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Ba+ quadrupole polarizabilities: Theory versus experiment
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Three different measurements have been reported for the ground-state quadrupole polarizability in singly
ionized barium (Ba+) which disagree with each other. Our calculation of this quantity using the relativistic
coupled-cluster method disagrees with two of the experimental values and is within the error bars of the other.
We discuss the issues related to the accuracy of our calculations and emphasize the need for further experiments
to measure the quadrupole polarizability for this state and/or the 5D states.
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I. INTRODUCTION

High-precision studies of polarizabilities of atomic systems
are of interest in a number of different problems in physics
[1–8]. A wide variety of methods have been used to calcu-
late the polarizabilities of these systems [7–9]. Calculations
of polarizabilities depend on the matrix elements between
different atomic states and the excitation energies between
them. Therefore, the accuracies of these calculations depend
on the uncertainties in both quantities. In general, it is very
challenging to minimize these uncertainties. However, in
a sum-over-states approach [10,11], the major uncertainties
in evaluating the polarizabilities can be reduced by using
the experimental energies. Furthermore, the accuracies of
the matrix elements can also be improved by matching the
results of the lifetimes and branching ratios of atomic states
from sophisticated many-body calculations and high-precision
measurements. For cases where the experimental results are
not sufficiently accurate or if all the available measured
results are not in agreement, it is not possible to test the
accuracies of the ab initio results. It might be useful in such
situations to employ the sum-over-states approach to evaluate
the polarizabilities.

For the ground-state quadrupole polarizability in Ba+, the
available experimental results [12–14] are not in agreement
with each other or with the calculations that are reported in
this work. Investigation of various properties using relativistic
many-body methods for high-precision studies in this ion is
useful in the context of a proposed parity-nonconservation
experiment [15,16], searching for the nuclear anapole moment
[17], estimation of the uncertainties for a proposed optical
clock [18], determination of the nuclear octuple moment [19],
etc. In this paper, we report the results of our calculations of
the matrix elements between different atomic states of Ba+
using the relativistic coupled-cluster (RCC) method. We also
intend to test the accuracies of some of the important matrix
elements by using them to estimate the lifetimes of the 5D

states and comparing with their corresponding measurements.
Before presenting our results, we define the quadrupole po-

larizability for a general atomic state in the following section.
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We give a brief description of the method of calculations of
the wave functions and the matrix elements in Sec. III and then
present our calculated results and discussions in Sec. IV, after
which we make our concluding remarks.

II. THEORY

The potential energy of an atom in the presence of a static
electric field is given by (for example, see [7])

V (r) = −piEi − 1

6
Qij∂iEj + · · · = e

∑
i

Ei r
iPi(cos θ ), (1)

where pi and Qij are the components of the electric dipole and
quadrupole operators, respectively, and Ei and Pi(cos θ ) are the
applied electric field and Legendre polynomial, respectively,
with component i. The quadrupole polarizability of an atomic
state |�n〉 is related to the energy shift by the equation [20,21]

δEn(E) = − 1
8αn

2E2, (2)

where αn
2 is known as the quadrupole polarizability of the state

|�n〉, which is defined as

αn
2 = −2

∑
m�=n

|〈�n|Q|�m〉|2
Em − En

, (3)

and Q = ∑
q is the total electric quadrupole operator whose

single-particle reduced matrix element is given by

〈κf ||q||κi〉 = 〈κf ||C(2)||κi〉
×

∫ ∞

0
dr r2 [Pf (r)Pi(r)+Qf (r)Qi(r)],

(4)

where P (r) and Q(r) represent the radial parts of the large
and small components of the single-particle Dirac orbitals,
respectively. The reduced Racah coefficients are given by

〈κf || C(k) || κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1)

×
(

jf k ji

1/2 0 −1/2

)
π (lκf

,k,lκi
), (5)
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with

π (l,m,l′) =
{

1 for l + m + l′ = even,

0 otherwise.
(6)

