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ABSTRACT

The solution of polarized radiative transfer equation with angle-dependent (AD) partial frequency redistribution
(PRD) is a challenging problem. Modeling the observed, linearly polarized strong resonance lines in the solar
spectrum often requires the solution of the AD line transfer problems in one-dimensional or multi-dimensional
(multi-D) geometries. The purpose of this paper is to develop an understanding of the relative importance of the AD
PRD effects and the multi-D transfer effects and particularly their combined influence on the line polarization. This
would help in a quantitative analysis of the second solar spectrum (the linearly polarized spectrum of the Sun). We
consider both non-magnetic and magnetic media. In this paper we reduce the Stokes vector transfer equation to a
simpler form using a Fourier decomposition technique for multi-D media. A fast numerical method is also devised
to solve the concerned multi-D transfer problem. The numerical results are presented for a two-dimensional medium
with a moderate optical thickness (effectively thin) and are computed for a collisionless frequency redistribution.
We show that the AD PRD effects are significant and cannot be ignored in a quantitative fine analysis of the
line polarization. These effects are accentuated by the finite dimensionality of the medium (multi-D transfer). The
presence of magnetic fields (Hanle effect) modifies the impact of these two effects to a considerable extent.
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1. INTRODUCTION

The solution of the polarized line transfer equation with angle-
dependent (AD) partial frequency redistribution (PRD) has
always remained one of the difficult areas in the astrophysical
line formation theory. The difficulty stems from the inextricable
coupling between frequency and angle variables, which are hard
to represent using finite resolution grids. Equally challenging is
the problem of the polarized line radiative transfer (RT) equation
in multi-dimensional (multi-D) media. A lack of formulations
existed that reduce the complexity of multi-D transfer, when
PRD is taken into account. In the first three papers of the
series on multi-D transfer (see Anusha & Nagendra 2011a,
Paper I; Anusha et al. 2011a, Paper II; Anusha & Nagendra
2011b, Paper III), we formulated and solved the transfer problem
using angle-averaged (AA) PRD. The Fourier decomposition
technique for the AD PRD to solve the transfer problem in
one-dimensional (1D) media, including the Hanle effect, was
formulated by Frisch (2009). In Anusha & Nagendra (2011c,
hereafter Paper IV), we extended this technique to handle multi-
D RT with the AD PRD. In this paper we apply the technique
presented in Paper IV to establish several benchmark solutions
of the corresponding line transfer problem. A historical account
of the work on polarized RT with the AD PRD in 1D planar
media and the related topics is given in detail in Table 1 of
Paper IV. Therefore, we do not repeat here.

In Section 2 we present the multi-D polarized RT equation,
expressed in terms of irreducible Fourier coefficients, denoted

by Ĩ (k)
and S̃(k)

, where k is the index of the terms in the
Fourier series expansion of the Stokes vector I and the Stokes
source vector S. Section 3 describes the numerical method of
solving the concerned transfer equation. Section 4 is devoted
to a discussion of the results. Conclusions are presented in
Section 5.

2. POLARIZED TRANSFER EQUATION
IN A MULTI-D MEDIUM

The multi-D transfer equation written in terms of the Stokes
parameters and the relevant expressions for the Stokes source
vectors (for line and continuum) in a two-level atom model with
unpolarized ground level, involving the AD PRD matrices, is
well explained in Section 2 of Paper IV. All these equations
can be expressed in terms of “irreducible spherical tensors”
(see Section 3 of Paper IV). Further, in Section 4 of Paper IV
we developed a decomposition technique to simplify this RT
equation using Fourier series expansions of the AD PRD
functions. Here we describe a variant of the method presented
in Paper IV, which is more useful in practical applications
involving polarized RT in magnetized two-dimensional (2D)
and three-dimensional (3D) atmospheres.

2.1. The Radiative Transfer Equation in Terms
of Irreducible Spherical Tensors

Let I = (I,Q,U )T be the Stokes vector and
S = (SI , SQ, SU )T denote the Stokes source vector (see
Chandrasekhar 1960). We introduce vectors S and I given by

S = (
S0

0 , S2
0 , S

2,x
1 , S

2,y
1 , S

2,x
2 , S

2,y
2

)T
,

I = (
I 0

0 , I 2
0 , I

2,x
1 , I

2,y
1 , I

2,x
2 , I

2,y
2

)T
. (1)

These quantities are related to the Stokes parameters (see, e.g.,
Frisch 2007) through

I (r,�, x) = I 0
0 +

1

2
√

2
(3 cos2 θ − 1)I 2

0

−
√

3 cos θ sin θ
(
I

2,x
1 cos ϕ − I

2,y
1 sin ϕ

)

+

√
3

2
(1 − cos2 θ )

(
I

2,x
2 cos 2ϕ − I

2,y
2 sin 2ϕ

)
, (2)
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Q(r,�, x) = − 3
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−
√
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−
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3

2
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(
I
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,

(3)

U (r,�, x) =
√

3 sin θ
(
I

2,x
1 sin ϕ + I

2,y
1 cos ϕ

)
+

√
3 cos θ

(
I

2,x
2 sin 2ϕ + I

2,y
2 cos 2ϕ

)
. (4)

We note here that the quantities I 0
0 , I 2

0 , I
2,x
1 , I

2,y
1 , I

2,x
2 , and I

2,y
2

also depend on the variables r , � and x (defined below).
For a given ray defined by the direction �, the vectors S and

I satisfy the RT equation (see Section 3 of Paper IV)

− 1

κtot(r, x)
� · ∇I(r,�, x) = [I(r,�, x) − S(r,�, x)].

(5)

It is useful to note that the above equation was referred to as the
“irreducible RT equation” in Paper IV. Indeed, for the AA PRD
problems, the quantities I and S are already in the irreducible
form. But for the AD PRD problems, I and S can further

be reduced to Ĩ (k)
and S̃(k)

using Fourier series expansions.
Here r is the position vector of the point in the medium
with coordinates (x, y, z). The unit vector � = (η, γ, μ) =
(sin θ cos ϕ , sin θ sin ϕ, cos θ ) defines the direction cosines of
the ray with respect to the atmospheric normal (the Z-axis),
where θ and ϕ are the polar and azimuthal angles of the ray.
Total opacity κtot(r, x) is given by

κtot(r, x) = κl(r)φ(x) + κc(r), (6)

where κl is the frequency-averaged line opacity, φ is the Voigt
profile function, and κc is the continuum opacity. Frequency is
measured in reduced units, namely, x = (ν − ν0)/ΔνD , where
ΔνD is the Doppler width.

