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Equilibrium structures in partially ionized rotating plasmas
within Hall magnetohydrodynamics
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The formation of equilibrium structures in partially ionized rotating plasmas, consisting of electrons,
ions, and neutral molecules, including the Hall effect, is studied in order to diagnose the possible
velocity and the magnetic field configurations in a self-consistent manner. A few simple examples
show that the linear and the nonlinear force-free magnetic configurations along with essentially
nonlinear Beltrami flow field seem to be the general features of plasmas in the special case of the
Keplerian rotation relevant for astrophysical plasmas. Thus rotation along with axial bipolar flows
emerges as a natural pattern in gravitationally controlled magnetohydrodynamic systems. However,
the equilibrium conditions permit more general flow and the magnetic field profiles that can perhaps
be fully explored numerically. A special class of equilibria with unit magnetic Prandtl number and
equal values of the fractional ion mass density �=�i /�n and the Hall parameter �=�i /L exists where
�’s are the uniform mass densities, �i is the ion inertial scale, and L is the scale of the equilibrium
structure. An approximate scaling law between the ionization fraction and the scale of the structure
is found. Further by expressing the not so well known ionization fraction in terms of the temperature
of the system, assuming thermal equilibrium, relationships among the extensive parameters such as
the scale, the neutral particle density, the flow velocity, the temperature, and the magnetic field of
the equilibrium structure can be determined. There seems to be a good overlap between the Hall and
the thermal equilibria. The validity of the neglect of the ion dynamics is discussed.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2345176�
I. INTRODUCTION

The study of plasmas with flows is as important for the
laboratory plasmas1–4 as it is for the space and astrophysical
plasmas.5–8 The flows are often associated with convective
processes and or large scale atmospheric circulation. Plasmas
in a gravitational field acquire the Keplerian rotation profile
along with the additional possibility of the outflows in the
form of jets. The interrelation of the flow and the magnetic
field is of the paramount importance in the stability and the
transport processes of these plasmas. The flow field in astro-
physical plasmas such as the accretion disks is predomi-
nantly determined by the gravitational potential of the central
object but an equivalent obvious source and form of the
magnetic field does not exist, notwithstanding the fact that
the magnetic field is absolutely necessary to account for the
whole gamut of the observed phenomena such as the jets and
the polarized radiation. There are some indicators for the
permissible magnitude of the magnetic field such as the eq-
uipartition of energy, however, the choice of its configuration
is often a matter of convenience. In the weakly ionized plas-
mas found around young stars and star forming regions, non-
ideal effects such as the Hall effect and the ambipolar diffu-
sion become important contributors.9,10 In this paper we
investigate the coupled equilibria of the incompressible flow
and the magnetic field of partially ionized differentially ro-
tating plasmas with the Keplerian flows as the backdrop,
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including only the Hall effect as it operates in a density re-
gime that is different from that in which the ambipolar dif-
fusion dominates. The Hall effect introduces the characteris-
tic ion-inertial length scale �i in an otherwise scale-free ideal
magnetohydrodynamic �MHD� system. In Sec. II we derive
the equilibrium equations describing the velocity and the
magnetic field profiles along with the Bernoulli relation for
the pressure profile. A few instructive examples of the Hall
equilibrium are given in Sec. III. In Sec. IV we show that the
equality of the two small parameters, �1� �=�i /L and �2� the
fractional ion mass density �=�i /�n, produces a special case
of the equilibrium with a unit magnetic Prandtl number.11 It
turns out to be a case of special astrophysical relevance.
Since it is rather difficult to estimate fractional ionization, we
replace its measurement with the temperature, assuming ther-
mal equilibrium. Brief comments on the thermal equilibrium
and its relation with the Hall equilibrium as well as the jus-
tification of the neglect of the ion dynamics in protoplan-
etary, protostellar, and dwarf novae disks are presented in
Secs. V and VI, respectively. We end the paper with the
conclusion.

