
The Astrophysical Journal, 745:189 (6pp), 2012 February 1 doi:10.1088/0004-637X/745/2/189
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

POLARIZED PARTIAL FREQUENCY REDISTRIBUTION IN SUBORDINATE
LINES. I. RESONANCE SCATTERING WITH COLLISIONS

M. Sampoorna
Indian Institute of Astrophysics, IInd Block, Koramangala, Bangalore 560 034, India; sampoorna@iiap.res.in

Received 2011 November 20; accepted 2011 December 21; published 2012 January 17

ABSTRACT

Using a previously established theory, we derive a suitable form of the laboratory frame redistribution matrix for the
resonance scattering in subordinate lines, allowing for the radiative as well as collisional broadening of both atomic
levels involved. The lower level, though broadened, is assumed to be unpolarized. The elastic collisions both in the
upper and lower levels are taken into account. We show that, in situations, when elastic collisions in the lower level
can be neglected, the redistribution matrix for subordinate lines takes a form that is analogous to the corresponding
case of resonance lines. Further, in the case of no-lower-level interactions (i.e., infinitely sharp lower level), we
recover the redistribution matrix for resonance lines. We express the redistribution matrix for subordinate lines in
terms of the irreducible spherical tensors for polarimetry. For practical applications in one-dimensional polarized
radiative transfer problem, we derive the azimuth averaged subordinate line redistribution matrix.
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1. INTRODUCTION

While the problem of partial frequency redistribution (PRD)
in resonance lines is well studied, the corresponding problem
for subordinate lines has received little attention. This is largely
due to the general belief that complete frequency redistribution
is a good approximation to represent resonance scattering in
subordinate lines. Even though this is somewhat justified for un-
polarized scattering (see, e.g., Hubeny & Heinzel 1984; Mohan
Rao et al. 1984), this is not the case when the polarization state
of the radiation field is taken into account (see McKenna 1984;
Nagendra 1994, 1995). A factorized form of the redistribution
matrix for subordinate lines was used in Nagendra (1994, 1995).
Unlike the case of resonance lines, a self-consistent expression
of the laboratory frame redistribution matrix for subordinate
lines taking into account the elastic collisions is still missing.
The aim of the present paper is to derive such a redistribution
matrix.

The problem of PRD in subordinate lines was originally
addressed by Woolley & Stibbs (1953), who considered only
radiatively broadened upper and lower levels. They derived the
analytic form of the redistribution function for the subordinate
lines in the atomic frame (AF) starting from the integral form
presented by Woolley (1938). Later, using the technique of
Fourier transform, Heinzel (1981) transformed the integral
form of Woolley (1938) to the laboratory frame assuming a
Maxwellian velocity distribution. This laboratory frame PRD
function is denoted by RV. In the aforementioned papers only
scattering of unpolarized radiation in subordinate lines was
considered.

The polarized resonance scattering of radiation between
two atomic levels broadened both radiatively and collisionally,
was treated in an important paper by Omont et al. (1972).
They derived AF collisional redistribution functions which are
applicable to both resonance and subordinate lines. While for
resonance lines their expression could be easily transformed to
the laboratory frame, it was not the case for subordinate lines.
Heinzel & Hubeny (1982) cleverly reformulated the quantum-
mechanical AF collisional redistribution of Omont et al. (1972)

for subordinate lines in the form of a linear combination of two
redistribution functions RV and RIII.

In the case of resonance lines Domke & Hubeny (1988) de-
rived the redistribution matrix for resonance scattering including
collisions. Their work was based on the formalism of Omont
et al. (1972). Bommier (1997a) derived a more elegant but equiv-
alent expression for this PRD matrix with the master equation
theory, which was later generalized by Bommier (1997b) to
include arbitrary strength magnetic fields. This formulation is
very general in the sense that it applies to polarized redistri-
bution in resonance and also subordinate lines. For resonance
lines (infinitely sharp lower level), explicit laboratory frame
PRD matrices for arbitrary strength magnetic fields are derived
in Bommier (1997b; see also Sampoorna et al. 2007a, 2007b;
Sampoorna 2011). In the case of subordinate lines only the
AF redistribution matrix for arbitrary strength fields including
collisions is derived in Bommier (1997b, Equations (44)–(46)).

