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Origin of the gravitational constant and its behaviour at
very high energies™
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Abstract. Recent progress in the unification of strong, weak and electro-
magnetic interactions suggests that the high energy behaviour of these interac-
tions would be different from their observed low energy characteristics. For
instance their coupling constants would become a function of the energy
(momentum) of the interacting particles and would become comparable at a
particular large energy scale. Extension of these ideas to gravitation would
imply that the high energy behaviour of gravity (well described by Einstein’s
general relativity, which is a non-Abelian gauge theory at low energies) may
also be different and in particular, the gravitational constant will become
energy dependent. At very large energy scales involved in the earliest epochs
of the universe and in gravitational collapse, i.e. near singularities, these
modifications to the low energy theory could have interesting consequence for
quantum gravity.
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1. Introduction

Recent work on the unification of the fundamental interactions of the physical world
has led to the interesting conclusion that they manifest themselves as different interac-
tions with diverse strengths and properties only because they are being observed at
low energies. The so called grand unified theories (GUTSs) suggest that the weak,
electromagnetic and strong interactions merge into one unified Yang—Mills gauge
theory at some large mass (energy) scale (Georgi et al. 1974). This would mean
that the high energy behaviour of these interactions would be different from what is
seen at lower energies and in particular that the coupling constants characterizing
the interaction strength would be energy (momentum) dependent (Ellis et al. 1980).
For instance, in this picture the strong interactions are ‘“‘strong’ only at comparitively
lower energies; the coupling constant is expected to decrease with increasing energy
of the interacting particles. Again the weak interactions with a small coupling
constant at ordinary energies are expected to grow in strength and equal the
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Origin of the gravitational constant and its behaviour at very high energies 215

electromagnetic coupling at energies of the order of a 100 GeV. The large energy
(~10¥ GeV) at which the GUTs unification occurs is inaccessible by a large margin
to contemporary accelerators but would have been present in the very early stages of
the big bang. At these energies baryon nonconserving interactions (a hallmark of
GUTs) would have created the observed asymmetry between matter and antimatter
in the universe. Most attempts at unification however leave out the gravitational
interaction characterized by a single universal coupling constant G. Asis well
known, gravitation dominates all astrophysical phenomena and by virtue of the
universality of its coupling, whereby all forms of matter and energy momentum couple
to gravitation as well as give rise to it, is the most important interaction in deter-
mining the large scale structure of the universe. The gravitational interaction is well
described within observational errors by Einstein’s general theory of relativity (GTR)
which assumes a constant, energy-independent G. Modifications of GTR, such as the
Brans-Dicke theory do have a varying G, but thisisa variation with time with reference
to the cosmological epoch. Thus all these theories describe gravity at low energies.
In analogy with other interactions which have different behaviour at high energies
one may perhaps reasonably expect gravity also to differ at very high energies
(Sivaram 1983a). Many astrophysical scenarios involve matter at extremely high
energies. Examples are the earliest phase of the big bang and matter disappearing
into the singularity beyond the event horizons of blackholes. The usual approach
to problems arising from these extrem= conditions is to merely state that the theory
probably breaks down at these energies. Thus an understanding of how gravity
might behave at such large energies could be of considerable importance in solving
some seminal problems in astrophysics. Of course any modifications to the theory
at these energies should vanish at low energies when one recovers the usual theory
—GTR in this case.

2. Origin of the gravitational constant

Before comparing gravitation with other interactions with a view to guessing its high
energy behaviour it might be worthwhile to summarize present ideas on the origin of
the gravitational constant which is considered as something given in both the
Newtonian theory and the GTR. We can distinguish between ‘macroscopic’ and
‘microscopic’ models for determining G.