For a two-level atom model with unpolarized ground level,
S(r,�, x) has contributions from the line and the continuum
sources. It takes the form

S(r,�, x) = pxS l(r,�, x) + (1 − px)SC(r, x), (7)

with
px = κl(r)φ(x)/κtot(r, x). (8)

The line source vector is written as

S l(r,�, x) = G(r) +
1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π
Ŵ {M̂II(B, x, x ′)rII(x, x ′,�,�′)

+ M̂III(B, x, x ′)rIII(x, x ′,�,�′)}Ψ̂(�′)

× I(r,�′, x ′), (9)

with G(r) = (εBν(r), 0, 0, 0, 0, 0)T and the unpolarized con-
tinuum source vector SC(r, x) = (SC(r, x), 0, 0, 0, 0, 0)T . We
assume that SC(r, x) = Bν(r), with Bν(r) being the Planck
function. The thermalization parameter ε = ΓI /(ΓR + ΓI ), with

ΓI and ΓR being the inelastic collision rate and the radiative
de-excitation rate, respectively. The damping parameter is com-
puted using a = aR[1 + (ΓE + ΓI )/ΓR], where aR = ΓR/4πΔνD

and ΓE is the elastic collision rate. The matrix Ψ̂ represents the
reduced phase matrix for the Rayleigh scattering. Its elements
are listed in Appendix D of Paper III. The elements of the matri-
ces M̂II,III(B, x, x ′) for the Hanle effect are derived in Bommier
(1997a, 1997b). The dependence of the matrices M̂II,III(B, x, x ′)
on x and x ′ is related to the definitions of the frequency domains
(see approximation level II of Bommier 1997b). Ŵ is a diagonal
matrix written as

Ŵ = diag{W0,W2,W2,W2,W2,W2}. (10)

Here the weight W0 = 1 and the weight W2 depends on the
line under consideration (see Landi Degl’Innocenti & Landolfi
2004). In this paper we take W2 = 1. rII,III are the AD PRD
functions of Hummer (1962), which depend explicitly on the
scattering angle Θ, defined through cos Θ = � · �′ computed
using

cos Θ = μμ′ +
√

(1 − μ2)(1 − μ′2) cos(ϕ′ − ϕ). (11)

The formal solution of Equation (5) is given by

I(r,�, x) = I(r0,�, x)e−∫ s

s0
κtot(r−(s−s ′)�,x)ds ′

+
∫ s

s0

S(r − (s − s ′)�,�, x)e−∫ s

s′κtot(r−(s−s ′′)�,x)ds ′′

× [κtot(r − (s − s ′)�, x)]ds ′. (12)

The formal solution can also be expressed as

I(r,�, x) = I(r0,�, x)e−τx (r,�)

+
∫ τx (r,�)

0
e−τ ′

x (r ′,�)S(r ′,�, x)dτ ′
x(r ′,�). (13)

Here I(r0,�, x) is the boundary condition imposed at the
boundary point r0 = (x0, y0, z0). The monochromatic optical
depth scale is defined as

τx(r,�) = τx(x, y, z,�) =
∫ s

s0

κtot(r−(s−s ′)�, x) ds ′; (14)

τx(r,�) is the optical thickness from the point r0 to the point r
measured along the ray. In Figure 1 we show the construction of
the vector r ′ = r − (s − s ′)�. The point r ′, tip of the vector r ′,
runs along the ray from the point r0 to the point r as the
variable along the ray varies from s0 to s. In the preceding papers
(I to IV), the figure corresponding to Figure 1 was drawn for a
ray passing through the origin of the coordinate system.

In Paper IV we have shown that using Fourier series ex-
pansions of the AD PRD functions rII,III(x, x ′,�,�′) with re-
spect to the azimuth (ϕ) of the scattered ray, we can transform
Equations (5)–(13) into a simplified set of equations. In the
non-magnetic case, the method described in Paper IV can be
implemented numerically, without any modifications. In the
magnetic case, it becomes necessary to slightly modify that
method to avoid making certain approximations that otherwise
would have to be used (see Section 2.2 for details).
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Figure 1. Definition of the spatial location r and the projected distances (s − s′)� that appear in the 2D formal solution integral (Equation (12)). r0 and r are the
initial and final locations considered in the formal solution integral. The values of the variable along the ray satisfy s0 < s′ < s.

2.2. A Fourier Decomposition Technique
for Domain-based PRD

In the presence of a weak magnetic field B defined by
its strength B and the orientation (θB, χB), the scattering
polarization is modified through the Hanle effect. A general PRD
theory including the Hanle effect was developed in Bommier
(1997a, 1997b). A description of the Hanle effect with the AD
PRD functions is given by the approximation level II described
in Bommier (1997b). In this approximation the frequency space
(x, x ′) is divided into five domains and the functional forms of
the redistribution matrices are different in each of these domains.
We start with the AD redistribution matrix including the Hanle
effect, namely,

R̂(x, x ′,�,�′, B) = Ŵ {M̂II(B, x, x ′)rII(x, x ′,�,�′)

+ M̂III(B, x, x ′)rIII(x, x ′,�,�′)}Ψ̂(�′). (15)

We recall here that the dependence of the matrices M̂II,III on
x and x ′ is related to the definition of the frequency domains.
Here R̂ is a 6 × 6 matrix. The Fourier series expansion of the
functions rII,III(x, x ′,�,�′) is written as

rII,III(x, x ′,�,�′) =
k=∞∑
k=0

(2 − δk0)eikϕ r̃
(k)
II,III(x, x ′, θ,�′),

(16)

with

r̃
(k)
II,III(x, x ′, θ,�′) =

∫ 2π

0

d ϕ

2π
e−ikϕrII,III(x, x ′,�,�′).

(17)

Applying this expansion, we can derive a polarized RT

equation in terms of the Fourier coefficients Ĩ (k)
and S̃(k)

(see
Section 4 of Paper IV for details), namely,

− 1

κtot(r, x)
� · ∇Ĩ (k)

(r,�, x)

= [Ĩ (k)
(r,�, x) − S̃(k)

(r, θ, x)], (18)

where

S(r,�, x) =
k=∞∑
k=0

(2 − δk0){cos(kϕ)Re[S̃(k)
(r, θ, x)]

− sin(kϕ)Im[S̃(k)
(r, θ, x)]} (19)

and

I(r,�, x) =
k=∞∑
k=0

(2 − δk0){cos(kϕ)Re[Ĩ (k)
(r,�, x)]

− sin(kϕ)Im[Ĩ (k)
(r,�, x)]}. (20)

Equation (18) represents the most reduced form of the
polarized RT equation in multi-D geometry with the AD PRD.