In the present paper we derive the laboratory frame redistribu-
tion matrix for resonance scattering in subordinate lines, taking
into account collisions (both elastic and inelastic). We com-
bine the collisional redistribution function of Heinzel & Hubeny
(1982, who reformulated the expressions of Omont et al. 1972
to the case of subordinate lines), with the general redistribu-
tion matrix of Domke & Hubeny (1988, who particularized the
results of Omont et al. 1972 to the case of polarization). Con-
sequently, the redistribution matrix derived in this paper has the
same physical limitations as the aforementioned studies. These
limitations are the impact and isolated line approximations. Fur-
ther, it is assumed that the lower level is unpolarized (i.e., all
the magnetic substates of lower level are equally populated).
Moreover, stimulated emission is neglected. See the monograph
by Landi Degl’Innocenti & Landolfi (2004, and the references
cited therein) for a sophisticated formalism where multi-level
and multi-term atoms with polarization in all the levels are con-
sidered, but PRD effects are neglected. This formalism has been
extended by Landi Degl’Innocenti et al. (1997) to include PRD
effects in the absence of collisions, based on metalevel approach.
More recently, Smitha et al. (2011) have derived the laboratory
frame expression of the polarized PRD matrix for a two-term
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atom with an infinitely sharp and unpolarized lower level and in
the absence of collisions.

In Section 2, we recall the main equations of Domke
& Hubeny (1988), but with slightly different notations. In
Section 3, we briefly recall the collisional redistribution function
for subordinate lines as presented by Heinzel & Hubeny (1982).
In Section 4, we derive the redistribution matrix for subordinate
lines using the results of Sections 2 and 3. In Section 5, we
express the PRD matrix derived in Section 4 in terms of the ir-
reducible spherical tensors for polarimetry introduced by Landi
Degl’Innocenti (1984). This is essential to facilitate its use in
polarized radiative transfer equation and to develop iterative
techniques like polarized approximate lambda iteration (see,
e.g., the reviews by Nagendra 2003; Nagendra & Sampoorna
2009). For applications in one-dimensional radiative transfer
problem, we derive the azimuth averaged redistribution matrix
in Section 6. Conclusions are presented in Section 7.

2. DOMKE–HUBENY REDISTRIBUTION FORMALISM

The quantum theory of resonance scattering of radiation by
atoms undergoing collisions has been developed by Omont
et al. (1972) in the density matrix formalism and under the
assumption that the impact approximation is valid. Further they
assumed an unpolarized lower level. For lines with m-degenerate
levels they derived the probability density of scattering of an
incident photon with frequency ω′, propagation vector n′, and
polarization vector ε1 into a scattered photon represented by ω,
n, ε2. This quantity is denoted F (ω′, n′, ε1 → ω, n, ε2). In
order to express F in the basis of Stokes parameters, Domke
& Hubeny (1988) introduced the photon density matrix (which
is a photon polarization matrix) and a suitable basis for the
polarization vectors ε1 and ε2. After an elaborate algebra Domke
& Hubeny (1988) arrived at the following expression for the
redistribution matrix in the AF :

F̂AF(ω,ω′, Θ) = 2

3
{[F (0)(ω,ω′) − F (2)(ω, ω′)]P̂is

+ F (2)(ω,ω′)P̂R(Θ) + F (1)(ω,ω′)P̂V (Θ)}, (1)

where Θ is the scattering angle between incident and scattered
rays. P̂is is the isotropic phase matrix, P̂R(Θ) is the Rayleigh
phase matrix that describes scattering of the Stokes parameters
I, Q, and U, and P̂V (Θ) is the phase matrix for scattering of
Stokes V parameter. The phase matrices P̂is, P̂R(Θ), and P̂V (Θ)
are given in the reference system defined by the scattering plane
(see Equations (38)– (40) of Domke & Hubeny 1988). They can
be transformed to a fixed polar reference system (also called
atmospheric reference frame; see Chandrasekhar 1950). The
functions F (K)(ω, ω′) with K = 0, 1, 2 are the Kth multipole
frequency redistribution functions. They are given by

