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ABSTRACT

It is quite common in line formation theory to treat scattering in subordinate lines under the assumption of complete
frequency redistribution (CRD). The partial frequency redistribution (PRD) in subordinate lines cannot always be
approximated by CRD, especially when the polarization state of the line radiation is taken into account. Here we
investigate the PRD effects in subordinate lines including scattering polarization. The line formation is described by a
polarized non-LTE line transfer equation based on a two-level atom model. We use the recently derived subordinate
line redistribution matrix. We devise polarized approximate lambda iteration methods to solve the concerned
transfer problem. The linear polarization profiles of subordinate lines formed in non-magnetic (Rayleigh) scattering
atmospheres are discussed. We consider one-dimensional isothermal planar model atmospheres. We show that in
the polarized line transfer calculations of subordinate lines, PRD plays as important of a role as it does in the case
of resonance lines. We also study the effect of collisions on linear polarization profiles of subordinate lines.
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1. INTRODUCTION

The problem of spectral line polarization by resonance
scattering is well known. The mechanism responsible for
generating line polarization is the Rayleigh (dipole) scattering
on the atomic bound states. We confine our attention to a two-
level atom model with an unpolarized lower level. If the lower
level of the atom is a ground state, then the problem of partial
frequency redistribution (PRD) including elastic collisions in
line scattering can be represented by a combination (see Omont
et al. 1972) of RII and RIII functions of Hummer (1962).
However, if the lower level is also an excited state of the atom,
then the relevant PRD function to be used is a combination of RV
and RIII (Heinzel & Hubeny 1982). The RV function describes
line scattering on radiatively broadened upper and lower levels
(namely, the subordinate lines). The form of the RV function in
the laboratory frame was derived by Heinzel (1981). Detailed
studies of the nature of this function in angle-dependent and
angle-averaged forms were presented, respectively, in Heinzel
(1981) and Heinzel & Hubeny (1983; see also Frisch 1980). The
angle-averaged version of this function was used in unpolarized
line transfer computations by Hubeny & Heinzel (1984) and by
Mohan Rao et al. (1984). It is shown that the emergent
intensity profile computed with the RV function lies between
those computed with RII and complete frequency redistribution
(CRD).

Most of the polarized line transfer computations so far have
been performed using the well-known redistribution functions
of Hummer (1962). See Nagendra (2003) and Nagendra &
Sampoorna (2009) for a review of the recent literature on the
subject. The only exceptions are the papers by McKenna (1984)
and Nagendra (1994, 1995) where RV is also studied. While
it is true that most of the strong lines in the solar spectrum
are resonance lines (the lower level being the ground state of
the atom), there are several lines that are subordinate (with
a broadened lower level) and are polarized. The purpose of
this paper is to revisit the problem of scattering polarization
in subordinate lines arising due to transitions between two
excited states. We also re-examine the traditional use of CRD
for subordinate lines, instead of the actual PRD function RV.

The problem of frequency redistribution in polarized res-
onance scattering of radiation on two atomic levels that are
broadened both radiatively and collisionally was addressed by
Omont et al. (1972). Domke & Hubeny (1988) particularized the
results of Omont et al. (1972) to the case of polarization. For res-
onance lines (infinitely sharp lower level) they derived explicit
form of the laboratory frame redistribution matrix (RM). A more
general formulation of the polarized RM for a two-level atom
model including the effects of collisions and magnetic fields is
that of Bommier (1997a, 1997b). Apart from the case of reso-
nance lines, Bommier (1997a, 1997b) also considered the case
of polarized redistribution in subordinate lines with radiatively
and collisionally broadened upper and lower levels. Whereas
in the case of resonance lines explicit laboratory frame RMs
were derived, the corresponding expressions for the subordinate
lines were not given in these two papers. Recently, Sampoorna
(2012) has derived the explicit form of the laboratory frame RM
for subordinate lines combining the results of Domke & Hubeny
(1988) and Heinzel & Hubeny (1982). In the present paper, we
use this newly derived RM for subordinate lines in the polarized
line transfer computations.

In Nagendra (1994, 1995) a discrete ordinate finite differ-
ence method was used for the solution of the polarized transfer
problem. The solutions were presented for self-emitting slabs
of finite optical thickness and small bandwidths in frequency.
The role of elastic and inelastic collisions on resonance and
subordinate lines was discussed in great detail. For resonance
lines, the RM derived by Domke & Hubeny (1988) was used,
while for the subordinate lines a product of collisional redis-
tribution function of Heinzel & Hubeny (1982) and Rayleigh
phase matrix was used. Moreover, Nagendra (1994, 1995)
used the so-called hybrid approximation, which was introduced
into the polarized line transfer by Rees & Saliba (1982). It al-
lows the RM to be replaced by a simple product of the phase ma-
trix (that represents the angular correlations) and the traditional
angle-averaged redistribution functions (that fully represent the
frequency correlations).

In this paper, we use polarized approximate lambda iteration
(PALI) methods to solve the polarized line transfer equation for
subordinate lines. Following Rees & Saliba (1982), we use the
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angle-averaged version of the subordinate line RM presented
in Sampoorna (2012). We also use the azimuth-averaged sub-
ordinate line RM derived in the above-mentioned paper. The
basic algorithm of the PALI method in the case of resonance
lines can be found in Nagendra & Sampoorna (2009) for angle-
averaged version of the RM and in Sampoorna et al. (2011) for
azimuth-averaged RM. In this paper, we describe the essential
generalizations required for treating subordinate line RM (in
both angle-averaged and azimuth-averaged cases). We present
emergent Stokes I, and fractional linear polarization Q/I pro-
files formed in isothermal planar slab atmospheres, specified by
few model parameters. The effect of elastic collisions is also
discussed.