III. METHOD OF CALCULATIONS

In the present study, the atomic states of Ba+ that we have
considered have closed-shell cores and a valence electron v.
We adopt a two-step procedure to calculate the wave functions
for these states in the Fock space representation: First, the
Dirac-Fock (DF) wave function for the common closed-shell
core [5p6] (denoted by |	0〉) is calculated. In the next step,
we append a corresponding valence orbital v to obtain the
new DF wave function for the new configuration (denoted by
|	v〉 = a†

v|	0〉). The atomic state for the new configuration is
expressed using the RCC ansatz as

|�v〉 = eT {1 + Sv}|	v〉, (7)

where T and Sv are the excitation operators that take into
account correlation effects arising from the core and valence
electrons, respectively. We consider only the singly and
doubly excited configurations from the DF wave functions
by approximating the T and Sv operators as

T = T1 + T2, Sv = S1v + S2v. (8)

The above approximation is known as the coupled-cluster
singles and doubles (CCSD) method. Also, we construct
triple-excitation configurations from |	v〉 perturbatively in the
spirit of the CCSD with partially triple excitations [CCSD(T)]
approach [9,16,22–26].

The amplitudes for both the T and Sv operators are
determined using the following equations:〈

	K
0

∣∣{ĤNeT }|	0〉 = δ0,K
Ecorr (9)

and〈
	K

v

∣∣{ĤNeT }{1 + Sv}|	v〉 = 〈
	K

v

∣∣1 + Sv|	v〉
× 〈	v|{ĤNeT }{1 + Sv}|	v〉

= [δv,K + 〈	K
v |Sv|	v〉]
Eatt

v ,

(10)

respectively. Here K = 1,2, . . . represents the singly, doubly,
etc., excited configurations with respect to their corresponding
reference states, ĤNeT denotes the connected terms of the
normal-order Dirac-Coulomb (DC) Hamiltonian HN with the
T operators, and 
Ecorr and 
Eatt

v are the correlation energies
for the closed-core and attachment energies of the valence
electron v, respectively.

We evaluate the scalar polarizabilities by expressing them
as the sum of three contributions:

αv
2 = αv

2 (c) + αv
2 (cv) + αv

2 (v), (11)

where αv
q (c) takes into account the contributions of the core

orbitals and αv
q (cv) and αv

q (v) are the core-valence and valence
contributions, respectively. In terms of the reduced matrix

elements, the expressions of these parts are given by

αv
2 (c) = −2

5

∑
c,p

|〈Jp||Q||Jc〉|2
Ec − Ep

, (12)

αv
2 (cv) = − 2

5(2Jv + 1)

∑
c

|〈Jv||Q||Jc〉|2
Ec − Ev

, (13)

and

αv
2 (v) = − 2

5(2Jv + 1)

∑
m�=v

|〈Jv||Q||Jm〉|2
Em − Ev

, (14)

where 〈Jp||Q||Jc〉 are the reduced matrix elements between
the atomic states with angular momenta Jp and Jc. αv

2 (c) and
αv

2 (cv) have been calculated using the third-order many-body
perturbation theory [MBPT(3) method] from the expression

αn
2 = 〈�n|Q

∣∣�(1)
n

〉
, (15)

where |�(1)
n 〉 is like a first-order perturbed wave function and it

is obtained by solving the following inhomogeneous equation:

(H − En)
∣∣�(1)

n

〉 = (
E(1)

n − Q
)|�n〉, (16)

with E(1)
n = 〈�n|Q|�n〉, which is similar to the first-order

perturbation equation. It should be noted that unlike for the
dipole operator [9,27], E(1)

n results are finite for the quadrupole
operator and correspond to the quadrupole moments of the
respective states |�n〉.

Contributions from αv
2 (v) were determined by calculating

important intermediate states explicitly using the CCSD(T)
method. The reduced matrix elements between different states
were computed using the following expression:

〈Jf ||Q||Ji〉 = 〈Jf ||{1 + S
†
f }Q{1 + Si}||Ji〉√
NfNi

, (17)

where Q = eT †
QeT and Nv = 〈	v|eT †

eT + S†
ve

T †
eT Sv|	v〉

involve two nontruncating series in the above expression.
The details of the calculations of these terms are discussed
elsewhere [9,16,22,23].

IV. RESULTS AND DISCUSSIONS

Below we present the quadrupole polarizabilities for the
ground and the first two excited D states in Ba+. We have
used the experimental energies from the National Institute of
Science and Technology (NIST) database [28] in the sum-
over-states approach to evaluate the major contributions to the
quadrupole polarizabilities, which are the valence correlation
effects. The main purpose of doing this is, as stated in
Sec. I, to minimize the uncertainties in the calculated results so
that we shall be able to compare them meaningfully with the
available experimental results. Contributions from the higher
excited states that cannot be accounted for by the valence
correlation in the sum-over-states approach are evaluated using
the MBPT(3) method since their contributions are typically
smaller. The uncertainties in these results are estimated by
scaling results obtained using this method with the CCSD(T)
calculations.