MACROSCOPIC THEORIES : In these theories [examples are Brans-Dicke (1961) and
Hoyle-Narlikar (1964)] the constant G is related to the distribution of the matter in
the universe, the idea being to incorporate Mach’s principle which seeks to relate
local and global properties of matter. Since the distribution of madtter changes with
time in an expanding dynamic universe, G is also time varying in these theories.
In theories such as Brans-Dicke the varying gravitational constant is related to
massless scalar field as G ~ ¢~%; ¢ obeys an equation like O¢ = T and is connected
with the overall distribution of matter inthe universe through a relation like
¢ ~ M/RC?. Thus G ~ RC?* M, imposing the constraint GM/RC? ~ 1 on the
universe. More generally, G will be a function of the field ¢, i.e. G ~ f(¢) and the
gravitational Lagrangian will have the form :

L={d V=g (F) R + Lumatter),
R being the scalar curvature. This leads to the field equations
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1 ®
Ruyv — 3 gwR = — ﬁ[TPV + 2Fuy — ZngF;u],

with G again related to ¢. Similar equations are obtained in the Hoyle-Narlikar
theory, G now being related to a mass field,
F=3}Z3m®m® andG = 3/8rF.
a=b
In all these theories G therefore becomes a time dependent quantity, since it is
related to a changing matter distribution. We can also understand these results in
terms of broken scale invariance.

Consider a scale invariant Lagrangian like | d*x 4 —g [g#¢,ud,v + & R¢?], which

under the scale transformation g,y — guv ¢~2 is formally equivalent to Einstein’s
Lagrangian with the resulting field equations Ruv — } guv R = 6¢72 [Tuu(¢) + Tpv

(matter)]. The scale invariance is broken (i.e. T : (matter) £ 0), e.g. by adding a

mass term for the scale field in the Lagrangian,i.e. m? [ dix 4 —g ¢2, implying
m*¢* = — T, . If N be the total number of particles, then (T} )av.~ NmR7’, Ra

being the Hubble radius. Thus G ~ RaC?/Nm, One can see that G fixes the mag-
nitude of the scale invariance braking as given by the range of the ¢ field. This
same values of G realized from macroscopic considerations is used in determining
energy and length scales at which quantum effects in gravity become important,
the so called Planck energy (5EC3/G)Y/2 ~ 10* GeV, and Planck length (hG/C?)*2
~ 10—23 cm, at which the theory (e.g. GTR) is customarily expected to ‘break down’
(Wheeler 1962). The Planck length is used as the ultimate, ultraviolet cutoff to
wavenumber in expressions for the self energy of particles in gravity-modified
quantum electrodynamics. At Planck energies, gravity is as strong as the other
interactions. In these often quoted deductions about the behaviour of gravity in the
microworld, one uses value of G as obtained from the macroscopic picture, i.e. by
relating it to the averaged matter distribution in the universe. In other words, G is
assumed to be energy independent right up to the highest energies, contrary to the
behaviour of unified gauge theories where the coupling constant is a function of energy.

An alternative viewpoint advocated by Sakharov (1968) suggests that G be a
derived constant from microphysics. Then the curvature of space-time alters the
zero point energies, so that one has

L(R) — 4% jk3 dk + BER S k dk + higher order terms,

The first term would be dropped from usual renormalization arguments whereas the
second term is identical to the Hilbert action of GTR provided G is now defined as
G = C®/16nBH% [ k dk, where the cutoff k¢ in the formally divergent integral is taken
to be of order of magnitude of the reciprocal Planck length, i.e. ke ~ (C3/hG)' 2
~ 10% cm. Here it is assumed that the value of this cutoff arises purely out of
the physics of all other fields and particles. In this connection it is of interest that
the energies at which GUTSs expect all interactions to ‘merge’ are 10%5-10% GeV
(Buras et al. 1978) not far from the Planck energy. Thus inclusion of gravity
through a larger group structure such as in theories of supergravity could actually
raise these energies to the Planck energy (Cremmer & Julia 1979), so that breakdown
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Origin of the gravitational constant and its behaviour at very high energies 217

of the supergroup below this energy into gravity and other interactions would now
generate the gravitational constant. Here unlike the earlier case, the cutoff wave
number or energy is more fundamental, being related to the energy at which unifica-
tion occurs. The gravitational constant here is derived from this cutoff energy.
‘We shall elaborate these ideas in the next two sections.

