (B, 0z, x5)
given by the weak field approximation of the Zeeman effect, there is only one choice which
can simultaneously fit the observed line center values of Q) /I and U/I. Our results strongly
suggest that @Q/I and U/ are signatures of the Hanle effect and V/I of the Zeeman effect.
Whether resolved inhomogeneities in the atmosphere and velocity fields also contribute to
the linear and circular polarizations is a question which goes much beyond the scope of

this chapter.

In Figure 10.7 we show the Q/I, U/I and V/I fits for the observation points 1 and 2.
The best fit of the vector magnetic field for these points is (B, 0p, x5) = (15 G, 125°,56°)
and (B,0g,x5) = (15G,110°,191°), respectively. Figures 10.8-10.10 are similar to Fig-
ure 10.7, but for the observation points 3 to 8.

10.5.3 @Q/I and U/I profiles from the Hanle effect

It can be observed on the CCD image shown in Figure 10.3 and on the observed spectra
shown in Figures 10.7 to 10.10 that the shapes and signs of the /I and U/I profiles in the
line core region vary significantly from point to point along the slit. We think that these
variations can be ascribed predominantly to changes in the magnetic field direction. In
Figure 10.6 we show how sensitive indeed are the line cores of Q/I and U/I to the values of
0p and xp. In spite of this great sensitivity, the same values of (B, 6g, xg), which give the
best fits to the line center values of the observed /1 and U/I, also give the best fits to the
observed (/I and U/I at other wavelengths around the line core. This is so because PRD
effects can safely be neglected at these wavelengths. The PRD effects become important
further in the line wings where the Hanle effect is not operative. The line core polarization
is only controlled by the ‘line center anisotropy’ of the radiation field and by the value of

the magnetic field vector.

Outside the core there is no Hanle effect. The wings of U/I are essentially zero and
those of /I are controlled by Rayleigh scattering and PRD effects. In Figure 10.7, left
panel, we compare the theoretical profiles of )/ calculated with PRD (thick solid lines)
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and CRD (thin solid lines) for the observation point 1. This figure clearly shows that the
wing shapes and peak values can be nicely fitted with PRD but not with CRD. Also note
that the line center values of @)/I and U/I computed with CRD are smaller than those
computed with PRD (by about 0.5% in /). This shows that the magnetic field values
extracted using the CRD approximation will lead to significant errors when compared to
those extracted using PRD.

We note here that the irreducible components Z2, ) # 0, only contribute to the line
cores of Q/I and U/I, because they are created by the Hanle effect. The component Z?
on the other hand contributes to both the line core and the wings, but for /I alone.

(7) B=30G, 6,=115°, x,=293° (8) B=30G, 6,=135°, y,=360°

-0.4L[
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Wavelength ( A) Wavelength ( A)

Figure 10.10: Same as Figure 10.7 but for the observation points 7 and 8.
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10.5.4 The effect of model atmospheres

In the left panels of Figure 10.10 we see positive peaks in the observed profiles of /I at
4226.65 A and in both Q/I and U/I at 4226.8 A (region of core minima). We have explored
the possibility that these peaks could be due to the transverse Zeeman effect. Although
these peaks can well be explained in terms of the o components of the transverse Zeeman
effect (but with fields much stronger than the range indicated by the observed Stokes
V'), it is not possible to fit the core peaks in terms of the = component of the transverse
Zeeman effect. Only the Hanle effect can generate core signatures of sufficient amplitude
in the linear polarization. This fact can be seen in Figure 10.11(a), where we compare the
theoretical Stokes profiles computed using the Zeeman effect (using the RH-code) and the
Hanle effect with the observational point 7. The B values used for the profiles computed
using the Hanle effect are (30 G, 115°,293°) and those computed using the Zeeman effect
are (100 G, 90°,203°). The curves showing the fit from the Hanle effect are the same as in
the left panel of Figure 10.10.

Another explanation of the mentioned peaks could be in terms of a different temperature
structure of the atmosphere. To verify this we have tested a cooler model atmosphere
(FALX). While the FALX model can generate these peaks, it fails to reproduce the observed
line center /I and U/I amplitudes. The FALC model on the other hand can reproduce
the line center peaks but not the peaks near the region of core minima. These results are
shown in Figure 10.11(b), where we compare the theoretical Stokes profiles computed with
the FALC and FALX model atmospheres, which give the best fit to the observation point
7. The FALC fit is the same as the one in the left panel of Figure 10.10. The B values
derived from the FALC and FALX model atmospheres are respectively (30 G, 115°,293°)
and (30 G, 115°,315°). We note that the two model atmospheres give two different azimuths
xB. However, the FALC model gives an overall better fit than the FALX model. For all
other observation points we find that FALX cannot reproduce the line center peaks, and
that the overall fit is better in terms of the FALC model. Therefore we have chosen the

FALC model for all our calculations in this chapter.

We note that the positive red and blue peaks in the left panels of Figure 10.10 are asym-
metric in nature. These differences between the red and the blue peaks in the observed
Q/I and U/I profiles cannot be interpreted in terms of the Hanle effect, the transverse
Zeeman effect, or by using a different temperature structure. This is because our theo-
retical profiles always produce symmetric red and blue peaks. In reality we observe such

asymmetries often in Stokes spectra, and it is well known that they are due to spatially
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unresolved, correlated gradients of the magnetic and velocity fields in the solar atmosphere
(see Stenflo et al. 1984; Stenflo 2010) However we have not taken up such studies in this
chapter.

In chapter 9 we had found that the FALX model atmosphere gives a better fit to
the observed profiles when modeling the non-magnetic limb observations of the Ca 1 4227
A line, while our present disk-center work favors the FALC model. In Figure 10.12(a)
we compare the I/1., /I profiles computed using FALC and FALX model atmospheres
for 4 = 0.1 with the observations. We need three free parameters to model the non-
magnetic observations. They are (i) an enhancement parameter ¢, associated with the
elastic collision rate I'g yw (of the van der Waal’s type), (ii) a global scaling parameter
s, and (iii) a micro-turbulent magnetic field By, (see chapter 9 for more details). One
can notice that with a proper choice of free parameters FALX gives a better fit than the
FALC model atmosphere to the non-magnetic limb observations of the @) /I profiles. This
indicates that the actual temperature structure in the solar atmosphere might be better
represented by a combination of model atmospheres (two-component models), but such

studies are outside the scope of this chapter.

10.5.5 The role of collisions

The depolarizing effect of a magnetic fields is often mimicked by a similar effect due to
collisions and, in many cases, it is difficult to disentangle the two effects. In this chapter we
assume that the main contribution to the elastic collisions come from the van der Waal’s
type collisions (I'gyw). In chapter 9 we had found that in fitting the limb observations,
particularly in reproducing asymmetric )/ wing shapes, an enhancement of I'g yw by a
factor of ¢ = 1.5 became necessary. A similar enhancement was also applied by Faurobert-
Scholl (1992), to fit the observed (/I wing polarization. The justification for this can be
found in Derouich et al. (2003) and Barklem & O’Mara (1997), who respectively show that
the old theories for the depolarizing elastic collision rate D® and line broadening elastic

collision rate I'y actually underestimate I'g ,w.

However, in this chapter in fitting the near disk center observations we are able to
reproduce the wing shapes of )/ without any enhancement of 'y ywv. We examine the
effect of such an enhancement of I'g ,w by taking ¢ = 1.5 in Figure 10.12(b). It is clear that
the differences arising due to this effect are small and the effect is mainly in the wings of
the @ /I profiles, which are insensitive to the magnetic fields. The line core is unaffected by

this modification of I'g yw, because the line core is formed higher in the atmosphere where
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elastic collisions do not play any significant role. Thus our magnetic field determinations

are unaffected by the inconsistencies in the theories for the elastic collision rates.

10.5.6 The role of a filling factor

When interpreting Zeeman-effect observations of photospheric magnetic fields it is gener-
ally necessary to introduce a filling factor as a free parameter, since photospheric fields
are extremely intermittent, with most of the flux in the form of strong (kG) elements oc-
cupying typically only 1% of the quiet photosphere (Stenflo 1973). The introduction of
a filling factor as an additional free model parameter opens up a family of new solutions,
which is destructive of the uniqueness of the solution unless some appropriate additional
observational constraint is brought in. In the case of the photospheric Zeeman effect, the
crucial additional constraint has been the introduction of the Stokes V' line ratio, using
simultaneous observations in two spectral lines that are formed in the same way but differ

in their Landé factors.

Adding a magnetic filling factor as an additional degree of freedom in our interpretations
of the Hanle forward scattering observations might therefore seem to open up a Pandora’s
box of new possibilities, for which we, with our single-line observations, have no useful
constraint. The actual situation is however not at all as unconstrained as it may seem
at first, since there are good reasons to believe that the filling factor is close to unity in
our case, and therefore does not play the role that it does in photospheric Zeeman-effect

observations.

The argument for this is as follows: Many of our observed polarization amplitudes in the
core of the 4227 A line are so large, that theoretical modeling with the FALX atmosphere
is unable to produce sufficient polarization, although the implicitly assumed filling factor
is the maximum of 100 %. Only with a hot atmosphere like FALC a fit becomes possible.
With any other filling factor the theoretically predicted polarization amplitudes will be
smaller, in proportion to the assumed filling factor. This simply brings the observed
amplitudes out of reach for a fit. Only with a filling factor close to unity is a fit at all

possible in many of the observed cases.