The subordinate line RM is briefly recalled in Section 2.
In Section 3 we describe the basic equations of the problem.
In Section 4 we discuss the numerical method of solution.
Section 5 is devoted to a study of the angle-averaged as well as
the azimuth-averaged type-V redistribution function. Section 6
concerns a discussion of the results. Conclusions are presented
in Section 7.

2. SUBORDINATE LINE REDISTRIBUTION MATRIX

Here we recall the explicit form of the azimuth-averaged
subordinate line RM presented in Sampoorna (2012). We also
present the angle-averaged analog of this RM. We use slightly
different notations than those used by Sampoorna (2012) for
clarity.

The elements of the azimuth-averaged RM for subordinate
lines are given by

Rij (x, μ, x ′, μ′) =
2∑

K=0

K∑
Q�0

FK
Q (x, μ, x ′, μ′)

× T̃ K
Q (i, μ)T̃ K

Q (j, μ′), (1)

where i, j = 0, 1, and

FK
Q = R̃(K,Q)

V + [WKβ(K) − δ(K)]R(Q),sl
III . (2)

In the above equation the superscript “sl” stands for subordinate
line. Here x ′, x denote the incident and scattered frequencies
in Doppler width units, and μ′, μ are the direction cosines
of incoming and outgoing rays, respectively. The irreducible
tensors T̃ K

Q (i, μ) are defined in Frisch (2010). WK (Jl, Ju)
are the K-multipole atomic polarizability factors that depend
on the angular momentum of the lower (Jl) and upper (Ju) levels
of the transition. The quantity R̃(K,Q)

V is given by

R̃(K,Q)
V =

2∑
K ′=0

α(K ′)C̄KK ′JlJu
R(K ′,Q)

V (x, μ, x ′, μ′). (3)

The coefficients α(K) and β(K) are branching ratios given by

α(K) = Γ(u)
R

Γ(u)
R + Γ(u)

I + ΓE − D
(K)
l

, (4)

β(K) = Γ(u)
R

Γ(u)
R + Γ(u)

I + D
(K)
u

. (5)

Here Γ(u)
R is the radiative transition rate of the upper level (u),

Γ(u)
I is the inelastic collisional deexcitation rate of the level u,

and ΓE is the elastic collisional rate for the specific transition.
D

(K)
l and D(K)

u are the 2K-multipole destruction rates for levels
l and u, respectively. Note that D

(0)
l = D(0)

u = 0. The quantity
δ(K) is given by

δ(K) =
2∑

K ′=0

α(K ′)C̄KK ′JlJu
, (6)

where

C̄KK ′JlJu
= (−1)K+K ′

3(2Ju + 1) (2K ′ + 1)

×
{

1 1 K
1 1 K ′

} {
1 1 K ′
Jl Jl Ju

}2

. (7)

The factors R(K,Q)
V and R(Q),sl

III are the azimuthal Fourier coeffi-
cients of order Q of the angle-dependent (AD) PRD functions
R

(K)
V,AD and Rsl

III,AD, respectively. They are defined by

R(K,Q)
V (x, μ, x ′, μ′) = 2 − δ0Q

2π

×
∫ 2π

0
R

(K)
V,AD(x, μ, x ′, μ′, Δ) cos QΔ dΔ, (8)

with a similar expression for R(Q),sl
III . Here Δ is the azimuth

difference between the scattered and incident rays. The angle-
dependent function R

(K)
V,AD is derived in Heinzel & Hubeny

(1982). They have the same functional form as their pure radia-
tive counterpart derived in Heinzel (1981). However, the upper
and lower level damping widths in the collisional redistribution
case are given by

au = Γ(u)
R + Γ(u)

I + ΓE

4πΔνD
, (9)

a
(K)
l = Γ(l)

R + Γ(l)
I + D

(K)
l

4πΔνD
, (10)

where ΔνD is the Doppler width of the line. Here Γ(l)
R and Γ(l)

I
are the radiative and inelastic collisional widths of the lower
level l. The Rsl

III,AD has the same functional form as that derived
by Hummer (1962) for a resonance line, but the total damping
width is now given by

a = Γ(u)
R + Γ(l)

R + Γ(u)
I + Γ(l)

I + ΓE

4πΔνD
. (11)

We can show that the index Q takes value zero only, when
we use angle-averaged type-V and type-III functions in place
of their angle-dependent counterparts (see, e.g., Frisch 2010).
It also follows from our Equation (8). Thus, the angle-averaged
(AA) form of Equation (1) can be written as

RAA
ij (x, μ, x ′, μ′) =

2∑
K=0

FK
AA(x, x ′)T̃ K

0 (i, μ)T̃ K
0 (j, μ′), (12)

where

FK
AA = R̃

(K)
V,AA + [WKβ(K) − δ(K)]Rsl

III,AA, (13)
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with

R̃
(K)
V,AA =

2∑
K ′=0

α(K ′)C̄KK ′JlJu
R

(K ′)
V,AA(x, x ′). (14)

