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ABSTRACT

Context. Quantum interference phenomena play a fundamental role in the formation of linear polarization that arises from scattering
processes in multiplets of the solar spectrum. In particular, the J-state interference between different line components of a multiplet
(arising from transitions in a two-term atom) produces significant effects in the linearly polarized spectra.
Aims. We aim to solve the polarized radiative transfer equation for a two-term atom with the unpolarized lower term in isothermal
slabs, including the effect of the interference between the upper J-states and partial frequency redistribution (PRD). We consider only
the case of non-magnetic scattering.
Methods. The PRD matrix for the J-state interference derived in previous works is incorporated into the polarized transfer equation.
The standard form of the two-level atom transfer equation is extended to a two-term atom. The transfer problem is then solved using
a traditional polarized approximate lambda iteration method.
Results. We show how the PRD and the J-state interference together affect the shapes of the (I,Q/I) profiles. We present the bench-
mark solutions for isothermal, constant-property slabs of a given optical thickness. We consider a hypothetical 2S − 2P doublet
produced by an L = 0 → 1 → 0 scattering transition with spin S = 1/2. We present the results in the form of Stokes (I,Q/I) profiles
for different values of (i) the line separation, (ii) optical thickness, (iii) thermalization parameter, and (iv) the continuum opacity.
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1. Introduction

The linearly polarized spectrum of the Sun, known as the “sec-
ond solar spectrum”, contains a wealth of information about the
physics of light scattering on atoms. The interpretation of the
shapes of the spectral lines in the second solar spectrum deepens
our understanding of the physical processes taking place in the
solar atmosphere, and also gives us a diagnostic tool for the de-
termination of the solar magnetic fields. The solution of the po-
larized line transfer equation is necessary to interpret the shapes
of the observed Stokes line profiles.

A quantum theory of upper J-state interference for frequency
coherent scattering in the laboratory frame was formulated
by Stenflo (1980, 1994, 1997). He introduced a wavelength-
dependent polarizability factor W2(λ) to describe the phe-
nomenon of quantum interference. Stenflo (1980) used this ap-
proach to model the observed scattering polarization signals in
solar Ca ii H and K lines. He applied the concept of the last
scattering approximation for this purpose. The quantum interfer-
ence theory of Stenflo (1980) was later included in the radiative
transfer computations along with partial frequency redistribution
(PRD) in Fluri et al. (2003, see also Holzreuter et al. 2006). A
PRD matrix for the J-state interference in a two-term atom with
unpolarized lower term and in the collisionless regime was de-
rived in the atomic frame by Landi Degl’Innocenti et al. (1997)
using a meta-level approach. Recently Smitha et al. (2011, here-
after P1) have derived the same PRD matrix starting from the
Kramers-Heisenberg scattering formula. In P1 the expression for

the laboratory frame PRD matrix is given. In the present paper
we incorporate the PRD matrix derived in P1 into the polarized
line transfer equation. For this purpose we generalize the vec-
tor version of the standard two-level atom NLTE line transfer
equation (Mihalas 1978; Stenflo 1994) to the case of a two-term
atom. We restrict our attention to the non-magnetic case.

It is necessary to distinguish between linear and non-linear
NLTE radiative transfer problems for polarized radiation (e.g.,
Trujillo Bueno 2003). An example of a linear radiative trans-
fer problem is the standard problem of scattering polarization
and the Hanle effect in a gas of two-level atoms assuming
that the lower level is unpolarized (e.g., Faurobert-Scholl 1991;
Nagendra et al. 2002; Sampoorna et al. 2011, and the refer-
ences cited therein). Examples of non-linear problems are the
problems of scattering polarization and the Hanle effect in two-
level or multilevel systems with atomic polarization in all levels
(Trujiilo Bueno & Landi Deg’Innocenti 1997; Manso Sainz &
Trujillo Bueno 2003, 2010). It is important to note that the two-
term atom problem with an unpolarized lower term considered
in this paper is essentially similar to the two-level atom problem
without lower-level polarization. In other words, it is a linear
problem that does not involve the simultaneous solution of the
statistical equilibrium and the Stokes-vector transfer equations.
All couplings between different components of the multiplet en-
ter the transfer problem only through the PRD matrix.

Novel iterative schemes have been developed by Trujillo
Bueno and coworkers (see Trujillo Bueno 2003, and references

Article published by EDP Sciences A35, page 1 of 8

http://dx.doi.org/10.1051/0004-6361/201117550
http://www.aanda.org
http://www.edpsciences.org


A&A 535, A35 (2011)

therein to their previous works) to solve the complete frequency
redistribution (CRD) polarized NLTE transfer equation in multi-
level atoms with the polarization of all levels taken into account.
A recent review by Trujillo Bueno (2011) describes the modeling
of scattering polarization and the Hanle effect in some spectral
lines. Reviews by Nagendra (2003a,b); Nagendra & Sampoorna
(2009), and Nagendra et al. (2009) list several exact and approx-
imate numerical methods of solving the polarized transfer equa-
tion for a two-level atom without lower level polarization. The
polarized approximate lambda iteration (PALI) methods based
on the Jacobi iterative scheme of Olson et al. (1986) have been
developed to solve the two-level atom polarized transfer equa-
tion (see e.g. Nagendra 2003a). In the present paper we use one
of the methods described in Nagendra & Sampoorna (2009) gen-
eralized appropriately to the case of a two-term atom to solve the
J-state interference problem.