F (K)(ω, ω′) = Af ie W (jf ji je K) f
(K)
23 (ω, ω′)

+ Af ie 3(2je + 1)
2∑

K ′=0

(−1)K+K ′
(2K ′ + 1)

×
{

1 1 K
1 1 K ′

} {
1 1 K ′
jf ji je

}2

f
(K ′)
1 (ω, ω′), (2)

where i, e, and f refer, respectively, to the initial, intermediate,
and final atomic levels with total angular momentum quantum
numbers ji, je, and jf . The functions f

(K)
1 and f

(K)
23 are called

frequency profiles or line shape functions or elementary redis-
tribution functions. They have the following form :

f
(K)
1 (ω, ω′) = �

[
i

ω′ − ω − ωif − Δ(K)
if + iγ (K)

if

× 1

ω′ − ωei − Δ(1)
ei + iγ (1)

ei

× 1

ω − ωef − Δ(1)
ef − iγ (1)

ef

]
, (3)

f
(K)
23 (ω, ω′) = 2

γ
(K)
e

γ
(1)
ei(

ω′ − ωei − Δ(1)
ei

)2
+

(
γ

(1)
ei

)2

× γ
(1)
ef(

ω − ωef − Δ(1)
ef

)2
+

(
γ

(1)
ef

)2 , (4)

where

γ
(K)
ab = γ

c(K)
ab +

1

2

(
Γ(a)

R + Γ(b)
R

)
, (5)

γ (K)
a = γ c(K)

a + Γ(a)
R , (6)

with a, b = i, e, f . Here Γ(a)
R is the radiative decay rate

of the level a, γ
c(K)
ab is the collisional relaxation rate of the

K-multipole between levels a and b, γ c(0)
a is the rate of inelastic

collisions from level a, γ c(1)
a and γ c(2)

a are, respectively, the
rates of destruction of the orientation and alignment of level
a, Δ(K)

ab is the collisional frequency shift, and ωab is the
frequency corresponding to the a → b transition. Other
quantities appearing in Equation (2) are given by

Af ie = 2 |〈jf ||μ||je〉|2 |〈ji ||μ||je〉|2 ρ(ji)

3(2je + 1)
, (7)

W (jf ji je K) = (−1)ji−jf 3(2je + 1)

×
{

1 1 K
je je jf

} {
1 1 K
je je ji

}
, (8)

where 〈ja||μ||jb〉 is the reduced matrix element of the dipole
operator and ρ(ji) is the population density of level ji.

3. ELEMENTARY REDISTRIBUTION FUNCTIONS
FOR SUBORDINATE LINES

The elementary redistribution function f
(K)
1 is not suitable

for transformation to the laboratory frame. Therefore, Heinzel
& Hubeny (1982) rewrote f

(K)
1 in a form that allows for a direct

transformation to the laboratory frame. They considered both the
non-degenerate and spatially degenerate cases. In the spatially
degenerate case, they showed that Equations (3) and (4) can be
rewritten in terms of the AF redistribution functions derived in
Heinzel (1981) and Hummer (1962). According to Heinzel &
Hubeny (1982), f

(K)
1 and f

(K)
23 can be written as

f
(K)
1 (ω, ω′) = 2π2

2γ
(1)
ei − γ

(K)
i

[
r

(K)
V − rsl

III

]
, (9)

f
(K)
23 (ω, ω′) = 2π2

γ
(K)
e

rsl
III, (10)
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where

r
(K)
V ≡ rV

(
ω, ω′, ωei + Δ(1)

ei ; γ
(K)
i , γ

(1)
ei

)
, (11)

rsl
III ≡ rIII

(
ω, ω′, ωei + Δ(1)

ei ; γ
(1)
ei

)
. (12)