3. Gravity in relation to other interactions

As is well known, gravity can be considered a non-Abelian gauge field. The gravitons
couple to themselves like the massless coloured gluons of quantum chromodynamics.
The group of general coordinate transformations is a conserved non-Abelian group
like colour SU (3) which is assumed to be an exact symmetry of the strong interac-
tions binding quarks. The dimensionless strong interaction coupling constant
as( = g?%/4x) is expected to decrease at large energy (momentum) of the interacting
particles approximately as

ws(E) = 1[1 + = In (E¥/AD]?

A being of order of 1 GeV, so that as E — oo, as — 0 (asymptotic freedom).

In the unified theories, the electromagnetic coupling constant is also a weak
function of the energy. It obeys a similar logarthmic relation, but only this time it
slowly increases with the energy (being an Abelian gauge field), and at the large
unification energy (~ 10'®* GeV) both the coupling constants merge into a single
constant characterizing the unification group. Einstein’s gravitational theory and
Fermi’s theory of weak interactions (FWI) have one thing in common : unlike
electrodynamics and QCD, they both contain dimensional coupling constants with
dimension of mass—2, the Fermi coupling constant being Gr ~ (300 mp)~2, and
Newtonian gravitational constant being Gz ~ (10 mp)—2, both in units of GeV-2,
mp with the proton mass ~ 1 GeV. Unification of eletromagnetic and week
interactions has suggested that the smallness of Gr is due to the large mass of the

intermedjate boson Mw i.e. Gr ~ €2/Msw. At energies ~ Mw both interactions
have the same coupling €2, the electric charge, i.e. GFM;V ~ ¢2. The mass is in
turn generated by the non-zero vacuum expectation value (VEV) of a scalar field ¢ :

Gr = €2 /M¥% = 1/¢2. The analogy suggests that the smallness of G, the Newtonian
-constant, can also be attributed to a very massive particle ~ a Planck mass (Me1),

which mediates the interaction at the very high GU energies Gy = KC/M3,, Mz

being generated by the large VEV of a Higgs scalar field at those energies. While
considering scale invariance we already had a Lagrangian like } e$?R 4+ } ¢,
Now we add a ‘cosmological’ term of the form Ag¢*, this being the tranformation
-of A under the scale field. This would give an action like } ¢..é?’ + § €d2R + A4,

which looks just like the Higgs scalar field which supplies masses to the mediating
particles in the unified field theories.

More generally, in place of the Hilbert action, one may write

= I [ $°R + } du?! — V() + Lmatter] ¥ — d'x,
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where the potential function V(¢) is of the form
V(g) = — m*(E)$* + Ad*;

m being the energy-dependent (or temperature-dependent) mass parameter of the
field (Sivaram 1977; Zee 1979). Then as in the unified theories, the gravitational
constant G now depends on the VEV of ¢ as G = 1/8rned5. Thus the parallel with
the Fermi interaction has been made explicit.

Again it is to be noted that in the Einstein-Cartan-Weyl theory, there is a surpris-
ing similarity (Shivaram 1975, 1977) in the form of the effective spin-spin interaction

x({v.Ys0)? to the Fermi weak interaction term. Thus the high energy behaviour of
the Fermi theory should be a guide to what can happen to gravity. We know that
cross-sections for processes like et + e~ — neutrinos in the Fermi theory grow like

6 ~ G} E? with centre-of-mass energy E. We also know that the unitarity bound is

violated for E ~ 1/4 Gz ~ 300 GeV. Apparently something new must happen at
E < 300 GeV. Cross-sections for quantum gravitational processess will also grow
like 6 ~ G2E? (like in the case, et -} e~ — gravitons), and unitarity will now be
violated for E ~ 1/4/G ~ 10" GeV. Again, one invokes four-Fermion interactions
for baryon-number-violating interactions in GUTs. Here also the appropriate coupl-
ing f ~ (May)™? is very weak. The apparent violation of the S-wave unitary bound
o ~ f? < E? at E ~ f~* can be circumvented only if at E 2> Meu the four-Fermion
coupling ceases to be a good approximation.