The angle-averaged redistribution functions are computed using

R
(K)
V,AA(x, x ′) = 1

2

∫ π

0
R

(K)
V,AD(x, x ′, Θ) sin Θ dΘ, (15)

with a similar expression for Rsl
III,AA. Here Θ is the scattering

angle between incident and scattered rays.
We remark that for Jl = 0 or 1/2 the second 6-j symbol

in C̄KK ′JlJu
vanishes for K ′ = 1 and 2. As a result D

(K ′)
l that

enters α(K ′) andR(K ′,Q)
V or R

(K ′)
V,AA does not make any contribution

to the linear polarization. Further for Jl other than 0 and 1/2,
our numerical experiments showed that the lower level elastic
collision rates D

(K ′)
l again do not effect the linear polarization

profiles. This is possibly because the lower level is unpolarized
in the present formulation of the scattering theory used here,
namely, the magnetic substates of the lower level are “assumed”
to be equally populated. The elastic collisions can redistribute
populations among the magnetic substates of a given level. Due
to the imposition of the equality of m-state population, the D

(K ′)
l

rates are allowed to contribute only to maintain this equilibrium
population. In this way although D

(K ′)
l of the lower level are

included in the present formulation, they are “ineffective” and
do not produce depolarization, which would have been possible,
if the lower level was allowed to be polarized.

3. GOVERNING EQUATIONS OF THE PROBLEM

We consider a one-dimensional planar slab atmosphere, with-
out any magnetic fields. Therefore, the polarized radiation field
is axisymmetric and is represented by the Stokes parameters I
and Q. The positive Q direction is defined in the plane containing
the direction of the ray and the atmospheric normal.

The polarized line transfer equation for the Stokes vector
component can be written as

μ
∂Ii

∂τ
= [ϕ(x) + r][Ii(τ, x, μ) − Si(τ, x, μ)], (16)

where Ii = (I,Q) for i = 0, 1; τ is the line optical depth;
and r is the ratio of continuum to the frequency-integrated line
absorption coefficient. The absorption profile function is a Voigt
function with total damping width a given by Equation (11). The
total source vector is defined as

Si(τ, x, μ) = ϕ(x)Sl,i(τ, x, μ) + rSc,i

ϕ(x) + r
, (17)

where Sc,i are the unpolarized continuum source vector com-
ponents, with Sc,0 = Bν0 , the Planck function at the line center
frequency. The line source vector can be written as

Sl,i(τ, x, μ) = Gi(τ ) +
∫ +∞

−∞
dx ′

∫ +1

−1

dμ′

2

1∑
j=0

× Rij (x, μ, x ′, μ′)
ϕ(x)

Ij (τ, x ′, μ′). (18)

The unpolarized primary source within the slab is G0(τ ) = εBν0

and G1(τ ) = 0, with ε being the thermalization parameter given

by

ε = Γ(u)
I

Γ(u)
I + Γ(u)

R

. (19)

The RM for the subordinate line Rij is given by Equation (1)
for azimuth-averaged case and by Equation (12) for the angle-
averaged case.

Following Frisch (2010), we can decompose Ii into its
irreducible components IK

Q as

Ii(τ, x, μ)=
∑

K=0,2

K∑
Q�0

T̃ K
Q (i, μ)IK

Q (τ, x, μ), i = 0, 1, (20)

with a similar expression for Si, Sc,i , Gi, and Sl,i . Clearly there
are four terms in the summation for azimuth-averaged case
and two terms for the angle-averaged case. The irreducible line
source vector components SK

l,Q may be written as

SK
l,Q(τ, x, μ) = GK

Q (τ ) +
∫ +∞

−∞
dx ′

∫ +1

−1

dμ′

2

× FK
Q (x, μ, x ′, μ′)

ϕ(x)

∑
K ′=0,2

K ′∑
Q′�0

Γ̃KK ′
QQ′ (μ′)IK ′

Q′ (τ, x ′, μ′), (21)

where

Γ̃KK ′
QQ′ (μ′) =

1∑
j=0

T̃ K
Q (j, μ′)T̃ K ′

Q′ (j, μ′). (22)

The explicit form of Γ̃KK ′
QQ′ (μ′) can be found in Frisch (2010).

The components IK
Q satisfy a transfer equation similar to

Equation (16). The source term is given by Equation (17), where
Sl,i and Sc,i are replaced by SK

l,Q and SK
c,Q = δK0δQ0Bν0 . We

remark that when FK
Q are independent of μ and μ′ (i.e., when

they are replaced by FK
AA), only the Q = 0 components of SK

l,Q

are non-zero.

4. NUMERICAL METHOD OF SOLUTION

Here we describe the PALI method to solve the axisymmetric
transfer problem for the subordinate lines in the irreducible
basis. We discuss both the azimuth-averaged and angle-averaged
cases. The basic steps of the PALI methods can be found in
several earlier papers (see, e.g., Trujillo Bueno 2003; Nagendra
& Sampoorna 2009; Sampoorna et al. 2011). Therefore we recall
only the main ingredients of this method.