In the case of the photospheric Zeeman-effect observations the situation is very different.
The observed polarization amplitudes are mostly very small (on the quiet Sun). Since there
is proportionality between circular polarization and field strength over a very wide range,
from zero to typically about 500 G, where saturation gradually begins to set in, a tiny

filling factor can easily be compensated for by a large field strength to fit the observed
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(a) Zeeman effect versus Hanle effect (b) B=30G, 6,=115° FALC versus FALX
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Figure 10.11: Panel (a) shows a comparison of the theoretical Stokes profiles (I/I.,Q/I,U/I)
computed with the Hanle effect (solid lines) and the Zeeman effect (dashed lines) with the
observations (dotted lines) for the observational point 7. The B values used for the profiles
computed using the Hanle effect and the Zeeman effect are respectively (30 G, 115°,293°) and
(100 G, 90°,203°). The V/I profiles for these two magnetic field configurations computed using
the weak field approximation of the Zeeman effect are shown as solid and dashed lines respec-
tively. Panel (b) shows a comparison of model profiles (I/I.,Q/I,U/I) computed using two
model atmospheres, FALC (solid lines) and FALX (dashed lines), with the observational data
(dotted lines) for the observation point 7. The B and #p values for the FALC and FALX model
atmospheres are the same, while the xp values are 293° and 315°, respectively. The V/I profiles
for these two magnetic field configurations computed using the weak field approximation of the

Zeeman effect are shown as solid and dashed lines respectively.
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(a) FALC versus FALX at p=0.1 (b) Effect of Collisions
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Figure 10.12: Panel (a) shows comparison of I/I, and @Q/I profiles for and p = 0.1 for the
FALC (solid lines), FALX (dashed lines) model atmospheres and the observations (dotted lines).
Two of the three free parameters for FALC and FALX model atmospheres are the same namely
c=1.5,s=1.8. Byup = 25G for FALC and Byy1, = 30G for FALX. Panel (b) shows the effect
of I'g yw on the /I and U/I profiles computed for p = 0.9 for the FALC model atmosphere.
We have used ¢ = 1 and ¢ = 1.5 for solid and dashed lines respectively. The magnetic field
values are (B,0p,x5) = (15G, 125°,56°).

polarizations. With the line ratio (determining the differential Zeeman-effect non-linearity
between the two lines) the value of the field strength can be fixed. In contrast to the
Zeeman-effect case, however, the Hanle polarization effects do not scale in proportion to
the field strength. A small filling factor can therefore not be compensated for by a large
field strength or by any other field parameter, both because the field dependence is very

non-linear, and saturation takes place already for rather weak fields.

The question may then arise why we here conclude that the filling factor must be close
to unity, while with Zeeman-effect observations we are used to filling factors that are a

couple of orders of magnitude smaller. There are two reasons for this:

The first reason is that our 4227 A observations refer to the chromosphere, and it is
well known that the behavior of the Hanle effect in photospheric lines (like Sr1 4607 A)
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and chromospheric lines (like Ca1 4227 A) is entirely different Stenflo (2003b). While the
photospheric lines do not show much of any spatial structure and rarely any trace of a
Stokes U signal, the chromospheric lines are full of spatial structures along the slit in
both @ and U. The absence of U signals in the photospheric lines can be understood in
terms of tangled fields on scales much smaller than the spatial resolution element, causing
cancellation of the positive and negative contributions to Stokes U over each resolution
element. The circumstance that we see substantial polarization signals in Stokes U with
no evidence for cancellation effects in the chromospheric lines is evidence for resolved fields

(filling factor near unity).

The second reason is that the 4227 A observations that we are trying to fit here do not
represent entirely quiet regions on the Sun, but were recorded in the outskirts of active
regions, where we found an abundance of clear forward-scattering polarization signatures.
In contrast, much less polarization is found far from active regions. The filling-factor
concept may be more applicable in such truly quiet regions, but there the signals are so
small that they are hard to measure with any acceptable S/N ratio. Application of the
forward-scattering Hanle effect to quiet regions are therefore presently out of reach for two
reasons: insufficient S/N ratio of the observations, and insufficient observational constraints

(with single-line observations) when the fields are not spatially resolved.

10.6 Concluding remarks

We have analyzed spectropolarimetric observations of the Ca1 4227 A line obtained near the
center of the solar disk (u = 0.93). The use of ZIMPOL-3 allows us to reach the needed
polarimetric precision. We analyze 8 positions along the slit, which represent different

magnetic fields. These high quality observations are modeled in three steps.

In the first step we use the weak field approximation of the Zeeman effect as applied
to the V/I profiles. We use Equation (10.15) to compute the V/I profiles with (B, 0g, x5)
as a free parameter. We extract the values of (B,0p,xp), all of which represent the
identical value of Bcos~y (the longitudinal component of B) that has been fixed by the
observed V//I. For each observation data point we obtain a large set of (B, 0p, x5) values,
which give equally good fits. In the second step we solve the polarized Hanle RT equation
(Equation (10.1)) for the Stokes parameters (I,Q,U)T. The parametric space covered in
this step is restricted to the values of (B,0p, xp) already extracted from the V/I model
fitting. We construct polarization diagrams of /I versus U/I at line center and mark

the ‘observed’ line center data points on these diagrams. With the polarization diagrams
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we find that only one among the set of (B,0p, xp) values obtained from the V/I model
fitting is able to reproduce the observed Q/I and U/I at line center. In the third step we
analyze the shapes of the /I and U/I profiles in the line core region. It turns out that
the B values that give good fits to the observations at line center also reproduce the entire
wavelength dependence of the observed Q/I and U/I.

The vector magnetic field constitutes 3 independent free parameters (B, 0p, x5). We
have 3 constraints, namely the Q/I, U/I profiles generated mainly by the Hanle effect,
and the V/I profile generated by the longitudinal Zeeman effect. Through a combined
modeling that uses the Zeeman effect (Step 1) and the Hanle effect (Steps 2, 3), we have
been able to fit, with a single choice of B, the three profiles (Q/I, U/I, V/I) for the 8
observed locations that we have analyzed. In Table 10.2 we list these (B, 0, x ) values for
the 8 observed profiles. The extracted field strengths are weak, namely B € [10 G, 50 GJ.
The average 0p is 136°. The values of xp are quite random. The Stokes I profile is not
much affected by the range of field strengths that we are interested in (10-50 G).

In summary we have demonstrated that the forward scattering Hanle effect (for ob-
servations near disk center) combined with the longitudinal Zeeman effect can be used
as a good diagnostic of weak vector magnetic fields in the solar chromosphere. Since the
transverse Zeeman effect is too insensitive to such fields, they cannot be diagnosed by the

Zeeman effect alone, only the Hanle-Zeeman combination can do the job.

New Results

For the first time in the literature the forward scattering observations in a spectral line
are analyzed and it is used as a diagnostic tool for estimating the chromospheric magnetic

fields. The important results that are obtained in this chapter are as follows.

1. We present polarimetric (I, Q/I, U/I, V/I) observations of the Ca 1 4227 A line
recorded around g = cosf = 0.9. Here () and U represent linear polarization and V' the
circular polarization. The high sensitivity of the polarimeter (ZIMPOL: Zurich IMaging
POLarimeter) makes it possible to measure the weak polarimetric signals with great accu-

racy.
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2. We model these high quality observations using the solution of polarized RT equation

in the presence of a magnetic field. For this we use standard 1D model atmospheres.

3. We show that the linear polarization is mainly produced by the Hanle effect (rather than
by the transverse Zeeman effect), while the circular polarization is due to the longitudinal

Zeeman effect.

4. A unique determination of the full B vector may be achieved when both effects are
accounted for. The field strengths required for the simultaneous fitting of (Q/I,U/I,V/I)
are in the range 10-50 G. The shapes and signs of the @)/I and U/I profiles are highly

sensitive to the orientation of the magnetic field.

Further studies related to the work presented in this chapter are published in:
1. Bianda, M., Ramelli, R. Anusha, L. S., Stenflo, J. O., Nagendra, K. N., Holzreuter, R.,
Sampoorna, M., Frisch, H., & Smitha, H. N., 2011, A&A, 530, L13




Chapter 11

Conclusions and future outlook

The aim of this thesis is to explore the landscape of solar magnetic fields, through new
formulations of theoretical methods and their applications to study the solar polarimet-
ric observations. We are primarily interested in understanding scattering polarization in
spectral lines that arises due to the geometry of the medium such as a multi-dimensional
(multi-D) structure or sphericity of the medium. We consider scattering both in the ab-
sence and presence of weak magnetic fields. We also considered the effects of turbulent
magnetic fields on the spectral line polarization. We have formulated several polarized
radiative transfer (RT) problems and solved them using modern, efficient numerical meth-
ods that we have developed. In the following we give a brief summary of the work carried
out in this thesis. Subsequently we give an outlook on the future plans to advance our

knowledge in this field, based on the work already done in this thesis.

11.1 Summary of the thesis

In chapter 1 we have given a general introduction to the thesis. We have given basic
definitions, concepts and illustrative examples which are necessary to understand the work
presented in subsequent chapters. We have also discussed the motivation for taking up
this research topic for the thesis. At the end of chapter 1 we also give an outline of the

theoretical formulations, and new results presented in the thesis.

In chapter 2 we have studied the Hanle effect due to a random magnetic field with a
finite correlation length, in order to assess limitations to the micro-turbulent approximation
commonly used in the literature. The magnetic field is characterized by a correlation length
and a magnetic field vector probability density function (PDF). We have constructed an

RT equation for the mean radiation field, and show that a simple averaging of the solution
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of this equation over the PDF yields the mean Stokes parameters. The transfer equation is
solved numerically by a Polarized Approximate Lambda Iteration (PALI) method. We have
found that micro-turbulent approximation is safe for optically thin lines and optically very
thick lines formed in a scattering media. The lines with intermediate optical thicknesses
show some sensitivity to the magnetic field correlation length (see Fig. 2.4). Studies carried
out in the micro-turbulent limit with different types of magnetic field PDFs indicate that
the polarization is quite sensitive to the shapes of the PDFs (Section 2.8).

In chapter 3 we propose a robust method called Stabilized Preconditioned Bi-Conjugate-
Gradient (Pre-BiCG-STAB) to solve the classical problem of line transfer in spherical
media. This method belongs to a class of iterative methods based on the projection tech-
niques. We briefly present the method, and the computing algorithm. We have compared
Pre-BiCG-STAB with another method (Pre-BiCG) which also belongs to the same class
and is very efficient with respect to other contemporary methods. These two advanced
methods are validated in terms of their efficiency and accuracy, by comparing with other
iterative methods currently in use such as Jacobi, Gauss-Seidel and Successive Over Re-
laxation (see Figure 3.2). Although we have considered unpolarized RT and complete
frequency redistribution (CRD) in line scattering in one-dimensional (1D) spherically sym-
metric media in this chapter, we find that the method developed is equally efficient when
we extend it in later chapters to handle polarization and partial frequency redistribution
(PRD) scattering in multi-D media.