In the above equations rV and rIII are type-V and type-III AF
redistribution functions derived in Heinzel (1981) and Hummer
(1962), respectively. We recall that ωei is now replaced by
ωei + Δ(1)

ei both in the case of type-V and type-III redistribution.
For type-V redistribution the lower level width is now given
by γ

(K)
i and that of the upper level by γ

(1)
ei . For type-III

redistribution the total damping width is given by γ
(1)
ei . For

notational simplicity, we denote the type-III redistribution
function for subordinate lines as rsl

III, unlike Heinzel & Hubeny
(1982) who denote it as r

(1)
III . We remark that for resonance lines

the elementary redistribution function f1 is independent of K
(see Equation (44) of Domke & Hubeny 1988). For subordinate
lines the dependence of f1 on K gives rise to several terms in the
redistribution matrix (see Section 4 below).

4. COLLISIONAL REDISTRIBUTION MATRIX
FOR SUBORDINATE LINES

Substituting Equations (9) and (10) into Equation (2), we
obtain

F (K)(ω, ω′) = 2π2Af ie

{
2∑

K ′=0

CKK ′ji je

2γ
(1)
ei − γ

(K ′)
i

r
(K ′)
V

+

[
W (ji ji je K)

γ
(K)
e

−
2∑

K ′=0

CKK ′ji je

2γ
(1)
ei − γ

(K ′)
i

]
rsl

III

}
,

(13)

where we have used the fact that jf = ji for a two-level atom.
The coefficients CKK ′ji je

are given by

CKK ′ji je
= (−1)K+K ′

3(2je + 1) (2K ′ + 1)

×
{

1 1 K
1 1 K ′

}{
1 1 K ′
ji ji je

}2

. (14)

The astrophysical redistribution matrix for a subordinate line is
related to F̂AF defined in Equation (1), by the following relation
(see, e.g., Equation (49) of Domke & Hubeny 1988) :

R̂sl
AF(ω, ω′, Θ) ≡ F̂AF(ω, ω′, Θ)[

(4π2/3) Afie W (ji ji je 0)/Γ(e)
R

] , (15)

where the superscript “sl” stands for subordinate line.
Substituting Equations (1) and (13) into the above equation,
we obtain

R̂sl
AF(ω, ω′, Θ) = P̂R(Θ)

{
2∑

K ′=0

α(K ′)C̄2K ′ji je
r

(K ′)
V

+

[
W2β

(2) −
2∑

K ′=0

α(K ′)C̄2K ′ji je

]
rsl

III

}

+ P̂is

{
2∑

K ′=0

α(K ′) (C̄0K ′ji je
− C̄2K ′ji je

)
r

(K ′)
V

+

[
β(0) − W2β

(2) −
2∑

K ′=0

α(K ′)

× (
C̄0K ′ji je

− C̄2K ′ji je

) ]
rsl

III

}

+ P̂V (Θ)

{
2∑

K ′=0

α(K ′)C̄1K ′ji je
r

(K ′)
V

+

[
W1β

(1) −
2∑

K ′=0

α(K ′)C̄1K ′ji je

]
rsl

III

}
, (16)

where, following Domke & Hubeny (1988), Heinzel & Hubeny
(1982), and Bommier (1997a, 1997b), we have defined

α(K) = Γ(e)
R

2γ
(1)
ei − γ

(K)
i

, (17)

β(K) = Γ(e)
R

γ
(K)
e

, (18)

C̄KK ′ji je
= CKK ′ji je

W (ji ji je 0)
, (19)

and

WK = W (ji ji je K)

W (ji ji je 0)
. (20)

Equation (16) has similar structure and the same physical
interpretation as Equation (49) of Domke & Hubeny (1988)
for resonance lines. However the branching ratio α, which is
K-independent in the case of resonance line, now depends on
K due to the presence of elastic collisions in the lower level
(see below). Further the frequency redistribution terms are more
complex in the case of subordinate lines than in the case of
resonance lines.