In Sect. 2 we discuss the transfer equation for a two-term
atom model. In Sect. 2.1 we describe the decomposition of the
Stokes vector I and source vector S into the two cylindrically
symmetric components to cast the Stokes vector transfer equa-
tion in a reduced form. The numerical method of the solution
is presented in Sect. 3. The computed results are discussed in
Sect. 4. In Sect. 5 we present the conclusions.

2. The transfer equation

The radiation field in a non-magnetic plane parallel atmosphere
with axisymmetric boundary conditions is axisymmetric. This
axially symmetric polarized radiation field can be described by
the two Stokes parameters I and Q (see Chandrasekhar 1950).
The relevant line transfer equation for the problem of resonance
scattering polarization may be written as

∂

∂s

(
I
Q

)
=

(
εI
εQ

)
−

(
ηI ηQ
ηQ ηI

) (
I
Q

)
. (1)

Equation (1) is a special case of the general polarized transfer
equation given by Eq. (8.2) of Landi Degl’Innocenti & Landolfi
(2004, hereafter LL04), when the axial symmetry of the polar-
ized radiation field is imposed. In Eq. (1) ∂s denotes the incre-
mental distance along the ray; εI,Q are the emission coefficients
in the Stokes vector (I,Q)T basis; and ηI,Q are the correspond-
ing absorption coefficients. Under the assumption that the lower
level of the transition is unpolarized, ηQ = 0. In this case the
(2 × 2) absorption matrix becomes diagonal. For a line formed
in the presence of a continuum

ηI = η0 + kc, (2)

where η0 is the line absorption coefficient, and kc the contin-
uum absorption coefficient. In the case of a standard two-level
atom model, η0 = kLφ(x) where kL is the frequency integrated
line absorption coefficient, and φ(x) is the Voigt profile func-
tion for the reduced frequency x. The expression for η0 in the
particular case of a two-term atom can be derived starting from
the general expressions for multi-term atom, given in LL04 (see
Eq. (7.47a)). Alternatively, η0 can also be derived by general-
izing to the case of a two-term atom, the standard expression
for intensity absorption coefficient of a two-level atom given in
Mihalas (1978). Neglecting the induced emission term, it can be
written as

η0(Ja, Jb) =
hνJb Ja

4π
B(Ja → Jb)N(Ja)φ(νJb Ja − ν), (3)

where Ja and Jb are the total angular momentum quantum num-
bers of the lower and upper level respectively. B(Ja → Jb) is
the Einstein’s coefficient. N(Ja) is the number density of atoms
in the lower (Ja) level. νJb Ja is the line center frequency for the
transition Jb → Ja. φ(νJb Ja − ν) is the normalized Voigt profile
function with line center frequency at νJb Ja . Equation (3) can be
generalized to the case of two-term atom by summing over vari-
ous components of the multiplet, namely

ηM =
∑
Ja Jb

η0(Ja, Jb). (4)

A two-term atom is characterized by the orbital angular momen-
tum La and Lb of the lower and upper terms respectively with
spin S . Owing to L − S coupling, a given (L, S ) state splits into
several J-states, with |L − S | ≤ J ≤ |L + S |. The coefficient
B(Ja → Jb) is then related to B(La → Lb) through the expres-
sion

B(Ja → Jb) = B(La → Lb)(2La + 1)(2Jb+ 1)

{
Lb La 1
Ja Jb S

}2

, (5)

(see Eqs. (8.43) and (9.74) of Stenflo 1994). The populations
of the lower J-levels are related to the populations of the lower
L-term through the relation

N(Ja) = (2Ja + 1)
N(La)

(2S + 1)(2La + 1)
, (6)

where the assumption of unpolarized lower term is made. Using
Eqs. (3), (5), and (6) in Eq. (4), we obtain

ηM(ν) =
kM

(2S + 1)

∑
Ja Jb

(2Ja + 1)(2Jb + 1)

×
{

Lb La 1
Ja Jb S

}2

φ(νJb Ja − ν),

(7)

where

kM =
hνJa Jb

4π
N(La)B(La → Lb) (8)

is the frequency-integrated absorption co-efficient of the entire
multiplet. In the case of an L = 0 → 1 → 0 scattering transition
with S = 1/2

ηM(ν) = kM

[2
3
φ(ν 3

2
1
2
− ν) + 1

3
φ(ν 1

2
1
2
− ν)