Define the four-component vectors S(τ, x, μ) =
(S0

0 ,S2
0 ,S2

1 ,S2
2 )T and I(τ, x, μ) = (I0

0 , I2
0 , I2

1 , I2
2 )T. The for-

mal solution of the transfer equation for the four-component
irreducible vector I can be written as

Ixμ = �xμ[Sxμ], (23)

where for notational brevity the dependence on x and μ appear
as subscripts. �xμ is the frequency- and angle-dependent (4×4)
integral operator for azimuth-averaged case. For angle-averaged
case � depends only on x and is a (2 × 2) integral operator. The
iteration method is based on the introduction of an approximate
Lambda operator �∗

xμ, which is taken as a local operator in space
(Jacobi method). At each step in the iterative process, one has
current estimates of S(n)

xμ and S(n)
l,xμ, where the superscript (n)

refers to the nth iteration step. The source vector corrections
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δS(n)
l,xμ are given at each depth point by a system of linear

equations:

δS(n)
l,xμ −

∫ +∞

−∞
dx ′

∫ +1

−1

dμ′

2

Fxμ,x ′μ′

ϕx

�μ′px ′

× �∗
x ′μ′

[
δS(n)

l,x ′μ′
] = G(τ ) + J (n)

xμ − S(n)
l,xμ, (24)

where px = ϕx/(ϕx + r) and

J (n)
xμ =

∫ +∞

−∞
dx ′

∫ +1

−1

dμ′

2

Fxμ,x ′μ′

ϕx

�μ′�x ′μ′
[
S(n)

x ′μ′
]
. (25)

Here G(τ ) = [G0(τ ), 0, 0, 0]T, and �μ is a (4 × 4) full matrix
with elements Γ̃KK ′

QQ′ (see Equation (22)). The (4 × 4) matrix F
is diagonal, i.e., F = diag[F0

0 ,F2
0 ,F2

1 ,F2
2 ]. Its elements are

given by Equation (2) for the azimuth-averaged case. For the
angle-averaged case F depends only on (x, x ′) and K, and will
be denoted by FAA. It is now a (2 × 2) matrix with its diagonal
elements FK

AA given by Equation (13).

4.1. A Matrix Method for Subordinate lines

Equation (24) can be formally written as

A δS(n)
l = r (n), (26)

where the residual vector r (n) is given by the right-hand side
of Equation (24). For the azimuth-averaged case, at each depth
point, r (n) and δS(n)

l are vectors of length 4Nx 2Nμ, where Nx
is the number of frequency points in the range [0, xmax] and Nμ

is the number of angle points in the range [0 < μ � 1]. The
matrix A then has the dimensions of (4Nx 2Nμ ×4Nx 2Nμ). On
the other hand, for the angle-averaged case, at each depth point,
r (n) and δS(n)

l are vectors of length 2Nx, and A is a (2Nx × 2Nx)
matrix. This “matrix method” of computing δS(n)

l is referred
to as frequency-angle by frequency-angle method for azimuth-
averaged case (see Sampoorna et al. 2011) and as frequency-by-
frequency method for angle-averaged case (see Paletou & Auer
1995; Sampoorna et al. 2008).

4.2. A Core–Wing Separation Method for Subordinate Lines

In the case of resonance lines, a core–wing method was
introduced by Paletou & Auer (1995) for the computation
of the line source vector corrections. This method amounts
to computing the integral over frequency (see Equation (24))
separately in the core and in the wings, thereby avoiding the
computationally expensive matrix inversion involved in the
matrix method described above. The core–wing technique as
applied to RII,AA(x, x ′) function involves the assumption of
CRD in the line core (x, x ′) � 3 and pure coherent scattering
in the line wings (x = x ′) > 3. Such a core–wing division was
introduced by Paletou & Auer (1995) based on the physical
nature of the RII,AA(x, x ′) function. We find that the same
core–wing technique can be applied to the type-V function only
when a

(K)
l < au. Because in this case the type-V function

behaves similar to the type-II function (see Heinzel 1981;
Heinzel & Hubeny 1983, and Section 5 below).

For a
(K)
l � au, the core–wing technique is not applicable to

the type-V function. This is because, for a incident wing photon
at x ′, the type-V function exhibits a “simultaneous” reemission
probability at x = x ′ and at x = 0, unlike the case of type-II

function (see, e.g., Frisch 1980). Further, the peak at x = 0
dominates over that at x = x ′ when a

(K)
l > au. In such situations

(i.e., a
(K)
l � au), we found that using CRD function throughout

the frequency range instead of type-V function provides a faster
and reliable method of solution. Thus in Equation (24) (see also
Equations (2) and (13)), we approximate

R(K,Q)
V

ϕx

� δQ0

⎧⎨
⎩

ϕx ′ , for x � xc when a
(K)
l < au,

δ(x − x ′), for x > xc when a
(K)
l < au,

ϕx ′ , for all x when a
(K)
l � au,

(27)

for all values of K and

R(Q),sl
III

ϕx

� δQ0

{
ϕx ′ , for x � xc,
0, for x > xc, (28)

where xc denotes the core–wing separation frequency, usually
taken as three Doppler widths. With this approximation F takes
the form

Fxμ,x ′μ′ ≈ ϕxϕx ′WBE, (29)

in the core, and in the wings

Fxμ,x ′μ′ ≈ ϕxδ(x − x ′)δE, (30)

where W, B, δ, and E are (4 × 4) diagonal matrices defined by

W = diag[W0,W2,W2,W2], (31)

B = diag[β(0), β(2), β(2), β(2)], (32)

δ = diag[δ(0), δ(2), δ(2), δ(2)], (33)

E = diag[1, 1, 0, 0]. (34)

Substituting Equations (29) and (30) into Equation (24), we
obtain after simple algebra

δS(n)
l,xμ = r (n)

xμ + (1 − αx)WBE�T core + αxδE�T wing
x , (35)

where αx is the core–wing separation coefficient. In the core
αx = 0 and in the wings αx = R