In Table I, we present the results of our quadrupole
polarizability calculations of the ground state of Ba+. It is clear
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TABLE I. The E2 matrix elements and the ground-state
quadrupole polarizability in Ba+ (in a.u.) Results are given up to
significant digits. Possible uncertainties in the results are given in
parentheses.

Transition Amplitude αE2

α6s
2 (v)

6s1/2 → 5d3/2 12.76(5) 1466(11)
6d3/2 16.58(12) 263(4)
7d3/2 5.727(7) 24.07(6)
8d3/2 4.036(5) 10.72(3)
5d5/2 15.99(8) 1978(20)
6d5/2 19.99(20) 380(8)
7d5/2 7.024(9) 36.1(1)
8d5/2 5.022(5) 16.59(3)

α6s
2 (c) 46(2)

α6s
2 (cv) −0.001(0)

α6s
2 (tail) 50(10)

α6s
2 (total) 4270(27)

Experiment [12] 2050(100)
Experiment [13] 2462(361)
Experiment [14] 4420(250)
Theory [29] 4091.5
Theory [30] 4182(34)
Theory [31] 4821

from Table I that the dominant contributions (approximately
80%) come from the 5D states. Thus the accuracy of the
ground-state quadrupole polarizability calculation depends
primarily on the accurate determination of the E2 matrix
elements of the 6S1/2 → 5D3/2 and 6S1/2 → 5D5/2 transi-
tions. These matrix elements were also calculated by us earlier
using the same CCSD(T) method but with different basis
functions [16,32], and all the results are in good agreement.
There are also other calculations available for these matrix
elements using different variants of the RCC methods and
basis functions [29,30,33,34]; all the calculated results seem
to be in reasonable agreement with each other. Moreover, the
accuracies of these matrix elements can be verified by using
them to estimate the lifetimes of the 5D states and comparing
them with the measurements as stated in the Introduction.
Possible transition channels from the 5D3/2 state to the ground
state are due to the M1 and E2 multipoles. As we have
shown in our earlier work [32], the M1 transition probability
is very small in this case, and its contribution to the lifetime
of the 5D3/2 state is negligible. Therefore, neglecting the M1
contribution and using our calculated E2 matrix element of
the 6S1/2 → 5D3/2 transition, we obtain the lifetime of the
5D3/2 state as 79.8(6) s. The measured values are 79.8(4.6) s
[35] and 89.4(15.6) s [36]. Our result is in good agreement
with the first experimental result and is within the error bars
of the second result. To calculate the lifetime of the 5D5/2

state, it is necessary to take into account all the M1 and
E2 transition probabilities from this state to the 6S1/2 and
5D3/2 states. We have also shown in Ref. [32] that only the
E2 and M1 transition probabilities of the 5D5/2 → 6S1/2 and
5D5/2 → 5D3/2 transitions, respectively, are significant in the
determination the lifetime of the 5D5/2 state. In the present

work, we have calculated the above M1 transition amplitude
to be 1.544(1) a.u., which is in agreement with the result
reported in Ref. [32]. Using this value we find the lifetime of
the 5D5/2 state to be 29.8(3) s with an 84% branching ratio
to the 5D5/2 → 6S1/2 transition. This is also in agreement
with the experimental results, which are reported as 34.5(3.5)
s [35], 31.6(4.6) s [36], and 32(2) s [37]. We have used the
experimental wavelengths to determine the lifetimes of the
5D states in order to verify the accuracies of the calculated
E2 matrix elements. This analysis suggests that our calculated
E2 matrix elements are accurate to within a few percent, and
therefore they can be considered for high-precision studies of
the quadrupole polarizabilities of Ba+.