In chapter 4 we have formulated the polarized transfer equation in three-dimensional
(3D) media using the technique of irreducible spherical tensors 7 (4, €2). The multipolar
expansion for Stokes vectors and Stokes source vectors presented in this chapter allows
us to write an RT equation in terms of Ig and Sg . We show that the advantage of
formulating the RT equation in terms of ’TQK (7,€2) is that the irreducible source vector
Sg becomes completely independent of the angle variables, making it easier to extend the
existing 1D PALI methods to the 3D case. However the irreducible components I, g remain
dependent on the inclination and also on the azimuthal angle of the ray. We present 3D
solutions on some test cases, which may serve as benchmarks. The nature of line RT
in 3D media, as compared to the 1D case is discussed in some detail. We show that
the 3D PALI method gives correct results in the limit of a 1D medium (see Figure 4.3).
The 3D anisotropy is characteristically different from the 1D anisotropy of the radiation
field. The difference arises due to the finite optical depths in the horizontal directions
(X,Y). This causes large differences between the 3D and 1D values of the degree of linear

polarization (Q/I,U/I). In fact, in 3D media the radiation field is non-axisymmetric (even
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in the absence of magnetic fields) because the finite optical depths in X,Y, Z directions
break the azimuthal symmetry of the radiation field. In a 1D media, the radiation field is
axisymmetric about the Z-axis. Due to these reasons, the shapes and magnitude of the

(Q/I,U]/I) spectra differ significantly from the corresponding 1D cases (see Figure 4.6).

In chapter 5 we develop an efficient method to solve polarized RT equation with PRD
in a two-dimensional (2D) slab. We assume a two-level atom model with unpolarized
lower level. We assume that the medium is finite in two directions (Y and Z) and infinite
in the third direction (X). First we apply the Stokes vector decomposition technique
developed in chapter 4 to the case of 2D media. We show that due to symmetry of the
Stokes I parameter with respect to the ¢ = 7/2 axis, the Stokes () becomes symmetric
and the Stokes U becomes anti-symmetric about this axis (¢ is measured from the infinite
X direction anti-clockwise). Using this property we can represent the polarized radiation
field by 4 irreducible components I0, I2, 112 Y and 122 . The Stokes source vectors are also
decomposed into 4 irreducible components which are independent of the ray direction.
Due to axi-symmetry I and I;™ are zero in 1D media. This decomposition technique
is interesting for the development of iterative methods. Here we describe the Pre-BiCG-
STAB method developed earlier in chapter 3 and show that it is much faster and efficient
than the Jacobi iteration method used in chapter 4. Further, in this chapter we generalize
to PRD, the 2D short characteristics formal solver developed in Paletou et al. (1999) for
CRD. This formal solver is much more efficient than the one used in chapter 4. With
these two new features, it is possible to compute the solutions for a wide range of model
parameters. With the method of chapter 4 only media with small optical depths can be
considered. For example, in Figure 5.9 we consider the case of semi-infinite atmospheres
with Ty = Ty, = T = 2 x 10°. We compare the surface averaged emergent Stokes profiles
in 2D media, and the corresponding 1D solutions for CRD and PRD. We show that the
deviation of polarized radiation field in 2D media from the one in 1D media exists both
for CRD and PRD, but is more stronger in the line wings of the PRD solutions.

Chapter 6 is dedicated to certain extensions of our previous works (chapters 4 and 5)
on polarized RT in multi-D media with PRD. First, we present a generalization of the
Stokes vector decomposition technique developed in chapter 4 to include the magnetic
fields (Hanle effect). Secondly, we generalize to the magnetic 3D RT, the efficient Pre-
BiCG-STAB method developed in chapter 5 for the non-magnetic 2D RT. Thirdly, we
use the more efficient 2D and 3D short characteristics formal solvers, with appropriate
generalizations to the present context. We give several benchmark solutions computed

using the code, with all the above mentioned generalizations. The main results of these
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solutions are the following (see Figure 6.13). In the non-magnetic case, at line center, the
spatial distribution of @)/I and U/I is homogeneous in the interior of the top surface, but
sharply raise near the edges. This is purely a multi-D geometric effect. The presence of
a magnetic field modifies this spatial distribution by causing a depolarization (decrease
in the magnitude), or re-polarization (increase in the magnitude) of /I and U/I. This
is a natural consequence of the Hanle effect. In the line wing frequencies, magnetic and
non-magnetic spatial distributions look the same, as Hanle effect is confined to the line
core. However in the line wing frequency, the spatial distribution is more inhomogeneous,
and the sharp raise of Q)/I and U/I near the edges is more enhanced, as compared to those
at the line center. This behavior at line wings is mainly due to the PRD effects. These

characteristics are not noticeable if the CRD assumption is used in line formation studies.

In chapter 7 we formulate polarized RT equation in multi-D media that includes angle-
dependent PRD and Hanle effect. We propose a method of decomposition of the Stokes
source vector and Stokes vector in terms of irreducible Fourier components S(k) and i'(k)
using a combination of the decomposition of the scattering phase matrices in terms of

irreducible spherical tensors 722K (7,€2) and the Fourier series expansions of angle-dependent

~(k ~ (k
PRD functions. We also establish that the irreducible Fourier components & *) and z"
satisfy a simple transfer equation, which can be solved by any iterative method such as a

PALI or a Biconjugate-Gradient type projection method.

In chapter 8 we have further generalized (see Section 8.2.2) the Fourier decomposition
technique developed in chapter 7. to handle AD PRD in multi-D polarized RT. We have
applied this technique and developed the efficient Pre-BiCG-STAB method to solve this
problem (see Section 8.3). We prove in this chapter that the symmetry of the polarized
radiation field with respect to the infinite axis, which existed for a non-magnetic 2D medium
in the case of AA PRD (as shown in chapter 5) breaks down in the case of AD PRD
(see Appendix L). We present results of the very first investigations of the effects of
angle-dependent PRD on the polarized line formation in multi-D media. We restrict our
attention to freestanding 2D slabs with finite optical thicknesses on the two axes (Y and 7).
We consider effects of AD PRD on the scattering polarization in both non-magnetic and
magnetic cases. We find that the relative AD PRD effects are prominent in the magnetic
case (Hanle effect). They are also present in non-magnetic case for few choices of (6, ).
We conclude that the AD PRD effects are important for interpreting the observations of

scattering polarization in multi-D structures.

In chapter 9 we develop a mathematical framework for the last scattering approxima-
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tion (LSA) approach, starting from the polarized RT equation. We derive simple formulae
for @/1 by applying a few approximations to the governing equations of the RT approach.
We have three levels of approximations named as LSA-1, LSA-2 and LSA-3. We validate
the LSA approaches, by comparing with the exact RT approach (see Figure 9.5). How-
ever among the three LSA-3 is most useful as it is nearest to the exact RT solutions in
reproducing the features of Q)/I profiles in greater detail. LSA-3 is 8 times faster than the
RT approach. To illustrate the usefulness of LSA-3 approach in modeling the second solar
spectrum, we compare both the LSA-3 and the RT solutions with the recently observed
Q/I spectra of Ca 1 4227 A line (see Figure 9.6). These recent observations are made in
the quiet regions on the Sun. In this chapter we have shown that LSA-3 can provide a fit
to the observed (/I spectra, which is nearly as good as the exact RT approach itself.As
mentioned above, LSA-3 solution can be obtained at a much less computational cost. Thus,
LSA-3 may be applied

(i) to interpret the second solar spectrum and the Hanle effect in lines with PRD,

(ii) to test different theoretical formulations of the elastic collisions,

(iii) to explore the formation of the second solar spectrum in media where 3D radiative
transfer effects have to be taken into account,

(iv) to estimate the strength of micro-turbulent magnetic fields in the solar chromosphere.

In chapter 10 we have analyzed spectropolarimetric observations of the Ca1 4227 A line
obtained near the center of the solar disk (@ = 0.93). The use of ZIMPOL allows us to reach
the needed polarimetric precision. We analyze 8 positions along the slit, which represent
different magnetic fields. These high quality observations are modeled using combinations
of Hanle and Zeeman effect which act as complementary effects in the weak field regime.
The vector magnetic field constitutes 3 independent free parameters (B, 0p, x5). We have
3 constraints, namely the /I, U/I profiles generated mainly by the Hanle effect, and the
V/I profile generated by the longitudinal Zeeman effect. Through a combined modeling
that uses the Zeeman effect and the Hanle effect we have been able to fit, with a single
choice of B, the three profiles (Q/I, U/I, V/I) for the 8 observed locations that we have
analyzed. In Table 10.2 we list these (B,0p, xp) values for the 8 observed profiles. The
extracted field strengths are weak, namely B € [10 G, 50 G]. The average 63 is 136°. The
values of yp are quite random. The Stokes I profile is not much affected by the range
of field strengths that we are interested in (10-50 G). In summary we have demonstrated
that the forward scattering Hanle effect (for observations near disk center) combined with
the longitudinal Zeeman effect can be used as a good diagnostic of weak vector magnetic

fields in the solar chromosphere. Since the transverse Zeeman effect is too insensitive to



288 Chapter 11. Conclusions and future outlook

such fields, they cannot be diagnosed by the Zeeman effect alone, only the Hanle-Zeeman

combination can do the job.

11.2 Future Outlook

As discussed in chapter 1 the current development in the field of realistic modeling of the
second solar spectrum is restricted to the case of 1D RT and 1D solar model atmospheres
using PRD in line scattering or to multi-D RT with 2D or 3D model atmospheres under
the approximation of CRD in line scattering. With these two kinds of approaches, one has
to restrict the attention to the observing regions which can well be represented by planar

1D media, or one has to restrict to the photospheric lines where PRD effects are negligible.

This situation in the field arose because, in the earlier decades (1) the resolution power
of the telescopes and sensitivity of the polarimeters were insufficient to resolve the spatial
structuring which manifest through the signals in the linear polarization profiles, (2) the
complication of multi-D RT is such that the construction of realistic 3D atmospheric models

and solution of polarized 3D RT equations were not computationally feasible.