II. HALL MHD OF PARTIALLY IONIZED PLASMA

We take the three component partially ionized plasma
consisting of electrons �e�, singly ionized ions �i� of uniform
mass density �i, and neutral particles �n� of uniform mass
density �n. The equation of motion of the electrons can be

written as
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mene� �Ve

�t
+ �Ve · ��Ve� = − �pe − ene�E +

Ve � B

c
�

− �en�e�Ve − Vn� , �1�

where �en is the electron-neutral collision frequency. For in-
ertialess electrons �me=0�, the electric field E is found to be

E = −
Ve � B

c
−

�pe

ene
−

�en�e�Ve − Vn�
ene

. �2�

This gives us Ohm’s law. For �= ��i /�n��1 the ion dynam-
ics can be ignored. The ion force balance then becomes

0 = − �pi + eni�E +
Vi � B

c
� − �in�i�Vi − Vn� , �3�

where �in is the ion-neutral collision frequency and the ion-
electron collisions have been neglected for the low density
ionized component. Substituting for E from Eq. �2�, we find
the relative velocity between the ions and the neutrals:

Vn − Vi =
��pi + pe�

�in�i
−

J � B

c�in�i
, �4�

J = − ene�Ve − Vi� . �5�

The equation of motion of the neutral fluid is

�n� �Vn

�t
+ �Vn · ��Vn� = − �pn − �ni�n�Vn − Vi�

− �n � �g + ��2Vn, �6�

where �g is the gravitational potential and � is the kinematic
viscosity. Substituting from Eq. �4� and using �in�i=�ni�n,
we find

�n� �Vn

�t
+ �Vn · ��Vn� = − �p +

J � B

c
− �n � �g

+ ��2Vn, �7�

where p= �pn+ pi+ pe� is the total thermal pressure. Observe
that the neutral fluid is subjected to the Lorentz force as a
result of the strong ion-neutral coupling due to their colli-
sions. The Faraday law of induction, on substituting for the
electric field from Eq. �2�, and the relative velocity of the ion
and the neutral fluid from Eq. �4�, becomes

�B

�t
= � � ��Vn −

J

ene
+

J � B

c�in�i
−

��pe + pi�
�in�i

� � B�
+ 	�2B , �8�

where 	=me�enc2 /4
e2ne is the electrical resistivity pre-
dominantly due to electron-neutral collisions. One can easily
identify the Hall term, �J /ene�, and the ambipolar diffusion
term, �J�B�. The Hall term is much larger than the ambi-
polar term for large neutral particle densities or for �in��ci,
where �ci is the ion cyclotron frequency. We retain only the
Hall effect and the resistivity as the nonideal effects in the
induction equation. In this system the magnetic field is not
frozen to any of the fluids and the ions and the neutrals move
together. Equations �7� and �8� retaining only the Hall effect

along with the mass conservation
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� · V = 0 �9�

form the basis of our investigation. We write the equations in
a dimensionless form. The magnetic and the velocity fields
are respectively normalized by a uniform field B0 and the
Alfvén speed VA=B0 /	4
�i. The time and the space vari-
ables are normalized, respectively, with the Alfvén travel
time tA=L /VA, and a scale length L. The gravitational poten-
tial is normalized by VA

2 . The resistivity 	 and the kinematic
viscosity � are normalized by �LVA�. In these units, the fol-
lowing dimensionless equations,

�B

�t
= � � ��Vn − � � � B� � B� + 	�2B , �10�

��� � Vn�
�t

= � � �Vn � �� � Vn� − �B � �� � B�

− � � � �� � Vn�� , �11�

constitute the dissipative Hall MHD in the incompressible
limit. Here �=�i /L=c /�piL, where �pi= �4
e2ni /mi�1/2 is
the ion plasma frequency and �i is the ion inertial length.
Equation �11� has been obtained by taking the curl of the
equation of motion of the neutral fluid. Adding Eqs. �10� and
�11� begets

��B + � � Vn�
�t

= � � �Vn � �B + � � Vn� − �� − ��B

� �� � B� − � � � �� � Vn�

− 	 � � B� . �12�

Substitution of the equilibrium conditions �� /�t=0 in Eqs.
�10� and �12�� in the stationary �� /�t=0� force balance of the
neutral fluid �Eq. �7�� furnishes the generalized Bernoulli re-
lation �in the dimensionless form�

��Vn
2/2 + 0.5��0 + �g − 
2 + 
1� = 0, �13�

where �0=8
p /B0
2 and 
 j are the potentials corresponding to

the energy density of the system. Thus the equilibrium flows
and the fields �� /�t=0� must be determined from Eqs.
�10�–�13�.

III. FLOWS AND FIELDS IN THE HALL EQUILIBRIUM

The general Hall-equilibrium velocity and the magnetic
fields are to be determined from

�Vn − � � � B� � B − 	 � � B = �
1, �14�

�Vn � �B + � � Vn� − �� − ��B � �� � B�

− � � � �� � Vn� − 	 � � B� = �
2, �15�

and

��Vn
2/2 + 0.5��0 + �g� = �
2 − �
1

= Vn � �� � Vn� − �B � �� � B�
− � � � �� � Vn� . �16�
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We delineate some illustrative and instructive solutions
of these equations with the Keplerian motion as an essential
component. We first begin with the one-dimensional, essen-
tially radial equilibrium for ��=0�.