The next significant contributions to the ground-state
quadrupole polarizability come from the 6D states. It is
difficult to estimate the accuracies of the E2 matrix elements
of the 6S1/2 → 6D3/2 and 6S1/2 → 6D5/2 transitions from
the measured lifetimes of the 6D states because of their
negligible roles in the theoretical determination of these
lifetimes. Also, the contributions from the higher excited
states (tail) and core correlations to the final result of the
quadrupole polarizability of the ground state in Ba+ are
non-negligible. A suitable method to test the validity of all
these contributions is to compare the final calculated result
with the available measurements. The reported experimental
results for the ground-state quadrupole polarizability of Ba+
are 2050(100) a.u. [12], 2462(361) a.u. [13], and 4420(250)
a.u. [14]. The first two results agree with each other, but
they are completely in disagreement with the latest result. All
the reported experimental results have relatively large error
bars. Two of these experimental results are just half of our
calculated result. In such a situation, it will not be possible
to test the accuracies of the many-body methods that have
been used to perform the calculations as well as those that
are are likely to be developed in the ab initio framework
to calculate these quantities. Also, the above experimental
techniques could single out the contributions from the 5D

states to the ground-state quadrupole polarizability, and their
values have been reported as 1562(93) a.u. [38], 2050(100)
a.u. [12], 1828(88) a.u. [13], and 1524(8) a.u. [14]. On the other
hand, using the E2 matrix elements of the 6S1/2 → 5D3/2

and 6S1/2 → 5D5/2 transitions, whose accuracies have been
discussed above, we obtain the combined contributions of
the 5D states to the ground-state quadrupole polarizability
in Ba+ as 3444(23) a.u. with individual contributions as
1466(11) and 1978(20) a.u. from the 5D3/2 and 5D5/2 states,
respectively. It therefore appears that the extracted values
of these contributions of the 5D states to the ground-state
quadrupole polarizabilities in the above experimental analysis
may not be the contributions from both the 5D states, but
rather from either the 5D3/2 or the 5D5/2 state individually in
the different experiments.

To the best of our knowledge, three calculations of the
ground-state quadrupole polarizability in Ba+ have been
carried out, yielding 4091.5 a.u. [29], 4182(34) a.u. [30],
and 4821 a.u. [31]. All these results are in agreement with
our calculation; the first two are obtained by the linearized
all order singles, doubles and partial triples (SDpT) RCC
method, in contrast to our nonlinear approach. The two results
differ from each other by about 2%, even though the same
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SDpT method was employed in the two cases, and they are
at the lower limit of the latest experimental result, 4420(250)
a.u. Their calculated results are slightly lower than our result
of 4270(27) a.u., and also, they do not overlap within their
respective predicted uncertainties. The main reason for the
difference between the SDpT method and our results is
that the calculated values of the E2 matrix elements of the
6S1/2 → 5D3/2 and 6S1/2 → 5D5/2 transitions for the two
cases are different. It is necessary to emphasize that the
precision of the theoretical determination of the lifetimes of
the 5D states depends critically on the accuracies of these
matrix elements [29,30,32–34]. A precise measurement of the
quadrupole polarizability of the ground state in Ba+ could test
the accuracies of these E2 matrix elements that are calculated
by different many-body methods. A third calculation of the
ground-state quadrupole polarizability has reported a result
of 4821 a.u. [31] using rather simple wave functions based
on the asymptotic behavior and the binding energy of the
valence electron, in contrast to other calculations which are
based on all order perturbative methods in the RCC framework.
Nevertheless, all the calculated results suggest that the ground-
state quadrupole polarizability in Ba+ is approximately 4200
a.u., and all the E2 matrix elements of the 6S1/2 → 5D3/2 and
6S1/2 → 5D5/2 transitions are in reasonable agreement with
each other. In view of the discrepancies between the calculated
and experimental results as well as among the individual values
of the latter, it would indeed be desirable to perform precise
measurements of the quadrupole polarizability of the ground
state of Ba+.

An alternative approach to resolve this problem would be
to measure the scalar quadrupole polarizabilities of the 5D

states with high precision and attempt to identify the individual
contribution of the 6S state, perhaps in a manner similar to the
method used in obtaining the contributions of the 5D states
to the quadrupole polarizability of the ground state. If that

TABLE II. The quadrupole polarizabilitiy of the 5D3/2 state of
Ba+ (in a.u.). Uncertainties are given in parentheses.