We can deduce from Equations (41) and (44) of Ballagh &
Cooper (1977) and Equation (2.17) of Heinzel & Hubeny (1982)
that

2γ
c(1)
ab = ΓE + Γ(a)

I + Γ(b)
I , (21)

where a, b = i, e. We recall that i denotes the initial level and e
the intermediate level for a two-level atom. In Equation (21), ΓE

is the rate of elastic collisions and Γ(a)
I is the inelastic collisional

frequency for level a. Following Faurobert-Scholl (1992) and
Nagendra (1994), we identify the notation γ c(K)

a with

γ c(K)
a = Γ(a)

I + D(K)
a , (22)

where a = i, e, and D(K)
a are 2K-multipole destruction rates

for level a. Note that D(0)
a = 0. Substituting Equations (5), (6),

(21), and (22) into Equations (17) and (18), we obtain

α(K) = Γ(e)
R

ΓE + Γ(e)
I + Γ(e)

R − D
(K)
i

, (23)

β(K) = Γ(e)
R

Γ(e)
R + Γ(e)

I + D
(K)
e

. (24)

Equation (23) shows that the K-dependence of α comes from the
elastic collisions in the lower level. We note that our definition
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of branching ratio β(K) for subordinate lines is identical to β(K)

for resonance lines defined by Bommier (1997b).
When the elastic collisions in the lower level are negligible,

i.e., D
(K)
i = 0 for all K, α(K) becomes independent of K and is

identical to the α defined for resonance lines (see Equation (50)
of Domke & Hubeny 1988, or Equation (88) of Bommier
1997b). Further r

(K)
V also becomes independent of K and is

given by

r
(K)
V = rV

(
ω, ω′, ωei + Δ(1)

ei ; Γ(i)
R + Γ(i)

I , γ
(1)
ei

)
. (25)

Using Equation (43) of Domke & Hubeny (1988), one also has

2∑
K ′=0

α(K ′)C̄KK ′ji je
= αWK. (26)

The redistribution matrix (see Equation (16)) takes then the
following simpler form :[

R̂sl
AF(ω, ω′, Θ)

]
D

(K)
i =0

= P̂R(Θ)
{
αW2rV + W2

[
β(2) − α

]
rsl

III

}
+ P̂is

{
α(1 − W2)rV + [(β(0) − α) − W2(β(2) − α)]rsl

III

}
+ P̂V (Θ)

{
αW1rV + W1[β(1) − α]rsl

III

}
. (27)

The above equation is analogous to Equation (49) of Domke &
Hubeny (1988), with the only difference that rII is now replaced
by rV and rIII by rsl

III. We recall that rsl
III has the same functional

form as rIII for resonance lines, except that the damping width
is now given by γ

(1)
ei (see Equation (12)). Also note that our(

β(K) − α
)

is the same as β(K) of Domke & Hubeny (1988,
see their Equation (51); see also Equation (101) of Bommier
1997b).

It is easy to verify that Equation (27) reduces to Equation (49)
of Domke & Hubeny (1988) for no-lower-level interaction (i.e.,
infinitely sharp lower level). Because in this case rV → rII and
rsl

III → rIII.
Assuming that the velocity distribution of atoms in the lower

level is Maxwellian, and the atomic velocity is unchanged during
the scattering process, it is easy to transform the AF redistribu-
tion matrix to the laboratory frame. The resulting expression is
similar to Equation (16), but with AF redistribution functions
r

(K)
V and rsl

III replaced by corresponding laboratory frame func-
tions R

(K)
V (x, n, x ′, n′) and Rsl

III(x, n, x ′, n′), respectively. Here
x ′ and x are, respectively, the incident and scattered frequencies
in non-dimensional units, and n′ and n denote the incident and
scattered ray directions. We note that the laboratory frame func-
tions R

(K)
V and Rsl

III are derived in Heinzel & Hubeny (1982).
They have the same functional form as their pure radiative
counterpart derived in Heinzel (1981) and only the damping
parameters are to be appropriately changed.