1. For the case of the uniform axial magnetic field
B=Bzez, often assumed as an initial condition for various
investigations, we find that Eq. �16� becomes

��Vn
2/2 + 0.5��0 + �g� = Vn � �� � Vn� , �17�

which, for uniform pressure and the gravitational potential
�g=−GM /r, gives a nonlinear Beltrami flow

� � Vn = ��r�Vn, �18�

��r� = ±
1

2r
, �19�

with

Vnr = 0,

Vn� = �GM/r�1/2,

Vnz = ± �GM/r�1/2,

where M is the mass generating the gravitational potential.
Thus the equilibrium consists of an axial bipolar flow along
with the Keplerian rotation for a uniform axial magnetic field
and pressure.

2. It is easy to see that a force-free magnetic field con-
figuration,

� � B = �bB , �20�

Br = 0,

B� = B0J1��br� ,

Bz = B0J0��br� ,

is also consistent with the flow field given in Eq. �18�. Here
J’s are the Bessel functions.

3. For Vn= 	�B, an equilibrium with sub-Alfvénic flows
obtains. The Bernoulli relation, Eq. �16�, gives

Vnr = 0,

Vn� = �GM/r�1/2, �21�

Vnz = Vn��1 −
VnT

2

V�
2 �1/2

,

and the corresponding magnetic field is found to be

Br = 0,

B� = �4
�nGM/r�1/2, �22�

Bz = B��1 −
VnT

2

V�
2 �1/2

,

where VnT=2KBT /mn is the thermal speed of the neutral

particle. Equation �21� shows that the axial flow diminishes
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at higher temperatures and so does the axial magnetic field
�Eq. �22��. We can define the plasma �,

� =
8
nnKBT

B�
2 + Bz

2 =
T

2Tc − T
, �23�

where Tc�r�=GMmn /2KBr. The plasma � of the equilibrium
is, therefore, much less than 1 for T�Tc, and increases as T
approaches Tc, becoming 1 at T=Tc. The axial velocity and
the axial magnetic field vanish at T=Tc. The Keplerian ve-
locity Vn�= 	2cs, where cs is the isothermal sound speed. The
equilibrium ceases to exist for T�Tc as the axial compo-
nents become imaginary quantities. The incompressibility
condition also approaches its limit of validity. Thus Tc rep-
resents a critical temperature beyond which this equilibrium
does not exist. Since the Bernoulli relation Eq. �16� for this
case is symmetric in the axial and the azimuthal components
of the velocity, one can also envisage an equilibrium with
Vn� and B� replaced by Vnz and Bz, respectively. In this case
the hotter plasmas have lower angular momenta and the tran-
sition at T=Tc is to a pure axial flow.

4. Let us consider a case of viscous equilibrium again
with Vn= 	�B and ��0. The Bernoulli relation Eq. �16�
becomes

��Vn
2

2
+ 0.5��0 + �g� = ��2Vn, �24�

with a possible solution

Vnr = −
�

r
,

Vn� = const, �25�

Vnz = const,

d

dr
�0.5��0 + �g� = 0. �26�

The radial inflow in the presence of viscosity emerges as an
essential component of the flow. This equilibrium exists for a
plasma with angular rotation speed inversely proportional to
the radial coordinate r. This case is reminiscent of the flow
exhibited by the flat rotation curves of the galaxies.

5. Consider the nonviscous equilibrium for �B+�
�Vn�=0 for which �
2=0 and the Bernoulli relation be-
comes

��Vn
2

2
+ 0.5��0 + �g� = Vn � �� � Vn�

+ ��� � �� � Vn�� � �� � Vn� .

�27�

For the nonlinear Beltrami flow ��Vn=��r�Vn, Eq. �18�,
the corresponding magnetic field and the pressure profile are
found to be
B = − ��r�Vn, �28�
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d

dr
�0.5��0� = − ��g

d�2

dr
. �29�

6. Another interesting case is obtained for Vn=�� �B,
�
1=0=�
2, and �=	=0. From Eqs. �10� and �11� we get

�2�2B − �B = a � � B , �30�

where a is a constant. The solution is a superposition of
fields at two different spatial scales ��+

−1 ,�−
−1� with

B = c+B+ + c−B−, �31�

� � B+ = �+B+, �32�

� � B− = �−B−, �33�

where c’s are constants and

�± = −
a

2�2 ±
1

2�2 	 �a2 − 4��2� . �34�

This is also known as the double Beltrami solution in
which the Hall effect removes the degeneracy of the force-
free or the so-called Taylor state. We have given a few ex-
amples of the possible equilibrium structures that may be
obtained in some of the astrophysical and laboratory plas-
mas.