]
. (9)

An expression analogous to that of the two-level atom can be
recovered by introducing a combined profile function that for
2S → 2P→ 2S doublet is given by

φ(x) =
[2
3
φ(ν 3

2
1
2
− ν) + 1

3
φ(ν 1

2
1
2
− ν)

]
. (10)

Notice that the combined profile function φ(x) is a weighted
sum of Voigt profiles of the two lines of the doublet. For the
more general case of a La → Lb → La scattering transition
with spin S , Eq. (7) has to be used to obtain explicit expressions
for the corresponding combined profile function. The combined
profile function φ(x) can also be derived using the theoretical
framework of Stenflo (1997, see his Sect. 3.1). It is also implic-
itly contained in the general definition for the intensity absorp-
tion coefficient for a multi-term atom given in LL04.
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Defining the optical depth scale as dτ = −kMdz, we can
rewrite Eq. (1) as

μ
∂I(τ, x, μ)
∂τ

= (φ(x) + r)[I(τ, x, μ) − S(τ, x, μ)], (11)

where μ = cos θ with θ being the colatitude with respect to
the atmospheric normal. I = (I,Q)T is the Stokes vector. S =
(S I , S Q)T is the total source vector given by

S I,Q =
εI,Q

ηI
· (12)

x is the scattered frequency in Doppler width units. r is the ra-
tio of continuum to the frequency-integrated line absorption co-
efficient. The positive Stokes Q represents electric vector vibra-
tions perpendicular to the solar limb.

The total source vector S is given by

S(τ, x, μ) =
φ(x)Sl(τ, x, μ) + rSc

φ(x) + r
, (13)

where the unpolarized continuum source vector Sc = BU, with
B being the Planck function and U = (1, 0)T. The line source
vector for a two-term atom has the form

Sl(τ, x, μ) = εBU +
1
φ(x)

∫ +∞

−∞
dx′

×
∫ 1

−1

dμ′

2
R(x, μ, x′, μ′)I(τ, x′, μ′), (14)

where x′ is the incoming frequency in Doppler width units and
ε = ΓI/(ΓI+ΓR) is the photon destruction probability per scatter-
ing with ΓI and ΓR being the inelastic and radiative de-excitation
rates of the upper term Lb. We assume that ΓI and ΓR are the same
for all fine structure levels of the upper term. The non-magnetic
two-term atom redistribution matrix is given by Eq. (26) of P1.

Note that the redistribution matrix derived in P1 depends
on incoming and outgoing ray directions n′(θ′, ϕ′) and n(θ, ϕ)
which are defined with respect to the atmospheric normal. The
angular dependence appears not only in the phase matrix part
of the redistribution matrix, but also in the redistribution func-
tions. To simplify the problem, following Rees & Saliba (1982),
we here replace the angle-dependent redistribution functions by
their angle-averaged analogues. The angle-averaged functions
can be computed from the angle-dependent functions by inte-
grating over the scattering angle between the incident and scat-
tered ray (cf. Bommier 1997).

Owing to the azimuthal symmetry of the problem, one can
then integrate the phase matrix part of the redistribution ma-
trix over the azimuths ϕ′ of the incoming radiation to obtain
R(x, μ, x′, μ′), which is given by

Ri j(x, μ; x′, μ′) =
∑

K

RK(x, x′)T̃ K
0 (i, μ)T̃ K

0 ( j, μ′), (15)

where i, j = 0, 1 and T̃ K
0 (i, μ) are given by Eq. (28) of Frisch

(2007) with K = 0, 2. T̃ K
Q (i, μ) are related to the irreducible

spherical tensors for polarimetry T K
Q (i, n) introduced by Landi

Degl’Innocenti (1984), through

T K
Q (i, n) = T̃ K

Q (i, μ)eiQ ϕ, (16)

with Q taking values −K ≤ Q ≤ +K.

The redistribution function components RK (x, x′) are
given by

RK(x, x′) =
3(2Lb + 1)

2S + 1

∑
Ja J f Jb Jb′

(−1)J f−Ja cos βJb′ Jb

×[cosβJb′ Jb (hII
Jb,Jb′

)Ja J f − sin βJb′ Jb( f II
Jb,Jb′

)Ja J f ]

×(2Ja + 1)(2J f + 1)(2Jb + 1)(2Jb′ + 1)

×
{

La Lb 1
Jb J f S

} {
La Lb 1
Jb Ja S

}{
La Lb 1
Jb′ J f S

} {
La Lb 1
Jb′ Ja S

}

×
{

1 1 K
Jb′ Jb Ja

} {
1 1 K

Jb′ Jb J f

}
. (17)

In Eq. (17), La,b are the orbital angular momentum quantum
numbers of the lower and upper terms respectively and S is the
spin. Ja, f are the total angular momentum quantum numbers of
the fine structure levels of the lower term and Jb,b′ are the to-
tal angular momentum quantum numbers of the fine structure
levels of the upper term. The auxiliary functions (hII

Jb,Jb′
)Ja J f and

( f II
Jb,Jb′

)Ja J f are defined in Eqs. (14) and (15) of P1 but are used
here for the non-magnetic case and with angle-averaged redistri-
bution functions of type-II. The angle βJb′ Jb is defined in Eq. (10)
of P1.