5. COLLISIONAL REDISTRIBUTION MATRIX IN TERMS
OF IRREDUCIBLE SPHERICAL TENSORS

The redistribution matrix derived in Section 4 is written in
terms of the Rayleigh and isotropic scattering phase matrices.
It is advantageous to express them in terms of irreducible
spherical tensors for polarimetry T K

Q (i, n) introduced by Landi
Degl’Innocenti (1984). Here i = 0, 1, 2, 3 refer to the Stokes
parameters. The index K takes the values K = 0, 1, 2 and
−K � Q � +K . In the following subsections we first recall

the expression of the resonance scattering phase matrix in terms
of T K

Q (i, n), and then express the redistribution matrix derived
by Domke & Hubeny (1988) for resonance lines in terms of
spherical tensors. Finally, we express the redistribution matrix
for subordinate lines in terms of T K

Q (i, n).

5.1. Multipolar Components of the Resonance
Scattering Phase Matrix

The resonance scattering phase matrix can be written as a
linear combination of Rayleigh phase matrix multipolar com-
ponents P̂(K)

R (n, n′) and is given by (see Landi Degl’Innocenti
1984; Bommier 1997b)

P̂(n, n′) =
2∑

K=0

WK (ji, je)P̂(K)
R (n, n′), (28)

where WK (ji, je) is the same as WK defined in Equation (20),
and [

P̂(K)
R (n, n′)

]
ij

=
+K∑

Q=−K

(−1)QT K
Q (i, n)T K

−Q(j, n′), (29)

where i, j = 0, 1, 2, 3. In terms of the phase matrices P̂is, P̂R,
and P̂V introduced in Section 4, the resonance scattering phase
matrix can be written as (see Frisch 1996)

P̂(n, n′) = W2P̂R + (1 − W2)P̂is + W1P̂V . (30)

Comparing Equations (28) and (30), it is easy to show that

P̂is = P̂(0)
R , (31)

P̂R = P̂(0)
R + P̂(2)

R , (32)

and
P̂V = P̂(1)

R . (33)

5.2. The Case of Lines with an Infinitely Sharp
Lower Level (Resonance Lines)

For resonance lines, Equation (27) takes the form

R̂rl
LF(x, n, x ′, n′) = P̂R

{
αW2RII + W2

[
β(2) − α

]
RIII

}
+ P̂is

{
α(1 − W2)RII + [(β(0) − α) − W2(β(2) − α)]RIII

}
+ P̂V

{
αW1RII + W1

[
β(1) − α

]
RIII

}
, (34)

where the superscript “rl” stands for resonance line and the
subscript “LF” stands for laboratory frame. In Equation (34),
RII and RIII denote the type-II and type-III laboratory frame
redistribution functions of Hummer (1962). Equation (34) is
the same as Equation (49) of Domke & Hubeny (1988), except
that our

(
β(K) − α

)
is equal to their β(K) and the redistribution

functions are now written in laboratory frame. Substituting
Equations (31)–(33) into the above equation, we obtain

R̂rl
LF(x, n, x ′, n′) =

2∑
K=0

WK [αRII + (β(K) − α)RIII]P̂
(K)
R (n, n′).

(35)
The above redistribution matrix for resonance lines is the same
as that derived by Bommier (1997a) applying a master equation
theory.
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5.3. The Case of Lines with Finite Width of
Lower Level (Subordinate Lines)

To simplify the algebra we introduce the notations

δ(K) =
2∑

K ′=0

α(K ′)C̄KK ′ji je
, (36)

and

R̃
(K)
V =

2∑
K ′=0

α(K ′)C̄KK ′ji je
R

(K ′)
V . (37)

Using Equations (36) and (37), the redistribution matrix for
subordinate lines (see Equation (16)) can be rewritten in the
laboratory frame as

R̂sl
LF(x, n, x ′, n′) = P̂R

{
R̃

(2)
V +

[
W2β

(2) − δ(2)
]
Rsl

III

}
+ P̂is

{[
R̃

(0)
V − R̃

(2)
V

]
+ [(β(0) − W2β

(2)) − (δ(0) − δ(2))]Rsl
III

}
+ P̂V

{
R̃

(1)
V + [W1β

(1) − δ(1)]Rsl
III

}
. (38)

Substituting Equations (31)–(33) into the above equation, we
obtain

R̂sl
LF(x, n, x ′, n′) =

2∑
K=0

{
R̃

(K)
V +[WKβ(K)−δ(K)]Rsl

III

}
P̂(K)

R (n, n′).