IV. A SPECIAL CASE

Let us consider a special case for which �=� and �=	,
Eqs. �10� and �12� have an identical form of the type

�� j

�t
= � � �U j � � j − � j � � � j� , �35�

where j=1,2 and

�1 = B, U1 = Vn − � � � B, �1 = 	 , �36�

�2 = B + � � Vn, U2 = Vn, �2 = � . �37�

Note that the two “vorticities,” �1 and �2, differ by the
vorticity ���Vn� of the neutral fluid and the two “veloci-
ties” U1 and U2 differ by the Hall velocity VH=−J /ene.
Equation �37� exhibits that the vorticity ��Vn and the mag-
netic field B share the same status and the “field” � j is
frozen to the “flow” U j in the absence of dissipation. The
equilibria of the system contained in Eq. �35� can be de-
scribed as

U j � � j − � j � � � j = �
 j �38�

or

�Vn − � � � B� � B − � � � B = �
1 �39�

and

Vn � �B + � � Vn� − � � � �B + � � Vn� = �
2. �40�

Equations �39� and �40� describe the dissipative equilibrium.
The condition �=� determines the scale of the equilibrium
structure for a given neutral fluid density and the ionization

fraction in the form of a scaling law given as
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L 
 n14
−1/2� ni

nn
�−3/2

cm, �41�

where an average ion mass mi=30mp and the neutral particle
mass mn=2.33mp have been used with mp as the mass of a
proton and nn=n14�1014 cm−3, representative values for the
partially ionized plasmas in protoplanetary disks. Thus for a
typical value of the ionization fraction, 10−10, the scale L of
the equilibrium structure turns out to be of the order of 100
a.u., a typical size indeed. For the dwarf novae disks12 with
neutral density n14=4�103 and the ionization fraction
�ni /nn�=1.3�10−8, the scale L turns out to be 1010 cm,
which is again of the expected magnitude.

In order to examine the second condition of the equality
of the kinematic viscosity � and the electrical resistivity 	 or
the unit magnetic Prandtl number, we assume that the elec-
trical resistivity is due to the electron-neutral collisions and
is given by

	 = 234�nn/ne�T1/2 cm2 s−1 = 1014T3 cm2 s−1, �42�

where T=T3�103 K. The kinematic viscosity is given by

� = 2.2 � 10−16T5/2

�n
cm2 s−1 = 18T3

5/2n14
−1 cm2 s−1. �43�

Thus it seems that the viscosity is far too small to be equal to
the resistivity. We take this as a pointer to the anomalous
viscosity. For the standard model13 of the turbulent viscosity,
�t
�dcsH, where cs is the sound speed, H is the scale
height, and �d is an undetermined multiplier representing the
angular momentum transport efficiency. For cs=2
�105T3 cm s−1 and H=0.1 a.u., we find that �=	 if
�d
5�10−4 for protoplanetary disks. For the dwarf novae
disks with T=3000 K, ne=8.5�1011 cm−3, nn=3.7
�1017 cm−3, cs=3.5�105 cm s−1, H=7.7�107 cm, we find
�d=2�10−4. The dissipative Hall equilibrium, therefore, ap-
pears to be an aftermath of a turbulent state.

V. THERMAL EQUILIBRIUM

We see that the fractional ionization factor �ni /nn� plays
an important role in the Hall equilibrium. Since it is rather
difficult to fix it quantitatively as a host of ionization pro-
cesses may contribute to it, it may be better to replace its
measure by an effective equivalent temperature. Identifying
the net ionization with thermal ionization, assuming thermal
equilibrium, we can use Saha’s ionization equation to relate
the ionization fraction to the temperature as

ni

nn
= 2.4 � 1015T3/2 nNa

ninn
exp�− UNa/KBT� , �44�

where nNa is the number density of neutral atoms
�sodium atoms in astrophysical conditions� and
UNa �=5.2 eV for sodium� is its ionization energy. Using the
equilibrium condition �=�, the scale L of the structure �with
sodium ions� can be related to the temperature as

L = 1.2 � 10−3n14
1/4�n�Na�−2�−3/4T3

−9/8exp�45.15/T3� cm.