2.1. Decomposition of the Stokes vectors

In general the source vector S and the Stokes vector I depend on
the colatitude θ of the radiation field. Computationally it is ad-
vantageous to work in a reduced basis, where the source vector
components do not depend on θ (see for e.g. Faurobert-Scholl
et al. 1997). Transformation of the Stokes vectors to such a re-
duced basis is referred to as the “decomposition” of the Stokes
vectors. Using T K

Q (i, n), Frisch (2007) has presented an elegant
decomposition technique for the case of the Hanle effect. It is
straightforward to apply this decomposition technique to the
problem at hand. Here we briefly present a few important equa-
tions of this decomposition.

Let us denote Ii = (I,Q) with i = 0, 1 as the components
of the Stokes vector. For the cylindrically symmetric case, the
components Ii of the Stokes vector can be decomposed in terms
of two irreducible components IK

Q as follows

Ii(τ, x, μ) =
∑

K=0,2

T̃ K
0 (i, μ)IK

0 (τ, x, μ). (18)

Similarly, the source vector S can be decomposed in terms of
two cylindrically symmetric components SK

0 , which become in-

dependent of even μ. T̃ K
0 (i, μ) are real for K = 0, 2 and i = 0, 1,

and thus IK
0 and SK

0 are also real.
For the non-magnetic case, we define the two-component

vectors I = {I0
0,I

2
0}

T and S = {S0
0,S

2
0}

T. The transfer equation
for I can now be written as

μ
∂I (τ, x, μ)
∂τ

= (φ(x) + r)[I (τ, x, μ) − S(τ, x)]. (19)

The irreducible total source vector takes the form

S(τ, x) =
φ(x)Sl(τ, x) + rG(τ)

φ(x) + r
, (20)

where G(τ) = {B, 0}T is the primary source vector. The irre-
ducible line source vector is given by

Sl(τ, x) = εG(τ) +
∫ +∞

−∞

R̃(x, x′)
φ(x)

J (τ, x′)dx′. (21)
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Here R̃(x, x′) is a (2×2) diagonal matrix with elements R̃ = diag
(R0,R2), where RK are defined in Eq. (17).

The mean intensity J (τ, x) for the non-magnetic case is a
two-component vector defined by

J (τ, x) =
1
2

∫ +1

−1
Ψ(μ′)I (τ, x, μ′)dμ′. (22)

The elements of the (2 × 2) matrix Ψ(μ) are given in LL04 (see
also Appendix A of Frisch 2007). In the following sections, for
notational brevity we specify the functional dependence of phys-
ical quantities as subscripts.

3. Numerical method of solution

We solve the polarized line radiative transfer equation for non-
magnetic (Rayleigh) scattering on a two-term atom including the
effects of J-state interference given in Eq. (19). We use the PALI
method developed in Nagendra & Sampoorna (2009) appropri-
ately extended to handle the present problem. In the following
subsections we briefly describe this iterative technique.

3.1. The iteration scheme

The formal solution of the transfer equation may be stated in
terms of the full lambda operator as

J x = Λx[Sx], (23)

where Λx operates on the quantity within [ ]. By defining a local
monochromatic approximate Lambda operator Λ∗x as

Λx = Λ
∗
x + δΛx = Λ

∗
x + (Λx − Λ∗x), (24)

we can set up an iterative scheme to compute the source vectors,
namely

S(n+1)
x = S(n)

x + δS(n)
x , (25)

S(n+1)
l,x = S(n)

l,x + δS(n)
l,x , (26)

where the superscript (n) refers to the nth iteration step. From
Eqs. (24) and (25) it follows, by keeping only terms up to the
first order, that

J (n+1)
x ≈ J (n)

x + Λ
∗
x[δS(n)

x ]. (27)

Inserting Eqs. (21) and (27) into Eq. (26), we obtain a set of lin-
ear equations for the corrections to the line source vector δS(n)

l,x :

δS(n)
l,x −

∫ +∞

−∞

R̃x,x′

φx
px′Λ

∗
x′[δS(n)

l,x′ ]dx′ = r(n)
x . (28)

In deriving the above equation we have used the relation

Λ∗x[δS(n)
x ] = pxΛ

∗
x[δS(n)

l,x ], (29)

where px = φx/(φx + r) is a scalar quantity defining the frac-
tional line absorption and Λ∗x is a linear operator. The frequency
dependent residual vector is given by

r(n)
x = S(n)

FS,l,x −S(n)
l,x . (30)

The formal line source vector is obtained from

S(n)
FS,l,x = εG(τ) +

∫ +∞

−∞

R̃x,x′

φ(x)
J (n)

x′ dx′, (31)

where the mean intensity J (n)
x = Λx[S(n)

x ] is computed using a
short characteristic formal solver.