The current studies of the linear polarization of the chromospheric lines suggest that,
in many cases 1D model atmospheres fail to represent the solar atmosphere — which in
reality is highly inhomogeneous and dynamic in nature. In the past three decades, there
has been a revolution in technology which drastically improved the resolution power of
the telescopes, precision and sensitivity of the spectro-polarimeters, and capability of the
computers. Due to technological advancements it is now possible to record the faint linear
polarization signals in the second solar spectrum in greater detail (both spectrally and
spatially). Although it is impossible to perfectly simulate the solar atmospheric features
in detail, using clever approximations it is still possible to have a 3D view of the solar
atmosphere including the spatial inhomogeneities. To test these numerical simulations
of the 3D solar model atmospheres, it is necessary to use them and solve the concerned
polarized RT equation with PRD scattering, and then compare the results with the spatially
resolved observations of the linear polarization in spectral lines. This major project is our
next goal. We plan to take up such a project in three steps: (1) extend our numerical
codes to handle realistic 3D model atmospheres; (2) perform polarimetric observations
of the chromospheric line such as Ca 11 K which shows high degree of spatial variation,
and construct a spatial map of the linear polarization; and (3) finally compute the linear
polarization profiles using the numerical codes developed in step (1) and compare the

results with the observations carried out in step (3). Such a study would answer to some
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extent, whether these realistic 3D atmospheric models really realistic? How best we can

mimic the solar atmospheric features and try to understand our nearest and dearest star,

the Sun!!
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Appendix A

Integral equations for the components of the

source vector

In Equations (2.17) to (2.19) of chapter 2, we give the integral equation for the source
vector S(7|B). The corresponding system of integral equations for its K components

S5 (7|B) may be written as
T ! ’
( |B ZMQQ/ / {Lg/K (T—T/;V)Sg, (7’,|B>
K/Q/

+ [Lg/K/ (r—7,0) — Lg,K (r—7';v)] /P(B/)Sg//<TI|B,) ng/} dr’, (A1)
with

’ +oo 1 / T
LS,K (t;v) = / 2—\I/KK (u)ef%(‘ﬁ(x)w)ng(x) dpdz. (A.2)
—0o0 0 I

The \I/g,K/(,u) are real, even functions of y and satisfy \I/]Q(,K/ (1) = \If[_(g,/ () (LLO4, Appendix

A20). For a non polarized primary source term,
gg(T) = 5}(05@0 G(T), (A?))

with G(7) proportional to the Planck function. For a two-level atom with unpolarized

ground level, the elements M, (B) of the matrix M(B) can be written as

MEo/(B, 05, xp) = e @~ ME (B, 05), (A.4)
with
Q"
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We recall that de,,(Q p) are the reduced rotation matrices, with f5 and y g the polar angles
(inclination and azimuth) of the magnetic field direction in an atmospheric reference frame
with the Z-axis along the normal to the surface (see Figure 2.1 in chapter 2). Explicit
expressions for Xxqr(B) can be found in LL0O4 (Chaps. 5, 10, 14; see also HF07). They

can be written as

Wi (Ji, Ju) 1

XearB) =00 54 [1 + Q”F%j ' Ao
Here I'y =T/(14+ € + 51SK)) with ¢ = C,;/A,,; and 5 = D) /A, (Bommier 1997b;
LL04 p. 520 and 532). We recall that C,; and A, ; are the inelastic collisional and radia-
tive de-excitation rates. The parameter DX with D = 0, is the effective number of
depolarizing collisions, for the statistical tensor of rank K, taking place during the lifetime
of the excited level. The magnetic field strength B enters through the efficiency factor
I'p = 2nv9u/Au; = (eo/2mc)(gu/Au,;) B where vy, is the Larmor frequency, eq and m the
charge and mass of the electron, ¢ the speed of light and g, the Landé factor of the upper
level. Finally, W, (J;, J,,) are atomic depolarization parameters that can be found in LL04
(Table 10.1, p. 515). For a normal Zeeman triplet (J; =0, J, = 1), Wx =1 for all values
of K. Explicit expressions of the ./\/ng, can be found in HF07 (see also Faurobert-Scholl
1991; Nagendra et al. 1998).

Equation (A.4) shows that the xp dependence of the Sg appears as a phase factor.
This suggests to introduce new functions S§ (7| B, ) defined by the relation

sg(T|B,eB,XB) = e—iQXBsg(TyB,eB). (A7)

The integral equations for these new functions are
T ! /
S§ (7B, 0p) = 0kobgo G(T) + Z M5o (B, 93)/0 {Lg,K (r —7v)S5 (7| B, 0p)
K/Q/

+ (L5 = 720) = L (= 750)] OB 05, 1) S (1B 0p)
12 : / / / dX/B /
« B sin@, df'y dB 4—} dr'. (A.8)
s
This equation becomes simpler if the magnetic field PDF is cylindrically symmetrical

with respect to the Z-axis, i.e., of the form

P(B)d®*B = h(B,05)B*sin 0 dfy dB CZ(—B. (A.9)

™
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We can integrate over x’z the last term in Equation (A.8). It will be zero, unless Q' = 0.

Equation (A.8) reduces thus to

T
Sg(ﬂB,@B) = (5[{05@0 G(T) + Z MCI;Q’ B 93)/ {LKK’(T . / )Sg/l( ,|Ba9B)
K’Q’
+ 5Q,0[[L5,K’(T —70) — LK (- / / WB',05)S5 (7'|B',0%)
% B sin 6y dd', dB’] } (A.10)

We remark here that the term involving the mean value of S , is zero when @’ # 0.

Once the S5 (7|B, 0p) have been calculated, they have to be multiplied by e™'@X5 (see
Equation (A.7)) and then averaged over the magnetic field PDF. Since P(B) has been
assumed to have a cylindrically symmetry, the averaging process will give zero, except for
the components with @) = 0. So the mean source vector (8)(7) and mean Stokes vector
(Z) (7,2, ) have only two non-zero components corresponding to K = 0,2 and @) = 0.
The magnetic field PDF does not break the cylindrically symmetry of the atmosphere. We
stress that there is no way to avoid the calculations of the S5 (7|B,6p) components with
@ # 0. The reason is that the integral equation for the conditional mean source vector

holds for both the micro and macro-turbulent limits.



Appendix B
Exact expressions of the mean coefficient (M3,)

The coefficient M2, is defined in the Appendix A. Exact expressions for the mean values
(MZ,) can obtained with the PDFs given in Table 2.1, when the magnetic field strength
has a Dirac or Gaussian distribution. Because of the cylindrical symmetry of the PDFs,

(M2,) = (MZ,). The expressions given below correspond to Wx = 1 and s = 0.

When the field strength has a Dirac distribution, the coefficients (M3,) are of the form

1 Iv2 4IV2
typ=——-1-C | —E= ) - Oy [ —E || . B.1
Maolo = 7775 { "\ \1+4r72 (B-1)
The coefficients C and Cy depend only on the angular distribution. The coefficient 15 is
defined in the Appendix A. The index B stands for B.

When the field strength has a Gaussian distribution,

1
C14€

The coefficients K,,,, m = 1,2, may be written as

ton=1= [ e (o) e () 3

Yo = \/7_TF39 (B4)

One can check that the coefficients K7 and K5 go to zero when the magnetic field goes to

<M30>G

[1 ——(71l(i-—»C&}¥§]. (ElQ)

with

Zero.

We give in Table B.1 the coefficients C; and 5 for the isotropic, cosine and sine power
laws defined in Table 2.1, column 2, of chapter 2. Some of these results can be found in
Stenflo (1982; 1994, Equation (10.54)).
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Table B.1: Coefficients C; and Cs for the calculation of (M3;)

isotropic cosine power law sine power law

C 2 6(p+1) 3(p+2)
L 5 (p+3)(p+5) (p+3)(p+5)
C 9 6 3(p+2)(p+4)
2 5 (p+3)(p+5) 4(p+3)(p+5)

For p = 0, C; and Cy go to 2/5 and we recover the isotropic angular distribution. For

the cosine power law, when p goes to infinity, C; and C5 go to zero and we recover the

Rayleigh scattering. For the sine power law, when p goes to infinity, C'; goes to zero and

C to 0.75.



Appendix C

Construction of A matrix and Preconditioner

matrix M

In Pre-BiCG method, it is essential to compute and store the AT matrix. A brute force -
fully numerical way of doing this is as follows. Suppose that the dimension of A matrix is
ng X ng, where ng is the number of depth points. By sending a d-source function ng times,
to a formal solver subroutine, ng columns of A matrix can be calculated. But this takes a

large amount of CPU time especially for large values of ng.

Instead, there is a semi-analytic way of calculating the A matrix. By substituting the
d-source function in the expression for the intensity on a short characteristics stencil of 3-
points (MOP in standard notation) we can obtain “recursive relations for intensity matrix
elements I;;(7,j,= 1,2,...n4), which can then be integrated over frequencies and angles

to get the A matrix. Finally, A = [I — (1 —¢)A]. The diagonal of A is A* and the diagonal

of A is the preconditioner matrix M.

For plane parallel full-slab problem, this is given in Kunasz & Auer (1988). In radiative
transfer problems with spherical symmetry, it is sufficient to compute the solution on a
quadrant. However this causes a tricky situation, in which we have to define a mid-line
(see Figure 3.1) on which a non-zero boundary condition I = I~ has to be specified. For
the outgoing rays, the mid-vertical line is the starting grid point for a given ray. Since
the intensity at the starting point is non-zero (I'™ = I™), intensity at any interior point

depends on the intensity at all the previous points. Recall that

I,(pn > 0) = Iya (0 > 0) exp(=A7i (0 > 0)) + Yr—18k—1 + VuSk + Virg18k+1 (C.1)
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and

L1 (p > 0) = Iigo(pe > 0) exp(—=A7pq1 (10 > 0)) + Ur Sk + Vg1 Skq1 + Yrg2Sir2 (C.2)

and so on until we reach the mid-line. It is easy to see from above equations that intensity
calculation at a short characteristics stencil MOP is not confined only to the intensity on
MOP, but also on all previous points, through spatial coupling. This is specific to per-
forming radiative transfer on a spherical quadrant. Note that even for the construction of
a diagonal A, all the elements I;; of the intensity matrix has to be computed. We present

below the recursive relations to compute I;;(i,5 = 1,2,...,n4).