(0)
V,AA(x, x)/ϕ(x). The frequency

and angle-independent four-dimensional vector �T core is given
by

�T core =
∫ +xc

−xc

ϕx ′dx ′
∫ +1

−1

dμ′

2
px ′�μ′�∗

x ′μ′
[
δS(n)

l,x ′μ′
]
, (36)

and the frequency-dependent but angle-independent vector
�T wing

x is given by

�T wing
x =

∫ +1

−1

dμ′

2
px�μ′�∗

xμ′
[
δS(n)

l,xμ′
]
. (37)

Following the standard procedure (see, e.g., Sampoorna et al.
2011), the final expression for �T core is given by

�T core =
[

E −
(∫ +xc

−xc

ϕxdx

∫ +1

−1

dμ

2
px�μ�∗

xμ

)
WBE

]−1

r (n),

(38)
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where E is a (4 × 4) unity matrix and

r (n) =
∫ +xc

−xc

ϕxdx

∫ +1

−1

dμ

2
px�μ�∗

xμ

[
r (n)

xμ

]
. (39)

Similarly, the final expression for �T wing
x is given by

�T wing
x =

[
E − αx

(∫ +1

−1

dμ

2
px�μ�∗

xμ

)
δE

]−1

×
[

r̃ (n)
x + (1 − αx)

(∫ +1

−1

dμ

2
px�μ�∗

xμ

)

× WBE �T core

]
, (40)

where

r̃ (n)
x =

∫ +1

−1

dμ

2
px�μ�∗

xμ

[
r (n)

xμ

]
. (41)

We remark that when a
(K)
l � au, we replace xc by xmax

(or ∞) and set αx = 0 for all x, so that the term with �T wing
x in

Equation (35) does not contribute to δS (n)
l,xμ. Such a method to

evaluate δS(n)
l,xμ is similar to that proposed by Scharmer (1983)

for RII,AA function (and referred to as the CRDA method by
Paletou & Auer 1995). It may be recalled that the CRDA method
fails when applied to the RII,AA function as demonstrated by
Paletou & Auer (1995). We have verified that the core–wing
separation method (applicable to a

(K)
l < au) and the CRDA

method (applicable to a
(K)
l � au) for subordinate lines give

exactly the same solution as that obtained by using the matrix
method. While the matrix method is computationally slower
and requires larger memory, the core–wing and CRDA methods
are much faster since the computation of δS(n)

l,xμ is analytically
reduced to simple algebraic operations.

5. THE TYPE-V REDISTRIBUTION FUNCTION

Here we study the nature of type-V redistribution function
for pure radiatively broadened upper and lower levels. We
consider both the angle-averaged and azimuth-averaged cases.
The R

(K)
V,AA, R

(K)
V,AD, and R(K,Q)

V are independent of K when both
the upper and lower levels are only radiatively broadened. In
this case, the upper and lower level radiative widths are given
by

al,R = Γ(l)
R

4πΔνD
; au,R = Γ(u)

R

4πΔνD
. (42)

Thus in this section we drop the index K on the type-V function.
The nature of the type-V redistribution function for both

angle-dependent and angle-averaged cases were presented in
Heinzel (1981) and Heinzel & Hubeny (1983; see also Frisch
1980). The RV,AD function consists of two terms, namely, the
main term and the EV term (see, e.g., Equation (18) of Nagendra
1994). The main term is simply a product of two Voigt functions,
while the EV term contains an integral. The EV term has to be
computed with high accuracy because it can take both positive
and negative values (see Figure 4 of Heinzel 1981), which
then either adds or subtracts with the main term. Inaccurate
computation of the EV term can lead to negative values of the
RV,AD function, which in turn affects the normalization of the
type-V function. Heinzel (1981) and Heinzel & Hubeny (1983)
have developed quadrature methods for accurate evaluation of

Figure 1. Probability of reemission at scattered frequency x, for absorption
at the incident frequency x′, in the case of angle-averaged redistribution
function RV,AA. The damping parameters al,R = au,R = 10−3.

the EV term. Following Nagendra (1994), we use a Simpson’s
(1/3)rd rule with very fine grid points to evaluate the EV term.
The evaluation of the EV term forms the main part of the
computing efforts.

5.1. Angle-averaged Case

Figure 1 displays the reemission probability RV,AA(x, x ′)/
ϕ(x ′) in the form of a surface plot for al,R = au,R = 10−3.
Clearly, for absorption in the wings (x ′ > 3), there is a joint
probability of reemission at the line center (x = 0) and at
x = x ′. Further, these two peaks are of equal amplitude (because
al,R = au,R) and are of constant heights outside the Doppler-core
region. The latter behavior of wing coherent peak is analogous to
the angle-averaged type-II function, while that of central peak
is analogous to the angle-averaged type-III function. As au,R
increases compared with al,R, the coherent wing peak becomes
more and more important, so that for au,R � al,R the type-V
function approaches the type-II function. On the other hand,
when al,R increases compared with au,R, the central peak gains
importance and eventually for au,R 	 al,R one arrives at the
type-III function (see Heinzel & Hubeny 1983, for a detailed
discussion).

5.2. Azimuth-averaged Case

Figure 2 shows R(Q)
V (x, μ, x ′, μ′)/ϕ(x ′) versus outgoing fre-

quency x for μ = 0.1 and μ′ = 0.9 and for different values of
incoming frequency x ′. As in the case of type-II and type-III az-
imuthal Fourier coefficients, the Q = 0 coefficient of the type-V
function (namely R(0)

V ) should be normalized to the absorption
profile when integrated over all the incoming frequencies and
angles, while R(Q)

V with Q = 1, 2 should be normalized to zero.
This is necessary to ensure accurate evaluation of intensity and
linear polarization profiles. The details of numerical evaluation
of azimuthal Fourier coefficients of type II and type III are dis-
cussed in Sampoorna et al. (2011). We use the same method
for computing the azimuthal Fourier coefficient of the type-V
function.