Hereafter we refer to Ĩ (k)
and S̃(k)

as “irreducible Fourier
coefficients.” Ĩ (k)

and S̃(k)
are six-dimensional complex vectors

for each value of k. Here

S̃(k)
(r, θ, x) = pxS̃

(k)
l (r, θ, x) + (1 − px)S̃(k)

C (r, x), (21)

with
S̃(k)

C (r, x) = δk0SC(r, x) (22)
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and

S̃(k)
l (r, θ, x) = G̃(k)

(r) +
1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π

ˆ̃
R

(k)
(x, x ′, θ,�′, B)

×
k′=+∞∑
k′=0

eik′ϕ′
(2 − δk′0)Ĩ (k′)

(r,�′, x ′). (23)

Here G̃(k)
(r) = εδk0Bν(r) and

ˆ̃
R

(k)
(x, x ′, θ,�′, B) = Ŵ {M̂II(B, x, x ′)r̃ (k)

II (x, x ′, θ,�′)

+ M̂III(B, x, x ′)r̃ (k)
III (x, x ′, θ,�′)}Ψ̂(�′). (24)

Clearly, in the above equation the matrix ˆ̃
R

(k)
is independent

of the azimuth (ϕ) of the scattered ray. We recall that M̂II,III
matrices have different forms in different frequency domains
(see Bommier 1997b; Nagendra et al. 2002; and Appendix
A of Anusha et al. 2011b). In the approximation level II of
Bommier (1997b) the expressions for the frequency domains
depend on the scattering angle Θ, and hence on � and �′
(because cos Θ = � · �′). Therefore, to be consistent, we must
apply the Fourier series expansions to the functions involving Θ
that appear in the statements defining the AD frequency domains
of Bommier (1997b). This leads to complicated mathematical
forms of the domain statements. To a first approximation one can
keep only the dominant term in the Fourier series (corresponding
to the term with k = 0). This amounts to replacing the AD
frequency domain expressions by their azimuth (ϕ)-averages.
A similar averaging of the domains over the variable (ϕ − ϕ′)
is done in Nagendra & Sampoorna (2011), where the authors
solve the Hanle RT problem with the AD PRD in 1D planar
geometry. These kinds of averaging can lead to loss of some
information on the azimuth (ϕ) dependence of the scattered ray
in the domain expressions. A better and alternative approach
that avoids any averaging of the domains is the following.

Substituting Equation (16) into Equation (15), we can write
the ijth element of the R̂ matrix as

Rij (x, x ′,�,�′, B) =
k=∞∑
k=0

(2 − δk0)eikϕ R̃
(k)
ij (x, x ′, θ,�′, B),

i, j = 1, 2, . . . , 6, (25)

with R̃
(k)
ij being the elements of the matrix ˆ̃

R(k) given by
Equation (24). Through the 2π -periodicity of the redistribu-
tion functions rII,III(x, x ′,�,�′) each element of the R̂ ma-
trix becomes 2π -periodic. Therefore, we can identify that
Equation (25) represents the Fourier series expansion of the
elements Rij of the R̂ matrix, with R̃

(k)
ij being the Fourier

coefficients. Thus, instead of computing ˆ̃
R(k) using

Equation (24), it is advantageous to compute its elements
through the definition of the Fourier coefficients, namely,

R̃
(k)
ij (x, x ′, θ,�′) =

∫ 2π

0

d ϕ

2π
e−ikϕ Wij

× {(MII)ij (B, x, x ′)rII(x, x ′,�,�′)

+ (MIII)ij (B, x, x ′)rIII(x, x ′,�,�′)}. (26)

Here Wij are the elements of the Ŵ matrix and the matrix
elements (M̂II,III)ij are computed using the AD expressions
for the frequency domains as done in Nagendra et al. (2002),
without performing azimuth averaging of the domains.

3. NUMERICAL METHOD OF SOLUTION

A fast iterative method called the preconditioned stabilized
bi-conjugate gradient (Pre-BiCG-STAB) was developed for 2D
transfer with PRD in Paper II. Non-magnetic 2D slabs and
the AA PRD were considered in that paper. An extension to
a magnetized 3D medium with the AA PRD was taken up in
Paper III. In all these papers, the computing algorithm was
written in the n-dimensional Euclidean space of real numbers
R

n. In the present paper, we extend the method to handle the AD
PRD for magnetized 2D media. In this case, it is advantageous
to formulate the computing algorithm in the n-dimensional
complex space C

n. Here n = nk ×np×nθ ×nx ×nY ×nZ , where
nY,Z are the number of grid points in the Y- and Z-directions, and
nx refers to the number of frequency points. nθ is the number
of polar angles (θ ) considered in the problem. np is the number
of polarization components of the irreducible vectors. np = 6
for both non-magnetic and magnetic AD PRD cases. nk is the
number of components retained in the Fourier series expansions
of the AD PRD functions. Based on the studies in Paper IV, we
take nk = 5. Clearly the dimensionality of the problem increases
when we handle the AD PRD in line scattering in comparison
with the AA PRD (see Papers II and III). The numerical results
presented in this paper correspond to 2D media. For 3D RT,
the dimensionality escalates, and it is more computationally
demanding than the 2D RT. The computing algorithm is similar
to the one given in Paper II, with straightforward extensions
to handle the AD PRD. The essential difference is that we
now use the vectors in the complex space C

n. The algorithm
contains operations involving the inner product 〈 , 〉. In C

n

the inner product of two vectors u = (u1, u2, . . . , un)T and
v = (v1, v2, . . . , vn)T is defined as

〈u, v〉 =
n∑

i=1

uiv
∗
i , (27)

where ∗ represents complex conjugation.

3.1. The Preconditioner Matrix

The preconditioner matrices are any form of implicit or
explicit modification of the original matrix in the system of
equations to be solved that accelerates the rate of convergence
of the problem (see Saad 2000). As explained in Paper III,
the magnetic case requires the use of domain-based PRD,
where it becomes necessary to use different preconditioner
matrices in different frequency domains. In the problem under
consideration the preconditioner matrices are complex block
diagonal matrices. The dimension of each block is nx × nx ,
and the total number of such blocks is n/nx . The construction
of the preconditioner matrices is analogous to that described
in Paper III, with the appropriate modifications to handle the
Fourier-decomposed AD PRD matrices.