3.2. Calculation of the source vector corrections

The important step of the iterative method is the calculation of
the source vector corrections δS(n)

l,x . Here we use the frequency
by frequency (FBF) method of Paletou & Auer (1995) to com-
pute these corrections, suitably generalized to the vector case
(see also Sampoorna et al. 2008). The system of linear equations
(Eq. (28)) can be organized in the matrix form as

AδSl = r, (32)

where the vector r is the right-hand side of Eq. (28). At each
depth point, for the non-magnetic case, A is a 2Nx × 2Nx matrix
with Nx the number of frequency points, and r has a length 2Nx.
Each element of A corresponding to a given value of x and x′ is
a 2 × 2 block denoted by A2, which is given by

A2
i j = δi, jE −

R̃i, j

φi
p jΛ

∗
j; i, j = 1, 2, 3, ...,Nx. (33)

Here E is the 2 × 2 identity matrix. δi, j is the Kronecker’s delta.
The indices (i, j) refer to discretized values of (x, x′), respec-
tively. The matrix A is computed only once because it does not
change during the iteration.

We note that the polarized radiative transfer equation and its
method of solution presented in Sects. 2 and 3 are valid for any
scattering transition of the type La → Lb → La in a two-term
atom. In Sect. 4 we present the results only for an L = 0 →
1 → 0 scattering transition with S = 1/2, which corresponds to
a doublet. The absorption profile function φ(x) for this doublet
is given in Eq. (10).

4. Results and discussions

In this section we present the emergent Stokes profiles obtained
by solving the polarized line radiative transfer equation for a hy-
pothetical doublet at 5000 Å and 5001 Å. They arise from an
L = 0 → 1 → 0 scattering transition with spin S = 1/2 and
include the effects of J-state interference. We consider isother-
mal constant property slabs with a given optical thickness T to
perform the tests. T is varied from optically thin (T 	 1) to
optically thick (T 
 1) slabs. The slabs are assumed to be self-
emitting unless stated otherwise. The slabs are illuminated at the
lower boundary when they are assumed as pure scattering media
(ε = 0). The atmospheric model parameters used for the com-
putations are represented by (T, a, ε, r), where a is the damping
parameter. The Planck function B is taken as unity. The Doppler
width for both lines are assumed to be the same and equal to
0.025 Å. The grid resolution in the physical variables is given by
the values of (Nd,Nx,Nμ). The quantity Nd represents the num-
ber of depth points per decade in a logarithmically spaced τ-grid.
Unless stated otherwise, the first depth point τmin = 10−2 and
Nd = 5. The frequency grid points are very closely and equally
spaced near the cores of the two lines as well as in between
the two lines, and sparsely but equally spaced in the wings of
the two lines. The total number of frequency points Nx = 308.
We use a Gauss-Legendre quadrature for colatitude θ (μ) with
Nμ = 5 points.

4.1. Scattering in optically thin slabs

To mimic a single scattering event from a radiative line trans-
fer problem with PRD, we consider an optically thin slab illu-
minated at the lower boundary by an unidirectional unpolarized
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Fig. 1. Emergent Stokes profiles formed in an optically thin medium
shown as a function of wavelength for nearly tangential emergence μ =
0.47 × 10−2 (dotted line). The model parameters are T = 2 × 10−2, a =
10−3, ε = 0, and r = 0. A nearly vertical beam of radiation incident at
μ′ = 0.995 is used as the lower boundary condition. In this case, the
intensity is scaled up by a factor of 102 for comparison with the single
scattered solution. The dashed line shows the emergent Stokes profiles
computed for the single scattering case with the same value of scattering
angle.

beam of radiation, namely, I (τ = T, x′, μ′ = 0.995) = U. The
other parameters used are (T = 2× 10−2, a = 10−3, ε = 0, r = 0).
The first depth point is τmin = 10−4 and Nμ = 17. The opti-
cal thickness is chosen to be very small so that the emergent
diffuse radiation field is dominated by single scattered photons.
The choice of parameters ε = 0 and r = 0 represents a purely
scattering medium without any continuum absorption. In Fig. 1
we compare emergent profiles computed from the line transfer
problem that mimics a nearly 84◦ single scattering event (dotted
line) with the profiles computed for the exact 84◦ single scatter-
ing case (dashed line). The intensity computed from the trans-
fer code has been scaled up by a factor of 102 (dotted line), to
match with intensity obtained from the single scattering case.
From Fig. 1 we see that the shape of the profiles computed with
the transfer code are very similar to the profiles for the single
scattering case. They are similar to the single scattered Q/I pro-
files of Stenflo (1980; see also Fig. 10.17 of LL04). This verifies
that the R matrix has been correctly incorporated into the line
transfer code. We plot −Q/I only in Fig. 1 to facilitate a quick
comparison with the corresponding single scattered profiles pre-
sented in Stenflo (1980; see also P1).