The R(Q)
V /ϕ(x ′) decreases with increasing azimuthal order Q.

This is in accordance with the behavior of the corresponding
type-II and type-III cases (see, e.g., Domke & Hubeny 1988;
Sampoorna et al. 2011; Nagendra & Sampoorna 2011). Sim-
ilar to the angle-averaged type-V redistribution function, the
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Figure 2. Azimuth-averaged type-V redistribution function vs. outgoing fre-
quency x for μ = 0.1, μ′ = 0.9, and al,R = au,R = 0.001. Panel (a) corresponds
to Q = 0, panel (b) to Q = 1, and panel (c) to Q = 2. Different line types
represent different incoming frequencies x′.

R(0)
V /ϕ(x ′) exhibits double maxima for incoming frequencies in

the wings. For incoming frequencies in the line core (x ′ < 3),
R(Q)

V /ϕ(x ′) has a behavior quite similar to the corresponding
type-II function, but considerable differences occur for x ′ � 3.
This occurs because of the differences between the type-II and
type-V functions, which are described in Section 5.1.

6. RESULTS AND DISCUSSIONS

We present the polarization profiles emerging from isothermal
constant property media. In Sections 6.2–6.4, we consider the
angle-averaged version of the RM (see Equations (12)–(15)). A
comparison of emergent linear polarization profiles computed
with angle-averaged and azimuth-averaged RM is presented in
Section 6.5.

6.1. The Model Parameterization

We consider isothermal, plane-parallel model atmospheres
characterized by (T , ε, r, al,R, au,R, ΓE/Γ(u)

R ), where T is the
optical thickness of the slab. We neglect the inelastic collisional
width (Γ(l)

I ) of the lower level. The upper and lower level
radiative widths are given by Equation (42). The total damping
widths of the upper and lower levels can then be computed
using Equations (9) and (10). We consider a 0 → 1 → 0
scattering transition for simplicity. In this case, only D(K)

u are
operative (see the discussion at the end of Section 2). Thus, the
type-V function does not depend on K, and hence we drop the
index K on RV,AA and R(Q)

V . We assume that D(2)
u = 0.5 ΓE

(see, e.g., Stenflo 1994). The Planck function at the line center

Bν0 is taken as unity. A logarithmic depth grid with six points
per decade is used, with the first depth point at τ1 = 10−4.
For all figures presented in Sections 6.2–6.4, the slab thickness
T = 2 × 108. A non-uniform Simpson frequency quadrature
is used for evaluating frequency integrals. This quadrature is
constructed in such a way that the frequency points are equally
spaced in the line core and logarithmically spaced in the wings.
Furthermore, the maximum frequency xmax is chosen such
that the condition ϕ(xmax)T 	 1 is satisfied. We have about
75 points in the interval [0, xmax]. We use a five-point Gaussian
quadrature in [0 < μ � 1].

The frequency quadrature mentioned above is sufficiently
accurate for line transfer computations. However, the evaluation
of the redistribution weights is done on a much finer frequency
grid, consisting of several hundred points. Such a fine grid is
constructed by further subdividing each frequency interval into
a fine mesh of Simpson quadrature points (e.g., 41-points in
each interval). This reconstruction of the frequency quadrature
weights helps to ensure high accuracy in the evaluation of
redistribution integrals. This procedure is somewhat similar to
that of the well-known method of Adams et al. (1971). Further,
the evaluation of the type-V function is numerically expensive
compared with the type-II and type-III functions because of the
need to compute the EV term to a high accuracy (see Section 5).

6.2. A Comparison of Lines Formed Under Different
Redistribution Mechanisms

Figure 3 shows a comparison of emergent Stokes profiles
formed with different redistribution mechanisms. The elastic
collisions are neglected (i.e., ΓE/Γ(u)

R = 0). In the intensity
profile the type-III and CRD mechanisms are indistinguishable.
However, in the Q/I profile they differ only in the width of the
central peak (see the inset panel in Figure 3), which is larger
for type III than for CRD. The type-II redistribution exhibits the
characteristic intensity and Q/I profiles. Indeed, in the wings
the maximum linear polarization is produced for the type-II
PRD mechanism. The RV,AA function shows slight departure
from CRD only in the line core of the intensity profile. This is
in agreement with the results obtained by Hubeny & Heinzel
(1984). Thus, we confirm their conclusion that for intensity
profiles formed in semi-infinite like atmospheres, CRD is a
reasonable approximation to RV,AA. This is expected because for
a photon absorbed in the wings the type-V redistribution exhibits
a finite probability of reemission in the line core. Therefore, in
type-V scattering PRD effects never develop to be as large as
in the type-II case. The physical reasons why departures from
CRD are larger for RII,AA than for RV,AA are described in greater
detail by Hubeny (1985).

On the other hand, the Q/I profiles computed using RV,AA
and CRD differ significantly throughout the line profile. In
the line core all redistribution mechanisms except CRD nearly
match. In the near and far wings the Q/I profile computed using
the RV,AA redistribution differs significantly from that computed
using the RII,AA function. From Figure 3 it can be seen that CRD
cannot be used in place of RV,AA function because the Q/I
profile computed with RV,AA departs very significantly from
that computed using CRD throughout the line profile (except at
the line center).