4. RESULTS AND DISCUSSIONS

In this section we study some of the benchmark results
obtained using the method proposed in this paper (Sections 2.2
and 3), which is based on the Fourier decomposition technique

4
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developed in Paper IV. In all the results, we consider the
following global model parameters. The damping parameter
of the Voigt profile is a = 2 × 10−3 and the continuum to the
line opacity κc/κl = 10−7. The internal thermal sources are
taken as constant (the Planck function Bν(r) = 1). The medium
is assumed to be isothermal and self-emitting (no incident
radiation on the boundaries). The ratios of elastic and inelastic
collision rates to the radiative de-excitation rate are, respectively,
ΓE/ΓR = 10−4 and ΓI /ΓR = 10−4. The expressions for the
redistribution matrices contain the parameters α and β(K) and are
called branching ratios (see Bommier 1997b). They are defined
as

α = ΓR

ΓR + ΓE + ΓI

, (28)

β(K) = ΓR

ΓR + D(K) + ΓI

, (29)

with D(0) = 0 and D(2) = cΓE , where c is a constant, taken to be
0.379 (see Faurobert-Scholl 1992). The branching ratios for the
chosen values of ΓE/ΓR , ΓI /ΓR , and D(K) are (α, β(0), β(2)) =
(1, 1, 1). They correspond to a PRD scattering matrix that uses
only the r̃

(k)
II (x, x ′, θ,�′) function. In other words, we consider

only the collisionless redistribution processes. We parameterize
the magnetic field by (ΓB, θB, χB). The Hanle ΓB coefficient
(see Bommier 1997b) takes two different forms, namely,

ΓB = Γ′
K = β(K)Γ, ΓB = Γ′′ = αΓ, (30)

with

Γ = gJ

2πeB

2meΓR

, (31)

where eB/2me is the Larmor frequency of the electron in the
magnetic field (with e and me being the charge and mass of
the electron). We take ΓB = 1 for computing all the results
presented in Section 4. In this paper we restrict our attention to
effectively optically thin cases (namely, the optical thicknesses
TY = TZ = 20). They represent formation of weak resonance
lines in finite dimensional structures. Studies on the effects of
the AD PRD in optically thick lines are deferred to a later paper.

We show the relative importance of the AD PRD in compar-
ison with the AA PRD considering (1) the non-magnetic case
(B = 0) and (2) the magnetic case (B 	= 0).

In Figure 2 we show the geometry of RT in a 2D medium. We
assume that the medium is infinite along the X-axis and finite
along the Y- and Z-axes. The top surface of the 2D medium
is defined to be the line (Y,Zmax), as marked in Figure 2. We
obtain the emergent, spatially averaged (I,Q/I,U/I ) profiles
by simply performing the arithmetic average of these profiles
over this line (Y,Zmax) on the top surface.

4.1. Nature of the Components of I and Ĩ (k)

Often it is pointed out in the literature that the AD PRD
effects are important (see, e.g., Nagendra et al. 2002) for
polarized line formation. For multi-D polarized RT the AD
PRD effects have not been addressed so far. Therefore, we
would like to quantitatively examine this aspect by taking the
example of polarized line formation in 2D media, through
explicit computation of Stokes profiles using the AD and the
AA PRD mechanisms for both the B = 0 and B 	= 0 cases.
The Stokes parameters Q and U contain inherently all the AD
PRD informations. In order to understand the actual differences
between the AD and the AA solutions, one has to study

X

Z

Y

max(Y, Z       ) line

Figure 2. RT in a 2D medium. We assume that the medium is infinite in the
direction of the X-axis and has a finite dimension in the direction of the Y-axis
and the Z-axis. The top surface is marked.

the frequency and angular behavior of the more fundamental

quantities, namely, I and Ĩ (k)
, which are obtained through

multi-polar expansions of the Stokes parameters.
In Figures 3 and 4, we plot the components of the real vector

I = (I 0
0 , I 2

0 , I 2,x
1 , I 2,y

1 , I 2,x
2 , I 2,y

2 ), which are constructed using the

six irreducible components of the nine vectors Ĩ (0)
, Re[Ĩ (1)

],

Im[Ĩ (1)
],Re[Ĩ (2)

],Im[Ĩ (2)
],Re[Ĩ (3)

],Im[Ĩ (3)
],Re[Ĩ (4)

], and
Im[Ĩ (4)

]. For each k, Ĩ (k)
is a six-component complex vector

(Ĩ 0 (k)
0 , Ĩ

2 (k)
0 , Ĩ

2,x (k)
1 , Ĩ

2,y (k)
1 , Ĩ

2,x (k)
2 , Ĩ

2,y (k)
2 ). Thus, in Figures 5

and 6 there are 54 components plotted in six panels, with each
panel containing nine curves (see the caption of Figure 5 for line
identifications). In Figures 3–6 the first two columns correspond
to the B = 0 case and the last two columns correspond to
the B 	= 0 case. Here we have chosen μ = 0.11 and two

examples of ϕ, namely, 0.◦5 and 89◦. I and Ĩ (k)
are related

through Equation (20), which can be re-written by truncating
the Fourier series to five terms, as discussed and validated in
Paper IV. Equation (20) can be approximated by

I ≈ Ĩ (0)
+

k=4∑
k=1

2Re[Ĩ (k)
] (32)

for ϕ = 0.◦5 and

I ≈ Ĩ (0) − 2 {Im[Ĩ (1)
] + Re[Ĩ (2)

] − Im[Ĩ (3)
] − Re[Ĩ (4)

]}
(33)

for ϕ = 89◦.

4.1.1. Non-magnetic Case

In general the component I 0
0 (and hence Stokes I parameter)

is less sensitive to the AD nature of PRD functions. Only for
certain choices of (θ, ϕ) does [I 0

0 ]AD differ noticeably from
[I 0

0 ]AA. The other polarization components exhibit significant
sensitivity to the AD PRD. For the present choice of (θ, ϕ), in
the second column of Figure 3 we see that [I 2,y

1 ]AD and [I 2,y
1 ]AA

5
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Figure 3. Emergent, surface-averaged components of I in non-magnetic (the first two columns) and magnetic (the last two columns) 2D media for μ = 0.11 and
ϕ = 0.◦5. The actual values of the components are scaled up by a factor of 104. Solid and dotted lines represent, respectively, the AA and the AD PRD. In the first two
columns (for B = 0), I

2,x
1 and I

2,y
2 are zero for the AA PRD (solid lines) and the other 10 components are non-zero (four AA components and six AD components).

In the last two columns, the magnetic field parameters are (ΓB, θB, χB ) = (1, 90◦, 60◦). All the components are important for B 	= 0.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 3 but for ϕ = 89◦.

(A color version of this figure is available in the online journal.)

6



The Astrophysical Journal, 746:84 (15pp), 2012 February 10 Anusha & Nagendra

Figure 5. Emergent, spatially averaged components of Ĩ (k)
in non-magnetic (the first two columns) and magnetic (the last two columns) 2D media for μ = 0.11 and

ϕ = 0.◦5. The actual values of the components are scaled up by a factor of 104. Solid lines represent the components of I for the AA PRD, plotted here for comparison.