4.2. Comparison between Stokes profiles with and without
J-state interference

Figure 2 shows a comparison between the Stokes profiles com-
puted with and without the effects of J-state interference. The
effects of J-state interference in a doublet (or even a multi-
plet) system can be neglected by simply setting Jb = Jb′ in the
RHS of Eq. (17), so that there is only one summation over Jb.
These profiles are plotted for an atmosphere with T = 2 × 104,
a = 10−3, ε = 10−4, and r = 0. It is well known from the sin-
gle line two-level atom transfer computations that owing to the

Fig. 2. Emergent Stokes profiles computed without J-state interference
(dotted line) and with J-state interference (dashed line) at μ = 0.047
for an optical thickness T = 2 × 104. The other model parameters are
(a, ε, r) = (10−3, 10−4, 0).

effects of PRD, two symmetric wing peaks appear in the Q/I
profiles on either side of the line center. These peaks are referred
to as the PRD peaks. For a doublet without the effect of J-state
interference, or in other words, two non-interacting lines, these
symmetric PRD peaks are visible around the lines at 5000 Å and
5001 Å (see dotted line in Fig. 2). Q/I at the 5001 Å line (arising
from the 1/2→ 1/2→ 1/2 scattering transition) is zero because
the polarizability factor W2 is zero for this line. If one includes
J-state interference effects between the two lines, the near wing
PRD peaks around the 5000 Å line become asymmetric (see the
dashed line). The amplitude of the PRD peak at 4999.8 Å is in-
creased, whereas the amplitude of the PRD peak at 5000.2 Å is
decreased. Moreover, the symmetric PRD peaks around 5001 Å
are converted into anti-symmetric peaks by the J-state interfer-
ence effects. The amplitudes of these peaks are also enhanced.
Comparing the dotted line with the dashed line, it is evident that
these effects are caused by J-state interference.

The prominent signature of the J-state interference is the
sign reversal in Q/I in the region of interference between the
two lines. This is clearly visible in the dashed line, which in-
cludes this effect, but not in the dotted line which represents the
case of the non-interacting lines.

Though there are striking differences between the Q/I for the
two cases – with and without J-state interference, the intensity I
is unaffected by this phenomenon.

4.3. Effects of optical thickness T of the medium
on the J-state interference

In Fig. 3 we present the Stokes profiles for slabs with different
values of optical thickness T . For all examples, T ≥ 2×102 with
the thermalization parameter ε = 10−4. The chosen values of T
represent a wide variety of the scattering media ranging from
those that are effectively thin (εT = 2× 10−2, for T = 2× 102) to
those that are effectively thick (εT = 2 × 104, for T = 2 × 108).
The other model parameters are (a = 10−3, r = 0).
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Fig. 3. Emergent Stokes profiles at μ = 0.047 computed for opti-
cal thickness T = 2 × 102 (thick solid line), T = 2 × 104 (dotted
line), T = 2 × 106 (dashed line) and T = 2 × 108 (dot-dashed line).
The thin solid line represents a profile without J-state interference for
T = 2 × 108. The other model parameters are the same as in Fig. 2.
The insets are plotted as functions of the non-dimensional frequency
(x), measured from the line at 5000 Å to compare with the single line
results (see Fig. 10 of Sampoorna et al. 2011).

The variation of I and Q/I with T in the case of a doublet
is similar to that of a single-line case. This can be seen from the
inset panels in I and Q/I in Fig. 3 and in turn comparing them
with the left panel in Fig. 10 (dashed lines) of Sampoorna et al.
(2011). In the inset panels I and Q/I are plotted as a function of
the non-dimensional frequency (x), which is measured from the
center of the line at 5000 Å. As the optical thickness increases,
the magnitudes of Q/I at the PRD peaks initially increase and
then decrease. This decrease is caused by the influence of multi-
ple scattering. The thicker the atmosphere, the more isotropic is
the radiation field because of multiple scattering. Accordingly,
the polarization is reduced (see Rees 1978).

Furthermore, as T increases, the PRD peaks shift away from
the line centers of the two lines. For T = 2×106 and T = 2×108,
the PRD peaks occur far away from the centers of the two lines.
For instance, at the wing frequencies between the two lines, the
interference effects dominate over PRD-effects, resulting in sup-
pression of the PRD peaks. Hence, there are no PRD peaks visi-
ble in between the two lines for these two values of T . However,
their counterpart PRD peaks are visible on the outer sides of the
two lines that are away from the region of interference between
the two lines. For T = 2 × 108 the PRD peaks occur so far out
in the wings that they cannot be shown in the scale adopted for
Fig. 3.