6.3. Effect of Variation of Radiative Damping Rates
of the Lower and Upper Levels

Figure 4 shows the sensitivity of the polarization pro-
files formed with the type-V redistribution mechanism to the
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Figure 3. Comparison of emergent polarization profiles formed under dif-
ferent redistribution mechanisms. An isothermal atmosphere with parame-
ters (T , ε, r, al,R, au,R, ΓE/Γ(u)

R ) = (2 × 108, 10−6, 10−9, 10−3, 10−3, 0)
is used. The line of sight is represented by μ = 0.05. Different line types
are solid (RV,AA), dotted (RII,AA), dashed (RIII,AA), and dot-dashed (CRD).
For redistribution mechanisms other than type V, a total damping width of
2 × 10−3 is used. See Section 6.2 for details.

variations in the radiative damping rates of the lower (panel
a) and upper (panel b) levels. For comparison, we also show
the corresponding Stokes profiles computed using CRD and
RII,AA redistribution mechanisms with the total damping width
of a = al,R + au,R. This comparison is not shown for the case of
al,R = au,R because it is already presented in Figure 3. Again it
is easy to see from Figure 4 that intensity profiles computed with
RV,AA resemble closely the CRD profiles than those computed
with RII,AA.

In Figure 4(a), we vary the lower level damping width
al,R keeping the upper level damping width au,R a constant.
The intensity profile computed using RV,AA becomes broader
in the wings and slightly shallower in the line core with an
increase in al,R. Similar effects are seen in the intensity profiles
computed with CRD. Whereas only broadening in the wings
is seen in the intensity profile computed with RII,AA. The
linear polarization (Q/I ) computed using RV,AA decreases in
magnitude throughout the line profile, as the value of al,R
increases. Indeed the shape of the Q/I profile changes from
PRD-like to CRD-like frequency dependence (see the inset in
Figure 4(a)). However, in the case of Q/I computed with RII,AA,
the far wing peak is greatly shifted to larger frequencies as the
value of total damping width a increases.

In Figure 4(b), we vary the upper level damping width au,R for
a given value of al,R. With an increase in au,R the intensity profile
computed using RV,AA broadens and deepens at the line center,

exhibiting highly extended wings. In the Q/I profile computed
with RV,AA, the line core (x < 3) is insensitive to variations in
au,R, but the line wing polarization is very sensitive. In particular,
the magnitude of Q/I in the wings increases sharply essentially
due to an increased role of coherent scattering throughout the
line wings. Furthermore, with an increase in au,R the “frequency
position of the far wing maxima” in Q/I shifts away from the
line center. Finally, when au,R becomes larger than al,R the
shape of the Q/I profile computed with RV,AA start to resemble
the corresponding profile computed using RII,AA function. This
is expected because the RV,AA function approaches the RII,AA
function for au,R � al,R.

It is interesting to note that the PRD mechanism in both
RII,AA and RV,AA (when au,R � al,R) exhibit “double maxima”
in the Q/I profile, one in the near wing (|x| � 20) and the
other in the distant wings (|x| > 200), apart from the line
center peak. Whereas the line center and the inner wing peaks
survive the radiative transfer effects in calculations with realistic
model atmospheres, the far wing peak often vanishes due to the
dominance of unpolarized continuum radiation field at those
frequencies.

6.4. Effect of Variation of Elastic Collisions

Here we vary ΓE/Γ(u)
R to study its influence on the emergent

Stokes profiles, which are shown in Figure 5(a). The elastic
collision rate is varied such that we cover the entire range
from pure type-V scattering (ΓE/Γ(u)

R = 0) to nearly pure
type-III scattering (ΓE/Γ(u)

R = 10), along with the intermediate
range of nearly equal mix of type-V and type-III scattering
(ΓE/Γ(u)

R = 1). As for the resonance lines, the intensity
profiles for subordinate lines show considerable sensitivity to
ΓE/Γ(u)

R in the line wings. The linear polarization Q/I decreases
throughout the line profile with increasing values of ΓE/Γ(u)

R ,
finally approaching small values for ΓE/Γ(u)

R = 10. As in the
case of resonance lines (see, e.g., Nagendra 1994) D(2)

u mainly
operates in the line core, while ΓE/Γ(u)

R operates in the line
wings.

In Figure 5(b), we compare (I,Q/I ) profiles computed for
subordinate lines, resonance lines, and CRD for ΓE/Γ(u)

R = 1 and
10. The intensity profiles for all the three redistribution mecha-
nisms nearly coincide when elastic collisions are included. With
an increase in ΓE/Γ(u)

R , the shape of the Q/I profile of the sub-
ordinate line resembles more closely that of the resonance line.
Finally, for ΓE/Γ(u)

R � 5 both the profiles coincide and approach
a CRD-like profile shape.

6.5. Comparison of Stokes Profiles Computed Using
Angle-averaged and Azimuth-averaged PRD Functions

It is a common practice in most of the line transfer com-
putations to use angle-averaged functions. It stems from the
fact that angle-averaged functions indeed represent the physics
of line scattering to a significant degree of realism, at least in
the absence of magnetic fields. The other reasons for the use
of angle-averaged functions are the drastically smaller effort
in computing them and subsequently their use in the transfer
equation.