For the incoming rays (u < 0) - Reverse sweep
DOi=1,2,... 0y

Consider an arbitrary spatial point . The delta-source vector is specified as

S(m)=1, S(r;)=0 for i#j. (C.3)

DO ip =1,2,...,n,, where n, is the total number of impact parameters.

For the inner boundary points, define n,,, = ng for the core rays and n,, = nq—(ip—n.—1)
for lobe rays. The index n,, represents the total number of points on a given ray of
constant impact parameter p. The external boundary condition has to be taken as zero

for constructing integral operators like A.

Iil(Ti,Tl,fI;,p) = 0. <C4)

For those rays (with index ip) for which p(ip) < r(4)
DO j=2.3,...n,
IF

(j =i+ 1) and (j = ng or p(ip) = r(j)), which are interior boundary points

P

L j(ri,75,2,p) = Li j1 (75, j-1, 2, p) exp (AT (1)) + ¥u(f, 7, p, p < 0) + alf, z,p, p < 0)
(C.5)

This is because at these interior boundary points we assume Sy = S, and S; = S, = 1

when j =1+ 1.
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ELSE
(Non interior boundary points)
fj=it+1l

L j(ri,7j,2,p) = L j1 (7, Tj—1, @, p) exp — (A7 (1)) + Ya(j, z, p, pp < 0) (C.6)
Elseif j =1

L (1, 7m,2,p) = I j_1 (7, Tj—1, ,p) exp (—AT; (1)) + o (j, x, p, p < 0) (C.7)
Elseif j =7 —1

Lj(7i, 75, w,p) = Lija (73, i1, 2, p) exp (= A75 (1)) + Pul, 2, p, pp < 0) (C.8)

Else
it (j<i—2)
L j(7i, 7j,2,p) = 0 (C.9)

else

L j(7i, 75, 2,p) = Lij—1(7i, Tj—1, ¢, p) exp (= A7 (1)) (C.10)
end if
End if
END IF
END DO

For those rays for which p(ip) > ()
DO j=23,.. .n,

p

IZ'J(Ti,Tj,lL',p) =0 (Cll)

END DO
END DO
END DO

For the outgoing rays (x> 0) - Forward sweep

Leti:nd,nd—l,...,l

S(r;)=1, S(1;)=0 for i#j (C.12)
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DO wp=1,2,...,n,

For j = n,, (Inner boundary point)

Ii,j(Ti7Tj7$7p) (M > 0) = Ii7j<7-i,7-j,x,p) (:U’ < O)

For non boundary points

For those rays (with index ip) for which p(ip) < r (i)
DO j=n,, —1,n, —2,...1
Ifj—it1l

L j(7i,7j,2,p) = Ly ja (73, Tjsr, @, p) exp (= A7y (n)) + valj, 2, p, pp > 0)
Elseif j =1
L j(7i, 75, 2,p) = Lija (73, Tjs1, @, p) exp (= A7 (1)) + o (j, 2, p, 0 > 0)
Elseif j =7 —1
L j(7i, 75, 2,p) = L j+1(7i, Tjsr, @, p) exp (—AT;(1)) + Yuld, z, p, 0 > 0)
Else
L j(7i, 75,2, p) = Li j11 (T, Tj1, T, p) exp (—AT; (1))

End if
END DO

For those rays for which p(ip) > r(7)
DO j = ny,my, —1,...,1

Ii,j(Ti7Tj7xap> =0
END DO

END DO
END DO

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

The algorithm given above saves a great deal of computing time by cutting down the

number of calls to the formal solver -2 instead of ng -the first call to store the ¢ and At

at all depth points, and the second call to compute I;;



Appendix D

A core-wing method for the 3D polarized line

transfer

An unpolarized version of the core-wing method was originally developed by Paletou &
Auer (1995). It was extended later to resonance polarization with PRD by Paletou &
Faurobert-Scholl (1997) and to the Hanle effect by Nagendra et al. (1999). The above
cited papers used simple forms of PRD functions (combination of 7y 11 of Hummer 1962).
Fluri et al. (2003) proposed a core-wing method for the Hanle scattering problem with the
very general PRD matrices of Bommier (1997b).

The core-wing method assumes that CRD is a good description in the line core region
(x < x.) and frequency coherent scattering (CS) is a good approximation in the line wings
(x > x.). The choice of the separation frequency x. is not critical. A practical choice is
z. = 3.5. In other words the 7y function of Hummer (1962) can be replaced by a weighted
combination of CRD and CS. ryp function is set to CRD in the line core, and to zero in

the line wings.

The application of the core-wing separation method to Equation (4.43) leads to

N

+o0 !
/ da' Rﬁ;‘f I\ pud S,y = (1 - g2) / da'W[ag(z')

0= @ NS} ) b g, [ et o8 ),
- (D.1)
where
0 for = <z,
Jo = (D.2)

rn(x, z)/¢(x) for = >z,
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is the separation coefficient. Simplifying the above integral we obtain

5T ) = [ W) s ST for <,

and

ST " (r,2) = (1— g) / AW B ()N purd ST (1, 27) + o WA pad ST (. )

for x> z..

(D.3)

Substituting Equation (D.3) in Equation (4.43) we obtain separate equations for 7’”“(7‘, x)
in the core and the wing domains. After simple algebraic manipulations, Equation (4.44)

can be re-written as

087" (r,x) =0T (v, x) + 1", (D.4)
where 67 " is given by Equation (D.3). The residual vector 77 is
" =7J "(r,x)+eB(r) — 8" (r,x). (D.5)

We now proceed to derive the line source vector corrections for the core domain. Defining

a vector
AT" = / dz'W B (2" )Noypa 68 (v, 2), (D.6)
the line source vector correction takes the form
38" (r,x) =r) + AT", for z <z, (D.7)

Applying the integral operator [ dz’ W[i’gb(:v’ )P A%, on both sides of the Equation (D.7),
we finally obtain

mn

T

AT" — - ,
1 - fcore dl'IWB¢($/)px/A:,

(D.8)

where
= / d ' W Bo(x" )\ pw Asr?. (D.9)
Notice that 7" and AT™ are independent of the frequency z. Using Equations (4.43),

(D.3) and (D.7) we obtain

1 —g,)AT" + 77

38" (r,z) = ( - ,
11— g.WalAip,]

for x> x.. (D.10)
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The updated line source vector can be computed using
S (r,x) = 8" (r, 1) + 58] (v, x). (D.11)

The above core-wing equations are set up in the form of an iterative algorithm to compute

the line source vector corrections. We define

}, and p:max{%\/QLi-U?}, (D.12)

TX,TY

553;;7"(7«, )

Sg:lr’"('r', )

c1 = max
TXTY sTZ T

where the I, @ and U are computed at the top surface (7, = 0). Further, we consider
p only at the line center (x = 0), and for p = 0.11, and ¢ = 7°. Finally we define the

maximum relative change (MRC) as
R! = max {cy,p}. (D.13)

The iterative progress is followed through a convergence test on R]. We have chosen a

convergence criteria of 107* on the R".



Appendix E

Expansion of Stokes parameters into irreducible

components in non-magnetic 2D media

The Stokes parameters and the irreducible Stokes vector are related through the following
expressions. They are already given in Frisch (2007). However we present these expressions
here for an easy reference. The expressions given below are applicable for radiative transfer

in 2D geometry (see Equation (5.14) and discussions that follows).

1

I(r,Q,z) =10+ ——=(3cos* — 1)1

(r,Q,2) = I 2\/§< cos )M
V3

+v/3cosfsinfsin g I + 7(1 — cos® 0) cos 2¢ I, (E.1)
Q(r,Q,z) = —i(l — cos? )13
) ) 2\/§ 0
: : 2,y \/g 2 2,x
+v/3 cosfsin fsin @ I7Y — 7(1 + cos” 0) cos 2p 157", (E.2)
U(r,Q,x) = V3sinf cos o I} + /3 cos fsin 2 I, (E.3)

The irreducible components in the above equations depend on r, 2 and x. The same trans-
formation formulas can be used to construct the Stokes source vectors from the irreducible

source vectors.
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Appendix F

Symmetry of polarized radiation field in 2D

geometries

Equation (5.14) concerns symmetry of polarized radiation field in 2D geometries. A proof

of Equation (5.14) can be given as an algorithm.

Step (1): First we assume that the medium has only an unpolarized thermal source namely,

S(r,z) = (eB(r),0,0,0,0,0)".

Step (2): Use of this source vector in the formal solution expression (Equation 5.23) yields
T = (19,0,0,0,0,0).

Step (3): Using this Z, we can write the expressions for the irreducible mean intensity

components as

é /
B0 = [ FE B0,

~c Rz, ') cos>f — 1) I? x
J(r, ) Q/Q m>(3 20— 1) 18(r, 0, 0,2,

2
J7(ry ) ~ —03/

ﬁ”“”zﬁém &)
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) SanOCOSgDI( 0, 0,2,
')

sin 20sin p I3 (7,0, ¢, '),
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A

R /
J3*(r, x) ~ 05/ (z,2) sin® @ cos 2p I)(r, 0, ¢, '),

z’/,Q ¢(:C>
PL /

(F.1)

where

“+oo
/ = / dx’ i—ﬂ, (F.2)
z',Q —00 ™

and ¢;,i = 2,3,4,5,6 are positive numbers (see Appendix J). We recall that d2 =
sin@ df dy, 6 € [0, 7] and ¢ € [0, 27].

Step (4): Notice that cos(m — ¢) = —cos p, sin2(m — ¢) = — sin 2.

Step (5): Using the formal solution computed with the thermal source vector (eB(r),0,0,0,0,0)"
and the fact that in a 2D geometry, the medium is homogeneous in the X direction, it
follows that

I3(r,0,0,2') = I)(r, 0,7 —¢,2'),
Rr, 0,7+ ¢,2')=I)(r,0,2r —p,2'), ¢€l0,7/2. (F.3)

Step (6): Substituting Equation (F.3) in Equation (F.1), we can easily prove that

()0 =0, () =0,
and hence
(S = 0,(557)V =0, (F.4)

where the superscript (1) means that it is a first order solution.