(39)
In the case of no elastic collisions in the lower level,

Equations (36) and (37) reduce to (see Equation (26))

[δ(K)]
D

(K)
i =0 = WKα, (40)

[
R̃

(K)
V

]
D

(K)
i =0 = WKαRV. (41)

Using Equations (40) and (41) in Equation (39), we obtain

[
R̂sl

LF(x, n, x ′, n′)
]
D

(K)
i =0 =

2∑
K=0

WK

× [
αRV + (β(K) − α)Rsl

III

]
P̂(K)

R (n, n′). (42)

Clearly the above equation is analogous to Equation (35).

6. AZIMUTH AVERAGED COLLISIONAL
REDISTRIBUTION MATRIX

The assumption of a planar axisymmetric geometry is com-
monly used in the modeling of stellar atmospheres, in particular
when there are uncertainties about the shape of the emitting
region. In this section, we derive an azimuth averaged redis-
tribution matrix for subordinate lines that can be used with
axisymmetric radiative transfer equation.

For resonance lines, azimuth averaged redistribution func-
tions were used by Milkey et al. (1975, and references cited
therein). For polarized scattering in resonance lines, an azimuth
averaged redistribution matrix was first used by Dumont et al.
(1977) and Faurobert (1987) for the type-I and type-II redistri-
bution, respectively (see also Wallace & Yelle 1989, for meth-
ods of computing azimuth averaged type-II redistribution func-
tion). Domke & Hubeny (1988) discuss the same problem with
a better treatment of collisions (RII and RIII). More recently
Frisch (2010) has proposed a method of performing azimuth

averaging of angle-dependent PRD matrices using irreducible
spherical tensors. This technique is based on Fourier azimuthal
expansion of the redistribution functions. Also it uses spheri-
cal tensor expansion of the angular phase matrices (in contrast
to the Fourier decomposition method of Chandrasekhar 1950;
Faurobert-Scholl 1991; Nagendra et al. 1998). In the following,
we apply the method of Frisch (2010) to the problem of deriving
azimuth averaged PRD matrix for subordinate lines.

In an axisymmetric medium, the Stokes (I,Q) are sufficient to
represent the polarization state of the radiation field (see, e.g.,
Chandrasekhar 1950). Therefore, in Equation (29) the Stokes
parameters indices i and j take values 0 and 1. Following Frisch
(2010, Section 2), we can rewrite Equation (29) as

[
P̂(K)

R (n, n′)
]
ij

=
K∑

Q�0

cQ T̃ K
Q (i, θ )T̃ K

Q (j, θ ′) cos Q(χ − χ ′),

(43)
where i, j = 0, 1 and cQ = 2−δ0Q. (θ ′, χ ′) and (θ, χ ) represent
the incident and scattered ray directions with respect to the polar
Z-axis. The relation between T̃ K

Q (i, θ ) and T K
Q (i, n) is given in

Equation (5) of Frisch (2010). Following Domke & Hubeny
(1988) the angle-dependent PRD function R(x, x ′, Θ) can be
expanded in an azimuthal Fourier series as

R(x, x ′, Θ) =
∞∑

k�0

R(k)(x, θ, x ′, θ ′) cos kΔ, (44)

where Δ = χ − χ ′. The Fourier coefficients are given by

R(k)(x, θ, x ′, θ ′) = cQ

2π

∫ 2π

0
R(x, θ, x ′, θ ′, Δ) cos kΔ dΔ. (45)

Applying the above azimuthal expansion to R̃
(K)
V and Rsl

III, we
obtain

R̃
(K)
V =

∞∑
k�0

R̃(k,K)
V cos kΔ, (46)

Rsl
III =

∞∑
k�0

R(k),sl
III cos kΔ, (47)

where

R̃(k,K)
V =

2∑
K ′=0

α(K ′)C̄KK ′ji je
R(k,K ′)

V (x, θ, x ′, θ ′). (48)

The Fourier coefficients R(k),sl
III and R(k,K ′)

V have an expression

similar to Equation (45), but with Rsl
III and R

(K ′)
V in place of R.