The dotted curves represent the components Ĩ (0)
. The thick curves with dashed, dot-dashed, dash-triple-dotted, and long-dashed line types, respectively, represent

Re[Ĩ (1)
], Re[Ĩ (2)

], Re[Ĩ (3)
], and Re[Ĩ (4)

]. Similarly the thin curves with dashed, dot-dashed, dash-triple-dotted, and long-dashed line types, respectively, represent

Im[Ĩ (1)
], Im[Ĩ (2)

], Im[Ĩ (3)
], and Im[Ĩ (4)

]. In the last two columns, the magnetic field parameters are (ΓB, θB, χB ) = (1, 90◦, 60◦).

(A color version of this figure is available in the online journal.)

are nearly the same. We have verified that they differ very much
for other choices of (θ, ϕ). Thus, the differences between the
AD PRD and the AA PRD are disclosed only when we consider
polarization components and not just the I 0

0 component.
In the following we discuss the important symmetry relations

of the polarized radiation field for a non-magnetic 2D medium.
Symmetry Relations in Non-magnetic 2D Media: In Paper II

we have shown that [I 2,x
1 ]AA and [I 2,y

2 ]AA are identically zero
in non-magnetic 2D media (shown as solid lines in the first two
columns of Figures 3 and 4). This property of I

2,x
1 and I

2,y
2

in a non-magnetic 2D medium arises from the symmetry of
the Stokes I parameter with respect to the infinite axis of the
medium (X-axis in our case), combined with the ϕ-dependence
of the geometrical factors T K

Q (i,�) (see Appendix B of Paper II,
Equations (B9) and (B10)). Such a symmetry property is valid if
the scattering is according to complete frequency redistribution
(CRD) or the AA PRD where the angular dependence of the
source vectors occurs only through the angular dependence of
(I,Q,U ) and that of T K

Q (i,�). For the AD PRD, in addition to
these two factors, the angle dependence of the PRD functions
also causes change in the angular behavior of the source vectors.
Thus, the AD rII,III functions depend on ϕ in such a way that
[I 2,x

1 ]AD and [I 2,y
2 ]AD are not zero in general (shown as dotted

lines in the first two columns of Figures 3 and 4). Using a Fourier

Table 1
The Dominant Fourier Components Contributing to Each of the Six Irreducible
Components of I in a Non-magnetic 2D Medium, Shown as Cross Symbols

k = 0 k = 1 k = 2 k = 3 k = 4

Ĩ0(k)
0 × . . . . . . . . . . . .

Ĩ2(k)
0 × . . . . . . . . . . . .

Re[Ĩ2,x(k)
1 ] × × . . . . . . . . .

Im[Ĩ2,x(k)
1 ] . . . . . . . . . . . . . . .

Re[Ĩ2,y(k)
1 ] × . . . . . . . . . . . .

Im[Ĩ2,y(k)
1 ] . . . × . . . . . . . . .

Re[Ĩ2,x(k)
2 ] × . . . × . . . . . .

Im[Ĩ2,x(k)
2 ] . . . . . . . . . . . . . . .

Re[Ĩ2,y(k)
2 ] . . . . . . . . . . . . . . .

Im[Ĩ2,y(k)
2 ] . . . . . . × . . . . . .

expansion of the AD rII,III functions, we have proved this fact
in the Appendix.

The components of Ĩ (k)
also exhibit some interesting proper-

ties. In Table 1 we list the dominant Fourier components con-
tributing to each of the six components of I in a non-magnetic
2D medium (shown as crosses). In the following we describe

7
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Figure 6. Same as Figure 5 but for ϕ = 89◦.

(A color version of this figure is available in the online journal.)

the nature of these Fourier components. Of all the components
Ĩ

0(k)
0 and Ĩ

2(k)
0 , only Ĩ

0(0)
0 and Ĩ

2(0)
0 (dotted lines in the first two

columns of Figures 5 and 6) are dominant, and they are nearly
the same as [I 0

0 ]AD and [I 2
0 ]AD, respectively (dotted lines in the

first two columns of Figures 3 and 4). Ĩ
2(0)
0 is an important in-

gredient for Stokes Q. The components Ĩ
2,x,y(k)
1,2 are ingredients

for both Stokes Q and U. It can be seen that except Ĩ
2,y(0)
2 all

other Ĩ
2,x,y(0)
1,2 play an important role in the construction of the

vector I . For Ĩ
2,x(k)
1,2 , k 	= 0, only Re[Ĩ 2,x(1)

1 ] and Re[Ĩ 2,x(2)
2 ]

(thick dashed and thick dot-dashed lines, respectively) are dom-
inant. For Ĩ

2,y(k)
1,2 , k 	= 0, only Im[Ĩ 2,y(1)

1 ] and Im[Ĩ 2,y(2)
2 ] (thin

dashed and thin dot-dashed lines, respectively) are dominant.
This property is also true for other choices of (θ, ϕ). From this
property it appears that, in rapid computations involving the AD
PRD mechanisms, it may prove useful to approximate the prob-
lem by using the truncated, eight-component vector (Ĩ 0(0)

0 , Ĩ 2(0)
0 ,

Ĩ
2,x(0)
1 , Ĩ

2,y(0)
1 , Re[Ĩ 2,x(1)

1 ], Im[Ĩ 2,y(1)
1 ], Re[Ĩ 2,x(2)

2 ], Im[Ĩ 2,y(2)
2 ])

and obtain a sufficiently accurate solution with less computa-

tional efforts. When the six-component complex vector Ĩ (k)
for

each value of k = 0, 1, 2, 3, 4, having 54 independent compo-
nents, is used, the computations are expensive.

4.1.2. Magnetic Case

When we introduce a non-zero magnetic field B, the shapes,
signs, and magnitudes of IAA,AD change (see the last two
columns of Figures 3 and 4). [I 2,x

1 ]AA and [I 2,y
2 ]AA, which were

zero when B = 0, now take non-zero values. With a given
B 	= 0, except I 0

0 , the behaviors of all the other components for
the AD PRD are very different from those for the AA PRD.
Because the Hanle effect is operative only in the line core
(0 � x � 3.5), all the magnetic effects are confined to the
line core.

For B = 0 only some of the components of Ĩ (k)
play a

significant role. For B 	= 0, all the components of Ĩ (k)
can

become important (see the last two columns of Figures 5 and 6).
This property has a direct impact on the values of Q/I and U/I .