�45�
This structure has an ionization fraction of
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ni

nn
= 87n14

−1/2�n�Na�−2�1/2T3
3/4 exp�− 30.1/T3� , �46�

where we have assumed n�Na��nNa/nn=10−2 and other
symbols have their usual meaning. One notices the extreme
sensitivity of the size L for the temperature T. Thus at
T3=1, n14=1, n�Na�−2=1, the scale L turns out to be 3.4
�103 a.u. and the ionization fraction 
7�10−12, character-
istics of the weakly ionized star forming regions. We find
L=51 a.u. with an ionization fraction of 
10−12 at T3=1.1.
For the dwarf novae disks with nn=3.73�1017 cm−3,
T3=1.6, the scale L turns out to be 1010 cm and the ioniza-
tion fraction 
10−8, again very reasonable values.

VI. INCLUSION OF THE ION DYNAMICS

The ion dynamics becomes important as the fractional
ion mass density � increases. The condition for neglecting
the ion dynamics in a partially ionized plasma is that the
electron-neutral collision frequency remains larger than the
electron-ion collision frequency. The electron-neutral colli-
sion frequency �en and the electron-ion collision frequency
�ei are given as14

�en = 8.28 � 10−10nnT1/2 s−1, �47�

�ei = 16niT
−3/2 s−1. �48�

The condition �en��ei gives

ni

nn
� 5 � 10−11T2 = 5 � 10−5T3

2. �49�

Thus � must be smaller than 6.4�10−4 at T3=1, the condi-
tion amply satisfied in the cases considered here. We realize
that as the temperature and therefore the ionization fraction
increases, the scale of the equilibrium structure decreases
and the structure will eventually become unobservable. The
ion-dynamics dominated Hall equilibrium would furnish
structures on the scale of the ion inertial scale, which de-
creases as the ion density increases. Thus the Hall effect may
not be on an observable scale.

VII. CONCLUSION

The Hall effect in weakly ionized rotating plasmas plays
a decisive role in determining the equilibrium flows, mag-
netic fields, and pressure profiles. A variety of velocity and
magnetic field profiles including the so-called double Bel-
trami emerge in the equilibrium. A few examples, although
by no means exhaustive, have been given. The inclusion of
the gravitational potential necessarily leads to an axial flow
along with the Keplerian rotation. This indicates the likely
generation of jet structures. Inward radial flow emerges as an
essential feature of the viscous equilibrium. It is possible,
sometimes, to arrive at the stability characteristics from the
very nature of the equilibrium solution. For example, a linear
force-free magnetic field along with the linear Beltrami flow
represents the minimum energy state and is therefore stable

whereas the nonlinear force-free magnetic field with linear or
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nonlinear Beltrami flow does not represent the minimum en-
ergy state and thus liable to instability. One may observe that
the Keplerian flow along with the axial flow discussed in
cases 1 and 2 is describable by a nonlinear Beltrami flow and
therefore could become unstable. The full implications of the
Bernoulli relation �16� along with the equilibrium conditions
�14� and �15� can be grasped only with numerical evaluation,
which we plan to take up immediately.

A special case of equilibrium exists for a structure size
determined from the equality of the Hall parameter � and the
ionization fraction � for a unit value of the magnetic Prandtl
number demanding an anomalous viscosity. The scales, the
ionization fractions, and the temperatures determined for this
special case furnishes an expected range of values for some
of the astrophysical plasmas. In addition, the scaling law
between the spatial scale and the ionization fraction could
provide a good handle on the average characteristics of
weakly ionized plasmas in protoplanetary disks over a range
of physical conditions. The critical state with unit plasma �
represents the end state of the magnetically supported struc-
tures. The thermal equilibrium is found to have a good over-
lap with the Hall equilibrium over a range of temperatures in
the neighborhood of 1000 K.

The neglect of the ion dynamics has been shown to be
valid for protoplanetary, protostellar, and the dwarf novae
disks. Once the ion dynamics takes over, the Hall effect op-
erates on rather microscopic unobservable spatial scales.
Having obtained these equilibria, it goes without saying that
this is where one should begin to explore the much sought
after instabilities. Since a special case of the Hall equilibrium
already demands an anomalous viscosity, the instabilities and
hence the turbulence responsible for producing an anomalous
viscosity may be different from those to which the Hall equi-
librium itself may be subjected. We believe this first attempt
at investigating the new equilibria of the partially ionized
rotating plasmas will prove to be instructive and insightful.
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