Step (7): Using Equation (F.4), along with Equations (E.1), (E.2) and (E.3) applied to
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the source vectors we deduce

Si(r,0,p,x) = Si(r,
Si(r,0,p +m,x) = Si(r,0,2T —

Sq(r,0, ¢, ) = So(r,
So(r,8,p +m,x) = Sq(r,0,2m —

Su(r,0,p,x) = —Sy(r,
Su(r,0,p +m,x) =—Sy(r,0,2r —

)

)

Y

\_/\_/\_/\_/\_/

(F.5)

Step (8): Using formal solution for Stokes parameters I, @), U and using the homogeneity
of the 2D slab in the X direction, it follows that

I(r.0,p,x)=1I(r, ),
I(r,0,p+mx)=1I(r 9277—g0,x),
Qr.0,¢,2) = Q(r, 0, ),
Q(r,0,p+ m x) =Q(r,0, 27r—g0,x),
Ur,0,¢,2) = =U(r, »’L“),
U(r,0,p+mx)=-U(r,0,2r —p,z).

(F.6)

Step (9): Now we recall the expression for the complex irreducible source vector compo-
nents S5, (see Equation (4.14) in chapter 4 and Equation (20) for zero magnetic field case
in Frisch 2007) namely,

SK (r,2) = GE(r,2) + JE (r,2), (F.7)

+oo
JQ r,x) /

3
x R¥ (x,2") Z Q’TK (7, Q)L (r, 2, 2").

J=0

where

(F.8)

Here Iy, I, I,=1,Q,U. The quantity R®(x,2’) is the first element of the matrix R. All
the other elements are given by R®(z,2").
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Step (10): We consider the case K = 2, = 1. Substituting the expressions for ng (7,Q)
from Landi Degl'Innocenti & Landolfi (2004) for the reference direction 4 = 0, the integral

over ¢ in Equation (F.8) can be written as

/ dsoz ras) = [ Wdso[(ﬁ)*(o,e,w>f<r,e7so,x'>
TR (1.0, 0)Qr, 0. 0,2") + (T2 (2,0, 0)U(r 0, x’)} | (F.9)

Step (11): The ¢ integral in Equation (F.9) can be split into 2 parts, one from 0 to 7w and
the other from 7 to 2. It can be shown that both these integrals yield purely imaginary
functions. First we consider the integral from 0 to 7 and decompose into integrals over
0 to m/2 and 7/2 to m. In the integral from 7/2 to m we perform a change of variable
p — m — . We obtain

/ dgoz (r,Q, )
7r/2
[ a [(7?)*(0, 0. )+ (T2)"(0,0,7 soﬂ I(r,6,p,2)
n [(7?)*(1, 0,0) + (T2)"(1,0,7 w} Qr,0, ¢,
n [(7?)*<1,e, o) — (T2 (2.0.7 @} Ur.0,¢.2)

/2 ' '
= / de [? sin f cos f(—e™"¥ — e_’(”_“"))] I(r,0,0,1")
0
+ [\/73 sin @ cos O(—e ™" — e_i(”_“o))] Q(r,0,p,1")

+ [\/73% sin (e — e‘i(”“”»} U(r,0,,2)

w/2
:/ de [\/73 sin 6 cos 6(2i sin go)} I(r,0,p,2")
0
+ [? sin 0 cos 6(2i sin gp)} Q(r,0,p,2)

+[§2 sin 0(2 cos go)] U(r,0,p,2"), (F.10)

which is purely an imaginary function. Similarly we can prove that the integral of ¢ from
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7 to 27 also yields a purely imaginary function. Thus J? is purely imaginary. Since J12 s

the real part of J2, we have J:* = 0.

Following similar lines we can prove that JZ is purely real, which proves that J22 Y =0

where (]22 ¥ is the imaginary part of J7. Thus we get

(7)) =0, (139) =0, (F.11)
and hence

(57) = 0,(53) =0, (F.12)

where the subscript (2) means second order solution. Repeating the above steps (7)—(11),
we can prove that Equations (F.11) and (F.12) are valid for any order n. Hence the proof.



Appendix G

Expansion of Stokes parameters into the irre-

ducible components

The Stokes parameters and the irreducible Stokes vector are related through the following
expressions. They are already given in Frisch (2007). However we present these expressions
here for an easy reference.
1
I(r,Q,z) =10+ ——=(3cos’ 0 — 1)1
(rQm) = I+ )
—V/3cosOsin O(17* cos p — I sin )

V3

+22(1 = cos? 0) (13 cos 2¢ — 1Y sin 2¢),

2
(G.1)
Q(r,Q,z) = —i(l —cos? 0)I3
s B E, 2\/5 0
—V/3cosOsin (17 cos p — I sin )
3
—g(l + cos? 0) (12 cos 2¢ — 1Y sin 2¢),
(G.2)
Ur,Q, ) = V3sin (17 sin ¢ + 7Y cos p)
+v/3 cos (12 sin 2¢ 4 1Y cos 2¢). (G.3)

The irreducible components in the above equations also depend on r, €2, x and B.
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Appendix H

The magnetic redistribution matrices in the

irreducible tensorial form

Here we use the redistribution matrices defined under the approximation level III of Bom-
mier (1997b). The expressions listed below are already given in Bommier (1997b). We
give them here for the sake of completeness. The branching ratios (see Bommier 1997b)

are given by

[r
=t H.1
“ I'r+Tp+T) (H.1)
r
(K) — R
F = Ir+ D) 4T}’ (H2)

with D© = 0 and D@ = ¢I'p, where ¢ is a constant, taken to be 0.379 (see Faurobert-
Scholl 1992).

The Hanle I'p coefficient (see Bommier 1997b) takes two different forms, namely

g =T% =T, Tp=T"=al, (H.3)
with oo
me
r= H.4
97 ZmEFR ( )

where eB/2m, is the Larmor frequency of the electron in the magnetic field (with e and
me being the charge and mass of the electron). Here B is the magnetic field strength.
The expressions for the redistribution matrices given in Bommier (1997b) involve a cut-off

frequency v.(a), which is given by the solution of the equation

1 — 2 a 1
7 T rEra (H.5)
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and a constant z = 2v/2 + 2 coming from the angle-averaging process.

If

2v.(a)|2’| — (2% + 2"%) < (z — 1)v2(a) and
2ve(a)|z| — (2 + 2%) < (2 — 1)v2(a

)
2| < V20.(a) and |z| < v2v.(a), (H.6)

and

then domain 1:

PEu 2, B) = 3 {B9OME (BiTh) — aMlio (B T) (-1 T, (,2),

Q/
—K(1
=" Moo m(B)(TE) (7, ). (1.7)
Q/
elseif
12| < wve(a) or |z| <v.a), (H.8)
then domain 2:
PQHI(]aQ/ B) )~ ZMQQ’ (B;T%)(—1 )Ql —I{Q’(j7 ),

- ZMQQ’,III 7o) (4, ). (H.9)
o

else domain 3:

PCIQ(,III<j7 Q/7B> =[1- a/ﬁ(K)]

<{ (8% ~ a gMSQxB; L) (D)9 T (. 9) + a%}—l)Q’T_K/(j, )},

= 3" Mo (B)(TE) (5.9, (1.10)
a

endif. If

r(r+2') < 202(a) and 2'(x+2') < 20%(a), (H.11)



Appendix H. The magnetic redistribution matrices in the irreducible
312 tensorial form

then domain 4 :

Pyu(5, 9, B) = O‘ZMQQ/ (B;T")(~1)9TE,(j, ).
= ZWS& w(B)(TE) (.Y, (.12)
o
else domain 5:
Pon(i. <. B _O‘Z Yo (5, 9Y),
= ZMQQ',H B)(Ty )" (4, €¥). (H.13)

endif.

The symbols MQQ, nm(B), i = 1,2,3,4,5 have different expressions in different fre-
quency domains. They implicitly contain the respective branching ratios and the Hanle I'

parameter depending upon the domain.



Appendix I

The magnetic redistribution matrices in the

matrix form

We introduce the diagonal matrices
& = ok, (1.1)

with E the identity matrix,

B _ diag{ﬁ(o), A 32 32 52 /@(2)}’ (L.2)

~ . o (67 o
F:dlag{l—ﬁ(o),l— 1—

« (0] «

The real matrices ]\;[I(Ii)(B ) and Ml(fl) (B) have following expressions in different domains.

In domain 1:

~

M) (B) = {BM(B, I%) — aM (B, r“)}. (L4)
In domain 2:

313



314 Appendix I. The magnetic redistribution matrices in the matrix form

N (B) = { 3—a|n(B, r;a}. (L5)

In domain 3:
M (B) = Ji"{ [B - a] M(B,T) + a} (1.6)

In domain 4:
MP(B) = aM (B, T"). (L7)

In domain 5:

~

MY (B)

|
9>

(1.8)



Appendix J

The reduced scattering phase matrix in real

form

The elements of the matrix W in the real and reduced form are listed below.

Ui Wi Wiz Wy U5 Wyg
\1112 \1122 \1123 \Ij24 kI125 qj26

Ty IWyy Wyy Wy Wiy Uy

=
|

Nl
Wy, My Wy Uy W U | (7.1)

TWs Wy Wys Wys sy Use

T TWo Wy Wy Wse g

where the distinct matrix elements are:

1
\I/H = 1, \1112 = m(g COSQQ -

3
\1113 = —g sin 26 cos (o \1114 =

);
3 . : 3 .5
78111208111@; Uy = TSIH 0 cos 2¢;
1
4

3
Uig = —g sin?fsin2¢p; Wy, = —(9cos® § — 12cos® § + 5);

3 3
i sin 20(1 — 3cos20) cos p;  Woy = —L sin 20(1 — 3 cos 20) sin ;

Voo =
23 o o

V3 V3
Uos = ——sin? 0(1 4+ 3cos? ) cos 2p;  Wog = — sin® A(1 + 3 cos? ) sin 2¢;
25 22 ( ) 2 26 o) ( ) 4

3
W33 = 2 sin? 0[(1 + 2 cos?0) — (1 — 2 cos® f) cos 2¢);
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3 3
Wy = 2 sin? (1 — 2cos® 0) sin2p; W5 = 6 sin 260[(3 4 cos 26) cos p — (1 — cos 260) cos 3¢p];

Vg = —% sin 20[(3 + cos 260) sin p — (1 — cos 26) sin 3]

3
Uy, = ZsinQQ[(l +2cos®0) + (1 — 2cos? §) cos 2¢];

Uys = 1% sin 26[(3 + cos 20) sin ¢ + (1 — cos 20) sin 3y);

3
Uy = 0 sin 20[(3 + cos 260) cos ¢ + (1 — cos 26) cos 3p];

3
Wss = —[(1 + 6.cos® O + sin* § + cos® 0) + (1 — 2 cos® O + cos® § + sin® §) cos 4¢)];

16
3
Vs = —1—6[(1 — 2cos? 0 + cos* O + sin 0) sin 4¢];
3 2 .4 4 2 4 4
\1166:1—6[(1—|—6008 0 + sin® 6 + cos” 0) — (1 — 2cos” 0 + cos™ 0 + sin” 6) cos 4¢). (J.2)

The elements of the matrix U satisfy certain symmetry properties with respect to the main

diagonal. Hence the number of independent elements are only 21.