The azimuth averaged redistribution matrix is defined by (see
Equation (65) of Domke & Hubeny 1988)

〈
R̂sl

LF

〉
Az.Av.

= 1

2π

∫ 2π

0
R̂sl

LF(x, θ, x ′, θ ′, Δ) dΔ. (49)

Substituting Equations (43), (46), and (47) into Equation (39)
and the resulting equation in Equation (49), we obtain after some
algebra

[〈
R̂sl

LF

〉
Az.Av.

]
ij

=
2∑

K=0

K∑
Q�0

{
R̃(Q,K)

V +
[
WKβ(K) − δ(K)

]
R(Q),sl

III

}
× T̃ K

Q (i, θ )T̃ K
Q (j, θ ′). (50)
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Figure 1. Frequency dependence of azimuthal Fourier coefficient of type-V
redistribution function for μ = 0.3, μ′ = 0.7, and for different values of Q.
The damping parameters al = au = 10−3. Thin lines correspond to x′ = 1 and
the thick lines to x′ = 4. The solid line represents Q = 0, the dotted line Q = 1,
and the dashed line Q = 2.

The azimuth averaged redistribution matrix for the special cases
of lower level with no elastic collisions (i.e., D

(K)
i = 0) and

infinitely sharp lower level (resonance line) can be recovered
from Equation (50) (see Sections 4 and 5).

From Equation (50), it is clear that only Fourier coefficients
of order k = Q = 0, 1, 2 are sufficient to fully represent
the azimuth averaged redistribution matrix. For the sake of
illustration, we have calculated azimuthal Fourier coefficients
of type-V redistribution function. The upper and lower level
radiative widths are parameterized as al = au = 10−3. Figure 1
shows R(Q)

V (x, θ, x ′, θ ′)/ϕ(x ′) for μ = cos θ = 0.3 and
μ′ = cos θ ′ = 0.7 and for x ′ = 1 (thin lines) and x ′ = 4 (thick
lines). ϕ(x ′) denotes the Voigt absorption profile function. As in
the case of type-II and type-III redistribution functions (see, e.g.,
Domke & Hubeny 1988; Sampoorna et al. 2011; Nagendra &
Sampoorna 2011), the azimuthal Fourier coefficients of the type-
V redistribution function decrease with the increasing azimuthal
order Q. For x ′ = 4 the R(0)

V exhibits a double maxima, one at
x = x ′ and other at x = 0, which is typical of the type-V
redistribution function (see, e.g., Frisch 1980; Heinzel 1981;
Heinzel & Hubeny 1983). See Frisch (1980) for a detailed
physical interpretation of this double maxima exhibited by the
type-V function.

7. CONCLUSIONS

Here we have derived laboratory frame expressions for the
polarized redistribution matrix for subordinate lines including
collisions. Our approach is based on the earlier works by
Omont et al. (1972), Domke & Hubeny (1988), and Heinzel
& Hubeny (1982). As in the aforementioned papers, the lower
level is assumed to be unpolarized. The scalar collisional
redistribution function derived by Heinzel & Hubeny (1982) for
subordinate lines is used to derive the polarized PRD matrix. An
alternative approach is that of Bommier (1997a, 1997b), where
AF polarized PRD matrices are given.

The laboratory frame redistribution matrix is written in a form
suitable for application in polarized line formation theories. This
purpose is better served by formulating the redistribution matrix
in terms of the irreducible spherical tensors for polarimetry.
Azimuth averaged redistribution matrix is also derived keeping
in view the astrophysical applications where the radiation field
is axisymmetric. The collisional frequency redistribution is
considered in sufficient detail keeping in view the use of these
matrices in modeling the linearly polarized spectrum of the
Sun.

I am very grateful to Dr. K. N. Nagendra for motivating me
to take up this problem and also for stimulating discussions and
useful suggestions. Thanks are also due to Dr. H. Frisch and an
anonymous referee for useful comments that helped to improve
the paper.
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