For T = 2 × 108, an interesting feature is visible in the re-
gion of interference between the two lines. The Q/I profile dis-
plays a bump in the interference region between them (see the
dot-dashed line). This behavior can be understood by compar-
ing it with the thin solid curve that represents the result for the
same model atmosphere, but without the effects of J-state inter-
ference, namely for the case of two non-interacting lines (shown
only in the Q/I panel). The bump arises because of the sign re-
versal in Q/I that is in turn caused by the J-state interference

Fig. 4. Same as Fig. 3 but for various values of the thermalization pa-
rameter ε = 0 (solid line), ε = 10−6 (dotted line), ε = 10−4 (dashed
line) and ε = 10−2 (dot-dashed line). The remaining parameters are
(T, a, r) = (2 × 104, 10−3, 0).

effects. For two non-interacting lines, as seen from the thin solid
curve, the Q/I between the two lines is negative. The J-state in-
terference effects flip the sign of Q/I in this region which causes
this bump, as seen in the dot-dashed curve. A smaller bump vis-
ible at 5000.8 Å for T = 2 × 106 can also be understood in
a similar way (the corresponding curve for two non-interacting
lines is not shown in the figure).

4.4. Effects of the thermalization parameter ε on the J-state
interference

In Fig. 4 we present the Stokes profiles for different values of the
thermalization parameter ε. The optical thickness of the medium
is fixed at T = 2 × 104. The value of ε is varied from 10−2 to 0,
which covers effectively thick to effectively thin slabs. The other
model parameters are a = 10−3 and r = 0.

For ε = 0, there are no internal sources of photons. This is an
example of a pure scattering medium. We give I0

0(τ = T, x, μ) =
1 as the boundary condition at the lower boundary. In this case,
the emergent intensity is an absorption profile.

The variation of I and Q/I with ε in the case of a doublet is
similar to that of the single line case. This can be seen from the
inset panels in I and Q/I in Fig. 4. As ε increases from 10−6 to
10−2, the intensity increases and the degree of linear polarization
Q/I decreases in the line core and near wings of both the lines.
For ε � 0, the emergent intensity profiles become self-reversed
emission lines. This behavior is similar to that of the single line
case as can be seen from the right panel in Fig. 10 (dashed lines)
of Sampoorna et al. (2011).

It is worth noting that the wavelength region between
5000.3 Å to 5000.7 Å is insensitive to the variation in ε, except
when ε = 0 (in which case Q/I approaches zero). The J-state in-
terference effects show up most prominently in this wavelength
region in between the two lines. For ε = 0, the emergent radi-
ation in the wings approach the incident radiation which is un-
polarized (see Sampoorna et al. 2008). The curve for two non-
interacting lines (not shown in the figure) for this case nearly
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Fig. 5. Same as Fig. 3 but for different values of the continuum param-
eter r = 10−10 (solid line), r = 10−8 (dotted line), r = 10−6 (dashed
line) and r = 10−4 (dot-dashed line). The other model parameters are
(T, a, ε) = (2 × 104, 10−3, 10−4). The insets are plotted as functions of
the non-dimensional frequency (x), measured from the line at 5000 Å
to compare with the single line results (see Fig. 11 of Sampoorna et al.
2011).

coincides with the curve including the effects of J-state interfer-
ence (solid line) except for the two small PRD peaks on either
side of the line at 5001 Å, which are slightly enhanced because
of this effect, as discussed above.

4.5. Effect of the unpolarized background continuum
on the J-state interference

The results shown in the previous sections were obtained without
a background continuum (r = 0). In Fig. 5 we show the Stokes
profiles for different values of the continuum strength r. The
other model parameters are (T = 2 × 104, a = 10−3, ε = 10−4).
r is varied from 10−10 to 10−4 in steps of 10−2. When r in-
creases, we observe a significant decrease in the amplitude of
the near wing PRD peaks in Q/I. Also the J-state interference
effects vanish for r = 10−4 away from the line cores (see the
dot-dashed line in Fig. 5). The insets in Fig. 5 show a behav-
ior similar to the single line case seen in Fig. 11 (dashed lines)
of Sampoorna et al. (2011). As r increases, the intensity profile
evolves from a “self-reversed emission line” to an absorption
line.

4.6. Effect of line separation between the doublets coupled
through the J-state interference

In Fig. 6 we present the scattered Stokes profiles for three differ-
ent values of the separation between the lines. The model param-
eters are (T = 2 × 104, a = 10−3, ε = 10−4, r = 0). The line sep-
arations used are 1 Å, 3 Å and 6 Å (measured from the 5000 Å
line). Evidently, the Q/I amplitudes of the near wing PRD peaks
about the lines at 5001 Å, 5003 Å and 5006 Å decrease with the
increase in line separation.