In the case of resonance lines, it was shown in Sampoorna
et al. (2011, see also Faurobert 1987; Nagendra et al. 2002)
and Nagendra & Sampoorna (2011) that the differences be-
tween angle-averaged and angle-dependent (represented by
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Figure 4. Effect of variation of al,R (a) and au,R (b) on the emergent polarization profiles computed in an isothermal atmosphere using type-V redistribution mechanism.
Model parameters are the same as in Figure 3. Different line types are specified in each of the panels. Heavy lines without any symbols correspond to RV,AA. Thin
lines without any symbol correspond to CRD and thin lines with symbols correspond to RII,AA. See Section 6.3 for details.

Figure 5. Panel (a) shows the effect of variation of elastic collision rate on the emergent polarization profiles of subordinate lines formed in an isothermal atmosphere.
Different line types are specified in the figure. Panel (b) shows a comparison of (I,Q/I ) profiles computed with (RV,AA, RIII,AA), (RII,AA, RIII,AA) combinations,
and CRD for ΓE/Γ(u)

R = 1 and 10. Heavy lines correspond to subordinate lines and thin lines without any symbols correspond to CRD, while thin lines with symbols
correspond to resonance lines. Model parameters are the same as in Figure 3. See Section 6.4 for details.

azimuth-averaged RM in the case of one-dimensional planar
atmospheres) results in Q/I are between 10% and 30%, partic-
ularly for slabs of smaller optical thickness. For slabs of larger
optical thickness, the differences are even smaller. We find that

similar conclusions hold in the case of subordinate lines also.
Figure 6 illustrates this fact through a comparison of (I,Q/I )
profiles computed using angle-averaged and azimuth-averaged
(basically angle-dependent) functions for an isothermal
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Figure 6. Comparison of emergent Stokes profiles of subordinate lines formed
in an isothermal slab atmosphere, at μ = 0.05 for azimuth-averaged (solid
lines) and the angle-averaged (dashed lines) PRD functions. Model param-
eters are (T , ε, r, al,R, au,R, ΓE/Γ(u)

R ) = (20, 10−6, 0, 10−3, 10−3, 0). See
Section 6.5 for details.

self-emitting slab of optical thickness T = 20. The elastic col-
lisions are neglected (ΓE/Γ(u)

R = 0). Since the effects of elastic
collisions on the polarization of subordinate line are identical to
those on the resonance line polarization (see Section 6.4), the
influence of elastic collisions on the difference between angle-
averaged and azimuth-averaged solutions for subordinate lines
is similar to that for the resonance lines.

7. CONCLUSIONS

In this paper, we have discussed the PRD effects in the sub-
ordinate lines taking account of linear polarization produced by
resonance scattering in lines. Recently, Sampoorna (2012) de-
rived the RM for polarized scattering in subordinate lines taking
into account an exact treatment of collisions. This RM is used in
the present paper to perform radiative transfer computations. We
consider both angle-averaged and azimuth-averaged versions of
this RM. Both the angle-averaged and azimuth-averaged type-V
redistribution functions are studied in some detail. In the special
case of one-dimensional line transfer with axisymmetric con-
ditions, the azimuth-averaged functions indeed represent fully
angle-dependent PRD problem. We compare the Stokes profiles
computed using angle-averaged and azimuth-averaged RM, and
show that it is good enough to use angle-averaged functions in
practical applications. However, in multi-dimensional polarized
line transfer, the kind of azimuthal averaging used in this paper
is no longer valid due to symmetry breaking. A decomposition
method for such interesting situations are discussed in Anusha

& Nagendra (2011, 2012) for the case of resonance lines. It can
be extended to the case of subordinate lines also.

We have devised a polarized approximate lambda iteration
method to solve the subordinate line transfer equation in a
one-dimensional planar medium. To compute the line source
vector corrections, we present two alternative methods. The
first one is a matrix method (called the frequency-by-frequency
method for angle-averaged case; and the frequency-angle by
frequency-angle method for azimuth-averaged case), which is
computationally slow. The second one is a faster method and
is similar to the well-known core–wing separation method of
Paletou & Auer (1995) for resonance lines. This method, in the
case of subordinate lines, is applicable when the lower level
damping width is smaller than the upper level damping width.
When the lower level damping width is comparable or larger
than that of the upper level, we show that a method similar
to the CRDA method of Scharmer (1983) becomes applicable
(whereas this method does not work well for resonance lines, it
poses no difficulty in the case of subordinate lines).

Our numerical experiments show that the type-V redistribu-
tion cannot simply be replaced by CRD function, particularly
when treating scattering polarization of subordinate lines. The
linear polarization profiles computed by the type-V function lies
in between those computed using type-II function and CRD,
especially in the line wings. This has direct consequences in po-
larized spectral diagnostics using subordinate lines (namely, the
exact type-V function needs to be used without approximating
it either by type-II or CRD functions).

As the relative value of lower level damping parameter with
respect to the upper level damping parameter increases, the
linear polarization decreases, especially in the line wings. In
this way the type-V function becomes more and more frequency
non-coherent (similar to CRD) because of which the Q/I profile
approaches that computed with CRD. This is in contrast to an
increase in the value of the upper level damping parameter,
wherein the Q/I profile computed using the type-V function
approaches that computed using the type-II function.

Elastic collisions in the upper level produce the same kind
of effects for both resonance and subordinate lines. However,
they do not affect the lower level as we have assumed it to be
unpolarized.

We are grateful to the referee for critical comments which
helped to qualitatively improve the paper. We thank Dr.
V. Bommier for providing the programs to compute the
Gauss–Legendre angle quadratures and the angle-dependent
type-III function.
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