In fact Heisenberg pointed out long back that in those interactions where the

. couplings have dimensions of negative powers of mass, the mass scale which enters

in the couplings would set a bound on the applicability of the theory. This for
Einstein’s theory would happen at E ~ 10 GeV. If the coupling constant of a
field theory has dimensions of massd, then the integral for a Feynman diagram of
order N will behave at large moment like { p~~44p. Thus for interactions with d < 0,
like gravitational and Fermi weak, the integrals for any process will diverge at high
order, that is, a dimensionless amplitude of order G= diverges as G:E28, If one now
insists that at asymptotically high energies the cross-sections for S-waves for all
interactions be Froissart bounded, ¢ ~ 1/s ~ E-2, then one can see that both the
renormalizable theories like QED and QCD satisfy this bound :

os = a:. l/s; ocee = al. 1/s.

At energies around 10'® GeV, both o5 and see meet. Now the Fermi interaction is
current-current below ~ 100 GeV. At about this energy oyeax Would meet oo and
oweax Should again be proportional to £-2, which means Gr should become energy
independent.

As seen above, the cross-section for gravitational processes would parallel that for
weak interactions and by analogy at energies above 10%® GeV, the cross-section
should now be proportional to E-2 and the dimensionless coupling constant
ae = GE?%[h¢ should be energy independent. This is possible only if G o< E-2% above
this energy. We can therefore write for the energy dependent gravitational constant
G(E) = Gx/(1 + E/Ep)?, where Ep is the Planck energy. At the usual low energies,
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E < Ep. One then recovers the usual Newtonian constant Gx of Einstein’s GTR.
At very high energies E > Ep, G(E) = Gx(Ep/E)? o< 1/E2,

We can justify this conclusion also from what was said earlier about G being
related to the VEV of the scalar field ¢ : G = 1/8re¢?. Since ¢ ~ E, it generates the
mass of the field quanta, so that G o< E—2, Again for large FE, the S-matrix elements
in quantum gravity tend to «®*-2E*+3 (] is the number of loops, e the number of
external lines). This is also true for extended supergravity. It is easily shown
that the S-matrix elements would behave in the Froissart manner (as for other
interactions) if the ‘running’ gravitational constant G(E) behaves like E—2 for large
E. This would also ensure finiteness of all the cross-sections at very large E, that is
E > FEr. It has been pointed out that in a renormalized model of quantum gravity
the renormalized gravity constant must scale like G(E) o< 1/(E®)*, « > 1 (Salam &
Strathdee 1978). What will be the other consequences of this high energy behaviour
of the gravitational constant?. For one thing, it would be of significance in the
very early epochs of the universe during and before the quantum gravity era,
t ~ 1043 s, It may resolve the horizon problem as can be briefly seen as follows.

We have the relation between rand 7 as r = arl/?, @ = (const. x G)*/4 If this rela-
tion remains true for all #, then » becomes larger than light velocity when ¢ < (a/2c)?
implying that in very early times of the universe not all particles were in causal
contact. But if G is energy- and hence temperature-dependent at E > Ep, that is
G = Gx (Te/T)? then one can see that r o< ¢ and causality is reestablished even for
the smallest values of ¢. Since the rate of expansion depends on G and if G decreases
monotonically above a critical energy, the expansion can be prolonged like in some
recent inflationary universe models, establishing causality and delaying phase
transitions.

The monotonic weakening of gravity above a certain critical energy, in analogy
with the other interactions, would doubtless ameliorate the formation of singularities
in gravitational collapse, which are inevitable in GTR. Usually one glossess over
the behaviour of matter after it crosses the event horizon with the statement that
it collapses with the comoving observer to a singular state of infinite density. In
the present picture, once Planck energies are reached at the densest regions and
exceeded, the interaction steadily weakens and the matter can rebound.

In fact in the spirit of asymptotic freedom characterizing other non-Abelian gauge
theories, of which gravity is a prime example, the coupling vanishes as energies tend
to very high values. A detailed investigation of this scenario is in progress (Sivaram
1983b).

Another consequence of the present picture is that, as explained earlier, one ends
up with a finite theory of quantum gravitational processess. No doubt a detailed
study of the possible modifications of gravity at very high energies would provide
answers to some very fundamental questions in physics and astrophysics.
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