Appendix K

The magnetic redistribution matrices in the

matrix form

The matrix forms of domain based angle-averaged PRD of Bommier (1997b) is already
given in several references (see e.g., Anusha et al. 2011b). Here we present them in the

case of angle-dependent PRD. We introduce the diagonal matrices
& = ok, (K.1)
with E the identity matrix,

B = diag{B©, 5@, g, g3 5@ 5@}, (K.2)

- . «Q (67 «Q
}":dlag{l—ﬁ(o),l— 1—

5@ T By
« (07 (67
1_W71_m71_m}. (K.3)

The expressions for the redistribution matrices given in Bommier (1997b) involve a cut-off

frequency v.(a), which is given by the solution of the equation

1 2 a 1
N (K-4)

The real matrices MH(B,:L', z') and MHI(B ,x,2') have following expressions in different

domains.
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It

1 a .
|z xcos@|<vc(. @>sm@ and

Sin

|z| < v.(a)| cos O + v, (sir?@) sin® and

! a . / a .
|z — 2’ cos O < v, (sin@) sin® and |2/ < v.(a)|cosO| + v, (sin@) sin ©, (K.5)

then domain 1:

My(B,z,2') = { BM(B,T,) — dM(B,F”)}. (K.6)
elseif
|7'| < v.(a) or |z|<wve(a), (K.7)
then domain 2:

MIH(Bax)x,): {[5—@}]\2(371#}()}‘ (K.8)

else domain 3:

Mu(B,z,2) = fr{ [B — a} M(B,T%) + a} (K.9)
If
|z 4+ 2| < 2v — %) cos 1G) (K.10)

“\ cos %@ 2 '

then domain 4:

~

Myu(B,z,2') = aM(B,T"). (K.11)

I
(N
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else domain 5:

My(B,z,2') = é. (K.12)

Here the matrix M(B,T) is the Hanle phase matrix whose elements can be found in several

references (see e.g., Anusha et al. 2011b).



Appendix L

Symmetry breaking properties of the angle-
dependent PRD

In this appendix we show that the symmetry properties that are valid in angle-averaged
PRD case (proved in Appendix F) break down in the case of angle-dependent PRD. We

present the proof in the form of an algorithm.

Step (1): First we assume that the medium contains only an unpolarized thermal source
namely, S = (eB(r),0,0,0,0,0)T.

Step (2): Use of this source vector in the formal solution expression yields Z = (I{,0,0,0,0,0)”.

Step (3): Using this Z we can write the expressions for the irreducible polarized mean

intensity components as

~

R(z,2',€2,€Y)
Jor,Q, x :/ U Rk
of ) v 0

~

[8(r7 9,7 90/7 xl)?

/ Q Q/
J3(r,Q,z) ~ c2/ e )(3 cos® 0 — 1) Iy(r, 0, ¢, 2'),
o ¢(z)
T Q) = ey [ BT ot o 1m0,
o Y ¢()
R(z,2',Q, Q)

J127y(7°7”;1’) >~ Cy // Q ¢<I) SiHQQISingpl 18(7‘,9/,@/,.%/),
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N

R(z, 2,2, )
J2(r,Q, f:c/ S
T )

~

R(z,z', 2, <)
I (r, Q, :—c/ -
SN =G | T 6w

sin? @ cos 2¢' I (v, 0, ¢, o),

sin? @' sin 2¢’ I§ (7, 0, ¢, 2'),

(L.1)

+00 dQ/
/ _ / &’ ]{ , (L.2)
x’,ﬂ’ —00 47T

and ¢;,i = 2,3,4,5,6 are positive numbers (see Appendix J). We recall that d©2 =
sing' df' dy’, 0 € [0,7] and ¢ € [0,27]. Here

where

N A

R(z,z',Q, Q) =W [dru(x, ', Q, Q) <B — d) rir(z, ', Q, Q)| (L.3)

is the non-magnetic, polarized redistribution matrix.

Step (4): A Fourier expansion of the angle-dependent PRD functions with respect to ¢’
(instead of ¢) gives
k'=o00

rim(z, o', Q, Q') = Z (2 — Opo)Re{e*? Fl(ﬁ/l)n(a:,x’,ﬂ,ﬁ')}, (L.4)
=0

with the Fourier coefficients

27 /
f(k)(m,x', Q,0") = / d_gp e ik'¢’ ri(z, 2, Q, Q).

0 2m

(L.5)

Substituting Equation (L.4) in Equation (L.1) we can show that the components .J;™ and
J22 ¥ do not vanish irrespective of the symmetry of I with respect to the infinite spatial
axis. In other words, to a first approximation, even if we assume that I{ is symmetric
with respect to the infinite spatial axis as in angle-averaged PRD, the ¢’-dependence of
angle-dependent PRD functions 7y is such that the integral over ¢’ leads to non-zero
J12 * and J22 Y. This stems basically from the coefficients with &’ # 0 in the expansion of
the angle-dependent PRD functions. Following an induction proof as in Appendix F, it
follows that J12 * and J22 ¥ are non-zero in general because the symmetry breaks down in
the first step itself.

It follows from Equation (8.2), and from the above proof that the Stokes I parameter

is not symmetric with respect to the infinite spatial axis in a non-magnetic 2D media,
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in the angle-dependent PRD case, unlike the angle-averaged PRD and CRD cases (see
Appendix F for the proof in case of angle-averaged PRD).



Appendix M

The non-magnetic redistribution matrices

We are primarily interested in 1D polarized radiative transfer problem. In this Appendix
we briefly discuss the polarized redistribution matrices in the Stokes (I, Q,U) basis. The
use of (I, Q,U) becomes necessary whenever there is non-axisymmetry in the problem, the
two well known examples of which are (i) the incidence of non-axisymmetric radiation at
the boundary, and (ii) the presence of a oriented magnetic field. Both of these break the
azimuthal (axi-) symmetry of the radiation field. In axi-symmetric problems, we can work
with the (1,Q) basis, as U = 0. Here @ positive is defined to be parallel to the limb.
We begin by writing down the redistribution matrix for the non-magnetic scattering (see
Domke & Hubeny 1988). We then describe the assumptions leading us from this general
form, to simpler forms which are actually used in chapter 9. These details are scattered
in several publications. Hence it is useful to list them here, for the sake of clarity. The
angle-dependent Domke-Hubeny PRD matrix can be written (see Domke & Hubeny 1988)

as

~

R\ N,0,2) = Yentu(M\ N, 0,2) P(O; Weg = Wy)
+<1 — f)/coh) ’/’HI(>\, )\,, @, z)P(@, Weﬁ = chQ).

(M.1)

The depth dependent coherence fraction is defined as

Fr+1T7y
coh — 7 ~ @ -~ - M.2
ook T P T, + T (M-2)
The collisional depolarization factor is defined as
Fp+T I'p—D®

rRT17 E (M.3)

‘T TR+, +D@ Ty
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Figure M.1: The scattering geometry. €’ and Q define the directions of
the incoming and the outgoing beams respectively. © is the scattering angle.

Z-axis is along the atmospheric normal.

where D® is the rate of depolarizing elastic collisions. The factor W, in Equation (M.1)
depends on the angular momentum quantum numbers J; and J, of the lower and upper
states. Note that Wo=1 for Ca 1 4227 A line. 7 and rqq are the scalar redistribution

functions of Hummer (1962). P(O) is the scattering phase matrix (see Bommier 1997b).
The scattering angle © is given by

cos © = ' + /(1 = p2) (1 — p2) cos(y’ — ), (M.4)

where p = cosf, and ¢/ = cos#’ represent the inclinations of the outgoing and incoming
rays; ¢ and ¢ the respective azimuths in the atmospheric co-ordinate system fixed to the

planar slab atmosphere, in which the scattering is described (see Figure M.1).

For the axi-symmetric (azimuthally independent) radiative transfer, the redistribution

matrix can be written as

. 1 [ .
RN pp2) = Py R\ N, 0, 2)d(¢ — o). (M.5)

T Jo
We make the approximation

R()\,)\/,/L,/LI,Z) = Vcohrll()‘:)\/7ﬂ> //72) p(ﬂ>ﬂ,;Weff = WQ)

A

+(]- - ’Ycoh) TIH<)\a )\/a H, /j'la Z) P(”) M/a Weff = kCWQ)‘ (MG)
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In writing this expression we assume that the azimuthal average of the redistribution
matrix can be replaced by the product of the azimuthal averages of the redistribution
functions and of the phase matrix. A similar factorization leads to the so called hybrid
approximation for PRD suggested by Rees & Saliba (1982). Averaging the redistribution
functions in Equation (M.6) over the scattering angle (defined by the angles 6, ¢'), one

recovers the usual angle-averaged redistribution matrix

R()\,)\/,IM,IMI,Z) = P)/COhrH()\a)\/VZ) P(Malu/;weff = WQ)

~

+(1 - /ycoh) TIH(/\; >\,7 Z) P(,u, ,u,; Weff - chQ); (M7)

where

1 T
TH,III<)\7 )\/, Z) = 5 / rII,III()H /\/, @, Z) sin @ d@ (MS)
0

(see Equation (103) in Bommier 1997b and the averaging method in Hummer 1962; Mihalas
1978). Equation (M.7), which is the hybrid approximation of Rees & Saliba (1982) is used
in chapter 9 and in most of the work with PRD (see e.g., Faurobert-Scholl 1992; Nagendra
1994; Holzreuter et al. 2005; Sampoorna & Trujillo Bueno 2010). To recover the complete
frequency redistribution limit, we set y.on = 0; replace rip(A, N, 2) = o(A, 2)e(N, 2), and
also set (I'y — D®)/T'y = 1 in the expression for k.. The limit of frequency coherent
scattering in the laboratory frame can be recovered by setting Y., = 1 and through a
replacement rip(A, N, 2) = §(A — XN)o(N, 2).