4.2. Emergent Stokes Profiles

In Figures 7 and 8 we present the emergent, spatially averaged
Q/I and U/I profiles computed using the AD and the AA PRD
in-line scattering for non-magnetic and magnetic 2D media. We
show the results for μ = 0.11 and 16 different values of ϕ
(marked on the respective panels). For the optically thin cases
considered in this paper the AD PRD effects are restricted to
the frequency domain 0 � x � 5. To understand these results,
let us consider two examples (ϕ = 0.◦5 and 89◦). For ϕ = 0.◦5
we can approximate the emergent Q and U using Equations (3)
and (4) as

Q(μ = 0.11, ϕ = 0.◦5, x) ≈ − 3

2
√

2
I 2

0 −
√

3

2
I

2,x
2 (34)

and

U (μ = 0.11, ϕ = 0.◦5, x) ≈
√

3 I
2,y
1 . (35)

8
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Figure 7. Emergent, spatially averaged Q/I profiles for a 2D medium with TY = TZ = 20, for a line of sight μ = 0.11. Different panels correspond to different
values of ϕ marked in the panels. Solid and dotted lines correspond to the AA and the AD profiles for B = 0. Dashed and dot-dashed lines correspond to the AA and
the AD profiles in a magnetic medium with magnetic field parameter (Γ, θB, χB ) = (1, 90◦, 60◦).

For ϕ = 89◦ we can also obtain approximate expressions for
Q and U given by

Q(μ = 0.11, ϕ = 89◦, x) ≈ − 3

2
√

2
I 2

0 +

√
3

2
I

2,x
2 (36)

and

U (μ = 0.11, ϕ = 89◦, x) ≈
√

3 I
2,x
1 . (37)

4.2.1. Angle-dependent PRD Effects in the Non-magnetic Case

In both Figures 7 and 8, the solid and dotted curves represent
the B = 0 case. It is easy to observe that the differences between
these curves depend on the choice of the azimuth angles ϕ for
Q/I , while for U/I the differences are marginal.

The Q/I Profiles: For ϕ = 0.◦5 the [Q/I ]AD and [Q/I ]AA
nearly coincide. But for ϕ = 89◦ they differ by ∼1% (in
the degree of linear polarization) around x = 2, which is
very significant. From Equations (34) and (36) it is clear that
[Q/I ]AD and [Q/I ]AA are controlled by the combinations
of the components I 2

0 and I
2,x
2 . We can see from the first

two columns of Figure 3 that for ϕ = 0.◦5, I 2
0 and I

2,x
2

have comparable magnitudes for both the AA and the AD
PRD. Further, [I 2

0 ]AA < 0, [I 2,x
2 ]AA > 0, [I 2

0 ]AD > 0, and
[I 2,x

2 ]AD < 0. From Equation (34) we can see that in spite of their
opposite signs, because of their comparable magnitudes, the
combinations of I 2

0 and I
2,x
2 result in nearly the same values of

[Q/I ]AD and [Q/I ]AA. When ϕ = 89◦, the components [I 2
0 ]AA,

[I 2
0 ]AD, [I 2,x

2 ]AA, and [I 2,x
2 ]AD are of comparable magnitudes.

9
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Figure 8. Same as Figure 7 but for U/I .

Whereas [I 2
0 ]AA and [I 2,x

2 ]AA have opposite signs, [I 2
0 ]AD and

[I 2,x
2 ]AD have the same sign. Therefore, from Equation (36) we

see that [Q/I ]AD differs from [Q/I ]AA for ϕ = 89◦.
To understand the behaviors of the components of I 2

0 and
I

2,x
2 discussed above, we can refer to Figures 5 and 6 and

Table 1. The component Ĩ
2(0)
0 contributes dominantly to I 2

0 and
is almost identical to I 2

0 because the contributions from Ĩ
2(k)
0

with k = 1, 2, 3, 4 are negligible (for both values of ϕ). When
ϕ = 0.◦5, apart from Ĩ

2,x (0)
2 , the component Re[Ĩ 2,x (2)

2 ] makes
a significant contribution to I

2,x
2 and Ĩ

2,x (k)
2 with other values

of k vanish (graphically). Re[Ĩ 2,x (2)
2 ] makes a nearly equal and

opposite contribution as Ĩ
2,x (0)
2 when ϕ = 0.◦5. When ϕ = 89◦,

the contribution of Ĩ
2,x (0)
2 is larger than that of Re[Ĩ 2,x (2)

2 ]. Also,
the components Ĩ

2 (0)
0 and Ĩ

2,x (0)
2 have the same sign for both

values of ϕ. Therefore, from Equations (32) and (33) we can see
that I 2

0 and I
2,x
2 have opposite signs for ϕ = 0.◦5 but have the

same signs for ϕ = 89◦.
The AD and the AA values of Q/I sometimes coincide

well and sometimes differ significantly. This is because the
Fourier components of the AD PRD functions r̃

(k)
II,III with

k = 0 essentially represent the azimuthal averages of the
AD rII,III functions and are not the same as the explicit angle
averages of the AD rII,III functions. The latter are obtained by
averaging over both co-latitudes and azimuths (i.e., over all the
scattering angles). The μ-dependence of the AD rII,III functions
is contained dominantly in the r̃

(0)
II,III terms and the ϕ-dependence

is contained dominantly in the higher order terms in the Fourier
expansions of the AD rII,III functions. For this reason the AA
PRD cannot always be a good representation of the AD PRD,
especially in the 2D polarized line transfer. This can be attributed

10
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Figure 9. Panel (a) shows emergent (I,Q/I,U/I ) profiles formed in a 1D medium, and panel (b) shows the emergent, spatially averaged (I,Q/I,U/I ) profiles
formed in a 2D medium. The solid and dotted lines represent, respectively, the AA and the AD profiles for B = 0. The dashed and dash-triple-dotted lines represent,
respectively, the AA and the AD profiles for B 	= 0, with the magnetic field parameterized by (Γ, θB, χB ) = (1, 90◦, 60◦). The results are shown for μ = 0.11 and
ϕ = 89◦. For panel (a) we take TZ = T = 20, and for panel (b), TZ = TY = T = 20.

to the strong dependence of the radiation field on the azimuth
angle (ϕ) in the 2D geometry. As will be shown below, the
differences between the AD and the AA solutions get further
enhanced in the magnetic case (Hanle effect).

The U/I Profiles: When B = 0, [U/I ]AD and [U/I ]AA
profiles for both values of ϕ (0.◦5 and 89◦) do not differ
significantly. Equations (35) and (37) suggest that U has a
dominant contribution from I

2,y
1 for ϕ = 0.◦5 and I

2,x
1 for 89◦.