This behavior is expected, because the polarizability factor
W2 = 0 for the 1/2 → 1/2 → 1/2 transition, producing no

Fig. 6. Effect of line separation between the doublets. Three different
line separations are chosen, namely 1 Å (solid line), 3 Å (dotted line),
and 6 Å (dashed line). The model parameters are (T = 2 × 104, a =
10−3, ε = 10−4, r = 0).

polarization at the line center. J-state interference together with
PRD in scattering is responsible for polarization signals near the
resonance frequency of this line component. As the separation of
the 1/2→ 1/2→ 1/2 component increases, the J-state interfer-
ence effects naturally decrease, resulting in successively weaker
signals. It is useful to note that although characteristic signals
are generated near the 1/2 → 1/2 → 1/2 resonance frequency,
Q/I = 0 at the actual line center. As the figure shows, PRD
along with the effects of J-state interference can indeed gener-
ate Q/I signals near the centers of multiplet components with
W2 = 0, but these signatures have an anti-symmetric shape with
a zero crossing at the exact line center. These antisymmetric po-
larization signals can also be produced at the 1/2→ 1/2→ 1/2
transition using CRD (see Trujillo Bueno et al. 2002; Casini &
Manso Sainz 2005, where also the role of hyperfine structure and
lower term polarization are investigated).

4.7. Comparison of the redistribution matrix approach
with the quantum interference theory of Stenflo

In this section we compare our redistribution matrix approach
and the quantum interference theory of Stenflo (1980; see also
Stenflo 1997). The comparison is shown in Fig. 7. The solid line
shows the profile computed with the exact J-state interference
theory presented in Sect. 2. We refer to this as the redistribution
matrix approach. The dotted line shows the profiles computed
from an independent line transfer code. In this code, in place of
RK(x, x′) we use

WK(ν)[RII−A(3/2→ 1/2) + RII−A(1/2→ 1/2)],

where RII−A(Jb → Ja) are the angle-averaged frequency redis-
tribution functions of Hummer (1962) for the line with center
frequency at νJb Ja corresponding to the Jb → Ja transition. The
polarizability factor W0(ν) = 1, and W2(ν) is the frequency-
dependent W2 factor derived by Stenflo (1980). The frequency-
dependent W2(ν) contains the quantum interference effects and
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Fig. 7. Same as Fig. 3 but with the solid line computed using the redistri-
bution matrix approach and the dotted line computed with the quantum
interference theory that uses a wavelength-dependent W2(λ) factor. The
model parameters are (T = 2 × 104, a = 10−3, ε = 10−4, r = 0).

is given by the formula (see Eq. (19) of Stenflo 1997)

W2(ν) =
(ν2 − ν)−2 + 2(ν1 − ν)−1(ν2 − ν)−1

(ν1 − ν)−2 + 2(ν2 − ν)−2
· (34)

Thus we use W2(ν) instead of a constant W2. Also φ(x) is taken
as the sum of the absorption profiles of the individual lines. From
Eq. (34) one can see a double resonance at ν1 and ν2 and an in-
terference in between these two resonances, which shows up in
the emergent Q/I profiles shown in Fig. 7. Clearly, both these in-
dependent approaches give nearly the same results. The J-state
interference effects along with PRD effects have been included
in realistic modeling of the observed Q/I profiles of the Na i D1
and D2 lines by Fluri et al. (2003) based on the quantum interfer-
ence theory of Stenflo (1980, 1997). Our results computed using
the isothermal slab atmospheres show a similar behavior.

5. Conclusions

We presented the non-magnetic line transfer equation for a two-
term atom including the effects of J-state interference for an ar-
bitrary La → Lb → La scattering transition. We showed that
the decomposition technique of Frisch (2007) that was devised
for a two-level atom case can be applied to the more difficult
case of a two-term atom. This technique allows us to write a po-
larized approximate lambda iteration method to solve the con-
cerned transfer problem. Numerical results were presented for a
doublet taking the example of an L = 0 → 1 → 0 scattering
transition with S = 1/2.

J-state interference produces asymmetric near wing PRD
peaks around the center of the 1/2→ 3/2→ 1/2 scattering tran-
sition. Also, anti-symmetric peaks are produced near the center
of the 1/2 → 1/2 → 1/2 transition. We showed that the J-state
interference effects sensitively depend on the optical thickness
of the medium. At the line core and near wings the variation of
(I,Q/I) with respect to various atmospheric parameters is sim-
ilar to the behavior of a single line. The wavelength region in
between the two lines is somewhat insensitive to the variation in

ε for T = 2 × 104. In the presence of a strong background con-
tinuum the PRD as well as J-state interference effects become
suppressed. Finally, as the line separation (fine structure split-
ting) increases, the J-state interference effects decrease strongly
as one moves away from the 1/2 → 3/2 → 1/2 transition at
5000 Å.

The present extension of polarized radiative transfer theory
to include two-term atoms with J-state interference is a signifi-
cant step in our program to develop the theoretical tools that are
needed to interpret the wealth of polarized structures that are ob-
served in the second solar spectrum, so that they can be used to
diagnose the magnetized solar atmosphere in ways not accessi-
ble by other means.
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