The scattering phase matrix is given by
P, s Wegr) = PO + Weg PO (p, 1), (M.9)

which goes to the Rayleigh phase matrix Pr when Weg is set equal to unity. PO and
P® are the multipolar components of the scattering phase matrix. They are written as
(Stenflo 1994)

P(O):<1 O>' PO (u u’):§<%(1_gu2)(1_3‘ﬂ) _<1_3“2)<1—u’2)>.
0o RN (DS T I (DR
(M.10)

Redistribution matrix for the micro-turbulent magnetic fields :

In chapter 9 we also use the micro-turbulent magnetic field averaged redistribution

matrices. These matrices are found to be necessary in order to reproduce the core peak
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amplitude in the @)/ spectra of the Ca 1 4227 A line. The relevant redistribution matrix
can be obtained simply by replacing Weg by Weg f5 where

1_2 | K4l for (A, \') in the line core
fB= 5 [+ 1+ ’ ’

(M.11)

1 elsewhere,

for the particular case of isotropic angular distribution of the micro-turbulent magnetic
field (Stenflo 1982; Faurobert-Scholl 1993). The Hanle gamma parameter in the above

equation is given by
Bturb

Tnt DO
Here, By, is the magnetic field strength in Gauss, and g; is the Landé g factor of the

M =0.88gs (M.12)

upper level (g; = 1 for Ca 14227 A line). T and D® are expressed here in units of
107 s~



Appendix N

The magnetic redistribution matrices

In this Appendix we give the expression of the Hanle redistribution matrix used in Equa-
tion (10.8) of the text. We use the approximation III of the Hanle redistribution matrix
defined in Bommier (1997b) for a two-level atom with unpolarized ground level. In matrix

notation, this Hanle redistribution matrix may be written as
RN N, 2, B) = MY(B, 2)ru(\ N, 2) + MU)N(B, 2)rm(A, N, 2). (N.1)

rim(A, N, 2) are the angle-averaged redistribution functions of Hummer (1962). Index i
(= 1,2,3,4,5) labels different (A, \') wavelength domains. We use the same domains as
in Bommier (1997b). Indices 1 to 3 refer to the domains relevant to ryy, indices 4 and
5 to the domains relevant to ri (see e.g., Fluri et al. 2003). In Bommier (1997b) the
redistribution matrix elements are given in terms of the irreducible spherical tensors. Here
we use a matrix notation and work in the irreducible Stokes vector Z basis. This implies
that we deal with 6 x 6 matrices. For clarity, the explicit expression of the MI(I?III(B ,Z)

matrices are given below.
We introduce the Hanle phase matrix M(B,T) (see e.g., Landi Degl’'Innocenti & Lan-
dolfi 2004), where I is the Hanle parameter defined by

B
I'=0.88g; —. (N.2)
I'r

Here g, is the Landé g factor of the upper level (g; = 1 for the Ca 1 4227 A line).
The magnetic field strength B is expressed in Gauss and I'p in units of 10”s~!. We also

introduce the diagonal matrices
W = diag{Wy, Wa, Wy, Wa, Wa, W}, (N.3)
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&= ok, (N.4)
with F being the identity matrix,
B = diag{p, g, 3® 5@ p@ g2} (N.5)
- . o Qo « « o Qo
f—dlag{l—W,l—m,l—m,l—m7l—m,l—m}, (N6)

and the coefficients
I =pYr, 17 =al. (N.7)

The coefficients a and B%) are branching ratios introduced in Bommier (1997b, see her

Equation (88)). They are given by

I'r
R N.8
@ Fr+Tp+Ty (N-8)
A = Lr (N.9)

 Tr+ DI + T
with D© = 0 and D@ = ¢I'p, where ¢ is a constant, taken to be 0.379 (see Faurobert-
Scholl 1992).

The expressions given in Bommier (1997b) involve a cut-off frequency v.(a), which is

given by the solution of the equation

1 2 a 1
77 T riEra (N-10)

and a constant z = 2v/2 + 2 coming from the angle-averaging process. The incident and
scattered non-dimensional frequencies are denoted by 2’ and . The matrices M, together

with the frequency domains, can be written in the following algorithmic form:

It

we(a)|2| — (2% + 2?) < (z — 1)v2(a) and zv.(a)|z| — (2 + 2™) < (z — 1)v?(a) and
2’| < V2v.(a) and |z| < V2v.(a), (N.11)

then domain 1:

M (B, 2) = W{BM(B,F’Q) - dM(B,F”)}, (N.12)
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elseif

2| <vea) or |z < ve(a),

then domain 2:

20,2~ i [3- o] ey .

else domain 3:

MY)(B,z) = Wﬁ{ [B = a} M(B,T%) + a}
endif.

If

rv(z+2') <202(a) and 2'(x+2') < 20%(a),

then domain 4 :

MP(B,z) = aWM(B,T"),

else domain 5:

MI(IS)(B, z) = aW,

endif.

The Hanle phase matrix M(B,T) is given below :

M(B,F) = U(XB)m(e&F)ﬁ(_XB)a

where

0 mi mia

1
0 Smiz Mmoo

1
0 —5mig —mos

1
0 smiy  my

1
0 —5mis —mas

mis

mas

mss

—m34

mss

miq

mayg

msq

My4

—Mys

mis

mas

mss

Mys

mss

(N.13)

(N.14)

(N.15)

(N.16)

(N.17)

(N.18)

(N.19)

(N.20)
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with

C? S
m11:1—351231“2{ &4 & };

1+12 14417

3 2 s?
=24/=855l | —£ B\
s \/;B {1+r2+1+4r2}’

3 1 1
— 2y/28%0,T _ :
e \gsBCB l1+r2 1+4r2}’

1-202 252
= —CpT B __05 |,
ma3 B {l_i_rg 1+4P2]’
1-20% 202
= Spl B B\
M2 = ob {1+F2 1+4r2}’
C? 1+ C?
= S5pl | —E- — 2\,
st = o8 {1+F2 1+4F2]’
C252 (14 C2)2
My =1 — T2 | ZB2B (1+Ch) :
1+02 ' 1+4I2

52 4C?
m55:1—f‘2{ B+ g ],

1+12  1+417

Mg = —2\/%03331—‘2 |:
2
My = 2\/§ng2 { 5

1—2C%
m22:1—F2{( CB

Moy = —CpSpl? [

202 -1 252 ]

1417 1+ 417

B 1+C§]

1+12 144172

1+172

), 453C%
14412|°

1—2C% +2(1+C?9)
1+17? 14412 |’

C? 452
:1_F2 B B
13 [1+F2+1+4F2]’
1 4
= CpSpI? —
m3s BOB L*FQ 1+4F2}’
S2 1+ C?
=(Cgl |—L& B
s =5 [1+F2 1+4F2]’

with Cp = cosfp, Sgp = sinf. The matrix U(XB) is given by

10 0
01 0
0 0 cosxs
U= 0 0O —sinyp cosxp
0 0 0
0 0 0

0
0

sin xp

0

0

0 0
0 0
0 0
0 0

cos2xp sin2xp

—sin2xp cos2xp

(N.21)

(N.22)
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The Zeeman radiative transfer in the atmo-

spheric reference frame

The definition of the Zeeman absorption matrix is usually given in an orthogonal reference
frame with the z-axis along the line-of-sight (LOS). This reference frame is adequate for
LTE transfer problems which can be solved ray by ray. Here we must solve the Zeeman
transfer equation (Equation (10.12)) in the atmospheric reference frame (with the z-axis
along the atmospheric normal). In the LOS reference frame the elements of the Zeeman
absorption matrix depend on the angle v between the LOS and the direction of the magnetic
field vector B, and on y that represents the azimuth of B in the transversal plane. In
practice the dependence is on cosy and on cosine and sine of x and 2y. Here we show
how to express the angular dependence of the Zeeman absorption matrix in terms of the
polar angles (6,p) of the ray direction Q and (0p,xp) of the vector B (see Figure O.1).
We note in Figure O.1 that the values of 0g, # and ~ form a spherical triangle, if # and
v are non-zero. We use spherical trigonometry (see Smart 1960) to transform the terms
depending on v and x. The geometrical factors entering the Zeeman absorption matrix are
cos 7y, cos® 7y, sin? 7 cos 2, sin? ysin 2. The factor cos~ is simply expressed by the cosine

rule

cos~y = cosfp cosf + sin O sin b cos(p — x ), (0.1)

from which we get the factor cos® v
cos? y = [cos O cos  + sin A sin A cos(p — x5)]° . (0.2)
Using the sine rule and an analogue of the sine rule we get
siny sin xy = sinfg sin(¢ — x5), (0.3)
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and

siny cos x = sinf cos g — cos @ sin O cos(p — xB). (0.4)

Subtracting the square of Equation (O.3) from the square of Equation (O.4) we get
sin? y cos 2y = [sin A cos Oz — cos @ sin g cos(p — xp)]° — sin? Opsin’(p — x5).  (0.5)

Multiplying Equation (O.3) by Equation (O.4) and multiplying by a factor of 2 on both

sides of the resulting equation we get

sin? vy sin 2y = 2sin g sin(p — x5) [sin O cos @ — cos Osin O cos(p — xB)] . (0.6)
Z
&
B
Q B
/O Y

X

Figure O.1: Angles defining the transformation between the line-of-sight

reference frame and the atmospheric reference frame, with respect to which

both the Zeeman and Hanle line transfer problems are defined in chapter 10.
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