Looking at the first two columns of Figure 5, it can be seen that
Ĩ

2,y (0)
1 nearly coincide with [I 2,y

1 ]AA for ϕ = 0.◦5. Except Ĩ
2,y (0)
1 ,

Ĩ
2,y (k)
1 for k 	= 0 make a smaller contribution in the construction

of [I 2,y
1 ]AD. Thus, [I 2,y

1 ]AA and [I 2,y
1 ]AD nearly coincide for ϕ =

0.◦5 (see the first two columns of Figure 3). Thus, [U/I ]AD and
[U/I ]AA are nearly the same for ϕ = 0.◦5. When ϕ = 89◦ (the
first two columns of Figure 4), [I 2,x

1 ]AA vanishes. For each k,
Ĩ

2,x(k)
1 approach zero, as does [I 2,x

1 ]AD, which is a combination
of Ĩ

2,x(k)
1 . Thus, [U/I ]AD and [U/I ]AA both are nearly zero for

ϕ = 89◦. We can carry out a similar analysis and find out which

are the irreducible Fourier components of Ĩ (k)
that contribute

to the construction of I and which of the components of I
contribute to generate Q and U to interpret their behaviors.

4.2.2. Angle-dependent PRD Effects in the Magnetic Case

The presence of a weak, oriented magnetic field modifies
the values of Q/I and U/I in the line core (x � 3.5) to a
considerable extent, owing to the Hanle effect. Further, it is for

B 	= 0 that the differences between the AA and the AD PRD
become more significant. In both Figures 7 and 8, the dashed
and dot-dashed curves represent the B 	= 0 case. As usual, there
is either a depolarization (decrease in the magnitude) or a re-
polarization (increase in the magnitude) of both Q/I and U/I
with respect to those in the B = 0 case. The AD PRD values
of Q/I and U/I are larger in magnitude (absolute values) than
those of the AA PRD, for the chosen set of model parameters
(this is not to be taken as a general conclusion). The differences
depend sensitively on the value of B.

Comparison with 1D Results: In Figures 9(a) and (b) we
present the emergent (I,Q/I,U/I ) profiles for 1D and 2D
media for μ = 0.11 and ϕ = 89◦. For 2D RT, we present the
spatially averaged profiles. The effects of a multi-D geometry
(2D or 3D) on linear polarization for non-magnetic and magnetic
cases are discussed in detail in Papers I, II, and III, where we
considered polarized line formation in multi-D media, scattering
according to the AA PRD. We recall here that the essential
effects are due to the finite boundaries in multi-D media, which
cause leaking of radiation and hence a decrease in the values
of Stokes I, and a sharp rise in the values of Q/I and U/I
near the boundaries. Multi-D geometry naturally breaks the
axisymmetry of the medium that prevails in a 1D planar medium.
This leads to significant differences in the values of Q/I and
U/I formed in 1D and multi-D media (compare solid lines in
panels (a) and (b) of Figure 9). As pointed out in Papers I, II, and
III, for the non-magnetic case, U/I is zero in 1D media while
in 2D media a non-zero U/I is generated owing to symmetry
breaking by the finite boundaries. For the (θ, ϕ) values chosen

11
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Figure 10. Surface plots of SI , SQ, and SU for the AA (left panels) and the AD PRD (right panels) for x = 0. The source vector components are plotted as a function
of the grid indices along the Y- and Z-directions. Here B 	= 0, with (Γ, θB, χB ) = (1, 90◦, 60◦). The other model parameters are the same as in Figure 9.
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Figure 11. Same as Figure 10 but for x = 2.5.
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in Figure 9(b) [U/I ]AA is nearly zero even for the non-magnetic
2D case, which is not generally true for other choices of (θ, ϕ)
(see solid lines in various panels of Figure 8).

The effects of the AD PRD in Q/I and U/I profiles are
already discussed above for non-magnetic and magnetic 2D
media. They are similar for both 1D and 2D cases. For the non-
magnetic 2D media, we can see the AD PRD effects even in
U/I , which is absent in the corresponding 1D media. In 1D,
one has to apply a non-zero magnetic field B in order to see the
effects of the AD PRD on U/I profiles.

The magnitudes of [Q/I ]1D in the non-magnetic case and
of [Q/I ]1D, [U/I ]1D in the magnetic case are larger in com-
parison with the corresponding spatially averaged [Q/I ]2D and
[U/I ]2D. This is again due to leaking of photons from the finite
boundaries and the effect of spatial averaging (which causes
cancellation of positive and negative quantities).

4.3. Radiation Anisotropy in 2D Media—Stokes Source Vectors

In Figures 10 and 11 we present the spatial distribution of
SI , SQ, and SU on the plane of the 2D slab for two different
frequencies (x = 0 and x = 2.5, respectively). The spatial
distribution of source vector components SQ and SU represents
the anisotropy of the radiation field in the 2D medium. It shows
how inhomogeneous is the distribution of linear polarization
within the 2D medium.

In Figure 10 we consider x = 0 (line center). For the chosen
values of (θ, ϕ) the spatial distribution of SI is not very different
for the AA and the AD PRD. SQ and SU for both the AA and
the AD PRD have similar magnitudes (Figures 10(b) and (c)
and Figures 10(e) and (f)), but different spatial distributions.
The spatial distribution of SQ and SU is such that the positive
and negative contributions with similar magnitudes of SQ and
SU cancel out in the computation of their formal integrals.
Therefore, the average values of Q/I and U/I resulting from
the formal integrals of SQ and SU are nearly zero at x = 0 for
both the AA and the AD PRD (see dashed and dot-dashed lines
at x = 0 in Figure 9(b)).

In Figure 11 we consider x = 2.5 (near wing frequency).
Again, SI does not show significant differences between the
AA and the AD PRD. For SQ, the AA PRD has a distribution
with positive and negative values equally distributed in the
2D slab, but the AD PRD has a more negative contribution.
This is reflected in the average values of Q/I , where [Q/I ]AA
approach zero owing to cancellation, while [Q/I ]AD values are
more negative (see dashed and dot-dashed lines at x = 2.5
in Figure 9(b)). The positive and negative values of SU are
distributed in a complicated manner everywhere on the 2D slab
for the AA PRD. For the AD PRD, the distribution of SU is
positive almost everywhere, including the central parts of the
2D slab. Such a spatial distribution is reflected again in the
average value of U/I (shown in Figure 9(b)), where [U/I ]AA
have smaller positive magnitudes (owing to cancellation effects)
than the corresponding [U/I ]AD.

5. CONCLUSIONS

In this paper we have further generalized the Fourier decom-
position technique developed in Paper IV to handle the AD PRD
in multi-D polarized RT (see Section 2.2). We have applied this
technique and developed an efficient iterative method called
Pre-BiCG-STAB to solve this problem (see Section 3).