Transition Amplitude αE2

α
5d3/2
2 (v)

5d3/2 → 6s1/2 12.76(5) −733(6)
7s1/2 4.882(5) 13.96(3)
8s1/2 1.558(2) 1.0(2)
9s1/2 1.360(1) 0.668(2)
6d3/2 8.36(4) 37.3(5)
7d3/2 3.021(3) 3.65(1)
8d3/2 2.183(2) 1.69(1)
5d5/2 6.83(2) 1278(7)
6d5/2 5.349(2) 15.21(1)
7d5/2 1.978(2) 1.56(1)
8d5/2 1.431(2) 0.727(3)
5g7/2 8.45(8) 26.9(5)
6g7/2 8.63(9) 25.7(5)

α
5d3/2
2 (c) 46(2)

α
5d3/2
2 (cv) −0.49(3)

α
5d3/2
2 (tail) 116(30)

α
5d3/2
2 (total) 835(32)

TABLE III. The quadrupole polarizability of the 5D5/2 state in
Ba+ (in a.u.). Estimated uncertainties for the results are given in
parentheses.

Transition Amplitude αE2

α
5d5/2
2 (v)

5d5/2 → 6s1/2 15.99(8) −659(6)
7s1/2 6.409(7) 16.39(3)
8s1/2 1.992(2) 1.109(3)
9s1/2 1.723(2) 0.724(2)
5d3/2 6.83(2) −852(5)
6d3/2 5.754(5) 12.03(3)
7d3/2 2.030(2) 1.114(2)
8d3/2 1.457(2) 0.509(1)
6d5/2 11.26(2) 45.8(2)
7d5/2 4.029(3) 4.38(1)
8d5/2 2.925(3) 2.05(1)
5g7/2 2.96(5) 2.24(8)
6g7/2 3.00(6) 2.1(1)
5g9/2 10.48(8) 28.0(4)
6g9/2 10.62(9) 26.3(5)

α
5d5/2
2 (c) 46(2)

α
5d5/2
2 (cv) −0.48(3)

α
5d5/2
2 (tail) 121(35)

α
5d5/2
2 (total) −1201(36)

could be achieved, then it would be possible to extract the
E2 matrix elements of the 6S1/2 → 5D3/2 and 6S1/2 → 5D5/2

transitions. The advantages of measuring the scalar quadrupole
polarizabilities of the 5D states in addition to the ground state
could be of twofold: (i) The core-correlation effects, which
are one of the significant contributions and are the same for
the states that we have considered, can be ignored in the
estimation of the accuracies of the E2 matrix elements. (ii) By
combining the quadrupole polarizabilities with the lifetimes
of the 5D states, it would be possible to extract the E2
matrix elements of the above two transitions. For this purpose,
we also calculate the quadrupole polarizabilities of the 5D

states.
In Table II, we present the scalar quadrupole polarizability

of the 5D3/2 state. The largest contribution to this quantity
comes from its fine-structure partner followed by the 6S

state, but with opposite sign, resulting in a strong cancellation
between them. The other significant contribution is from the
higher excited g states (given as tail), which are not taken into
account explicitly in the sum-over-states approach. Also, we
find the trend of the contributions to the 5D5/2-state scalar
quadrupole polarizability, given in Table III, is similar to those
for the 5D3/2 state, but the contributions from this state and the
6S state have same sign. The contributions from the high-lying
g states are significant, and it would be appropriate to use a
method that implicitly takes all possible intermediate states
into account, perhaps similar to Ref. [39], for an accurate
evaluation of the scalar quadrupole polarizabilities of the 5D

states. Nonetheless, the present study captures several classes
of important correlation effects, and it will be useful in guiding
experiments on quadrupole polarizabilities in Ba+.

022506-4



Ba+ QUADRUPOLE POLARIZABILITIES: THEORY . . . PHYSICAL REVIEW A 86, 022506 (2012)

V. CONCLUSION

We have carried out a detailed analysis of the calculated and
experimental results of the reported ground-state quadrupole
polarizability in Ba+ and highlighted the disagreement be-
tween the different studies. The reported experimental results
are not reliable enough to test the validity of the calculated
results. On the basis of different physical considerations,
we propose new theoretical and experimental studies of
the quadrupole polarizabilities of the 5D states to test the
accuracies of the E2 matrix elements between the ground

state and the 5D states and the quadrupole polarizability of
the ground state. We have also presented the results of our
calculations for the quadrupole polarizability of the 5D states
in Ba+ using the E2 transition amplitudes obtained from our
calculations.
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