We prove in this paper that the symmetry of the polar-
ized radiation field with respect to the infinite axis, which

exists for a non-magnetic 2D medium for the AA PRD (as
shown in Paper II), breaks down for the AD PRD (see the
Appendix).

We present results of the very first investigations of the effects
of the AD PRD on the polarized line formation in multi-D
media. We restrict our attention to freestanding 2D slabs with
finite optical thicknesses on the two axes (Y and Z). The optical
thicknesses of the isothermal 2D media considered in this paper
are very moderate (T = 20). We consider effects of the AD
PRD on the scattering polarization in both non-magnetic and
magnetic cases. We find that the relative AD PRD effects are
prominent in the magnetic case (Hanle effect). They are also
present in the non-magnetic case for some choices of (θ, ϕ). We
conclude that the AD PRD effects are important for interpreting
the observations of scattering polarization in multi-D structures
on the Sun.

Practically, even with the existing advanced computing facil-
ities, it is extremely difficult to carry out the multi-D polarized
RT with the AD PRD in spite of using advanced numerical
techniques. Therefore, in this paper we restrict our attention to
isothermal 2D slabs. The use of the AD PRD in 3D polarized
RT in realistic modeling of the observed scattering polarization
on the Sun will be numerically very expensive and can be taken
up in the future only with highly advanced computing facilities.

Erratum. In the previous papers of this series (Papers I, III,
and IV) the definitions of the formal solutions expressed in
terms of the optical thicknesses have a notational error. In
Equation (20) of Paper I, Equations (14) and (20) of Paper III,
and Equation (14) of Paper IV, the symbol τx,max should have
been τx(r,�) as explicitly given in Equation (13) of this
paper. τx(r,�) is defined in Equation (14) in this paper. In
the previous papers of this series (Papers I–IV) the vector
r ′ = r − (s − s ′)� was incorrectly defined as r − s ′�. We note
here that the numerical results and all other equations presented
in Papers I–IV are correct and are unaffected by this error in the
above-mentioned equations.

We thank the anonymous referee for very useful comments
and suggestions that helped improve the manuscript to a great
extent. The reports by the referee helped to correct some of
the mistakes that were present in the previous papers of this
series, and the corrections are now presented in the form of an
erratum in this paper. We also thank the referee for providing
Figure 1.

APPENDIX

SYMMETRY-BREAKING PROPERTIES OF THE AD PRD
FUNCTIONS IN NON-MAGNETIC 2D MEDIA

In this Appendix, we show that the symmetry properties that
are valid for the AA PRD (proved in Paper II) break down for
the AD PRD. We present the proof in the form of an algorithm.

Step 1. First we assume that the medium contains only an un-
polarized thermal source, namely, S = (εB(r), 0, 0, 0, 0, 0)T .

Step 2. Use of this source vector in the formal solution
expression yields I = (I 0

0 , 0, 0, 0, 0, 0)T .
Step 3. Using this I , we can write the expressions for the

irreducible polarized mean intensity components as

J 0
0 (r,�, x) 


∫
x ′,�′

R̂(x, x ′,�,�′)

φ(x)
I 0

0 (r, θ ′, ϕ′, x ′),
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J 2
0 (r,�, x) 
 c2

∫
x ′,�′

R̂(x, x ′,�,�′)
φ(x)

× (3 cos2 θ ′ − 1) I 0
0 (r, θ ′, ϕ′, x ′),

J
2,x
1 (r,�, x) 
 −c3

∫
x ′,�′

R̂(x, x ′,�,�′)
φ(x)

× sin 2θ ′ cos ϕ′ I 0
0 (r, θ ′, ϕ′, x ′),

J
2,y
1 (r,�, x) 
 c4

∫
x ′,�′

R̂(x, x ′,�,�′)
φ(x)

× sin 2θ ′ sin ϕ′ I 0
0 (r, θ ′, ϕ′, x ′),

J
2,x
2 (r,�, x) 
 c5

∫
x ′,�′

R̂(x, x ′,�,�′)
φ(x)

× sin2 θ ′ cos 2ϕ′ I 0
0 (r, θ ′, ϕ′, x ′),

J
2,y
2 (r,�, x) 
 −c6

∫
x ′,�′

R̂(x, x ′,�,�′)
φ(x)

× sin2 θ ′ sin 2ϕ′ I 0
0 (r, θ ′, ϕ′, x ′),

(A1)

where ∫
x ′,�′

=
∫ +∞

−∞
dx ′

∮
d�′

4π
(A2)

and ci, i = 2, 3, 4, 5, 6 are positive numbers (see Appendix D
of Paper III). We recall that d�′ = sin θ ′ dθ ′ dϕ′, θ ′ ∈ [0, π ]
and ϕ′ ∈ [0, 2π ]. Here

R̂(x, x ′,�,�′) = Ŵ [α̂rII(x, x ′,�,�′)
+ (β̂ − α̂)rIII(x, x ′,�,�′)] (A3)

is the non-magnetic, polarized redistribution matrix.
Step 4. A Fourier expansion of the AD PRD functions with

respect to ϕ′ (instead of ϕ) gives

rII,III(x, x ′,�,�′) =
k′=∞∑
k′=0

(2 − δk′0)eik′ϕ′
r̃

(k′)
II,III(x, x ′,�, θ ′),

(A4)

with the Fourier coefficients

r̃ (k)(x, x ′,�, θ ′) =
∫ 2π

0

d ϕ′

2π
e−ik′ϕ′

rII,III(x, x ′,�,�′).

(A5)

Substituting Equation (A4) into Equation (A1), we can show
that the components J

2,x
1 and J

2,y
2 do not vanish irrespective of

the symmetry of I 0
0 with respect to the infinite spatial axis. In

other words, to a first approximation, even if we assume that I 0
0

is symmetric with respect to the infinite spatial axis (as in the
AA PRD), the ϕ′-dependence of the AD PRD functions rII,III is
such that the integral over ϕ′ leads to non-zero J

2,x
1 and J

2,y
2 .

This stems basically from the coefficients with k′ 	= 0 in the
expansion of the AD PRD functions. Following an induction
proof as in Paper II, it follows that J

2,x
1 and J

2,y

2 are non-zero
in general because the symmetry breaks down in the first step
itself.

It follows from Equation (2) and from the above proof that the
Stokes I parameter is not symmetric with respect to the infinite
spatial axis in non-magnetic 2D media, in the AD PRD case,
unlike the AA PRD and CRD cases (see Appendix B of Paper II
for the proof for the AA PRD).
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