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ABSTRACT

Context. The partial frequency redistribution (PRD) effects in line scattering are necessary ingredients for interpreting the linear
polarization observed in strong resonance lines. It is a common practice to use angle-averaged PRD functions for simplicity (obtained
by averaging over all scattering angles). It has been established that the use of angle-dependent PRD functions instead of angle-
averaged functions is essential for weak fields.

Aims. Here we present an efficient iterative method to solve the polarized line radiative transfer equation in weak magnetic fields
using angle-dependent PRD functions.

Methods. Based on the theory of Stokes vector decomposition for the Hanle effect combined with the Fourier azimuthal expansion
of the angle-dependent PRD function, we try to formulate an efficient numerical method of solving the concerned transfer problem in
one-dimensional media. This iterative method (referred to as the scattering expansion method, SEM) is based on a series expansion of
the polarized source vector in mean number of scatterings (Neumann series expansion). We apply the SEM approach to handle both
the exact and various approximate forms of the Hanle scattering redistribution matrix.

Results. The SEM is shown to be an efficient method to solve angle-dependent PRD problems involving the Hanle effect. We show
that compared to the earlier methods such as the perturbation methods, the SEM is stable and faster. We find that angle-dependent

PRD significantly affects the Stokes U parameter.
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1. Introduction

The resonance scattering is responsible for the generation of
a linearly polarized solar spectrum (called the second solar
spectrum). The magnetic field modifies this linear polarization
through the well-known Hanle effect. The shape of the linear
polarization profiles of the spectral lines reveals a great deal of
information about the anisotropy that prevails in the solar at-
mosphere. Equally important is the physics of line scattering —
namely the details of the frequency redistribution during scat-
tering. It is well-known that for a finer analysis of the polarized
spectrum, particularly of the strong resonance lines, the angle-
dependent partial frequency redistribution (PRD) is necessary,
as shown in the previous papers of this series (Frisch 2010;
Sampoorna et al. 2011; Sampoorna 201 1b).

The papers mentioned above used a decomposition tech-
nique to reduce the non-axisymmetric Stokes transfer equation
to a set of six irreducible components Ig, where K = 0,2
and Q € [-K,+K]. This is achieved through a irreducible
spherical tensor expansion of the Hanle phase matrix (see
Landi Degl’Innocenti & Landolfi 2004; Frisch 2007). When the
PRD function used in the transfer equation is an “angle-averaged
function”, I’Q( are cylindrically symmetric. However, when the

PRD function is explicitly angle-dependent, the Ig are non-
axisymmetric. Frisch (2009) has shown that cylindrical symme-
try can be retained by Fourier-expanding the angle-dependent
PRD function over the azimuth angle difference (y—yx’), where y
and y’ are the azimuth angles of the outgoing and incoming rays
in the atmospheric co-ordinate system (see Fig. 1). The Fourier
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azimuthal expansion of the angle-dependent PRD functions was
originally introduced by Domke & Hubeny (1988). This ex-
pansion was cleverly used by Frisch (2009) for the Hanle-
scattering PRD transfer problem. The Fourier expansion of the
angle-dependent PRD function was applied to the non-magnetic
(Rayleigh scattering) problem in Frisch (2010). In this non-
magnetic case there are only four cylindrically symmetric com-
ponents. The relevant polarized transfer problem was solved in
Sampoorna et al. (2011). Recently, Anusha & Nagendra (2011)
have generalized to the case of multi-dimensional media, the
Fourier decomposition technique of Frisch (2009) originally for-
mulated for the one-dimensional case.

An approximate solution (namely, single scattering approx-
imation) to the Hanle transfer problem with angle-dependent
PRD was presented in Sampoorna (2011b). Here we solve the
full Hanle transfer problem in one-dimensional media by ap-
plying the scattering expansion method (SEM). This method
was originally formulated by Frisch et al. (2009) for solving
the polarized line transfer equation with complete frequency
redistribution (CRD). Subsequently it has been generalized by
Sampoorna et al. (2011) to solve the polarized Rayleigh scatter-
ing transfer equation with angle-dependent PRD.

A detailed historical account of the work on angle-dependent
PRD in polarized line transfer is given in Sampoorna et al.
(2011). We refer to the same paper for references about early
works on transforming the transfer equation from the Stokes
vector (I, Q, U) basis to the cylindrically symmetric irreducible
basis.
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The organization of the paper is as follows. In Sect. 2 we
recall the exact and various approximate forms of the Hanle
scattering redistribution matrix. In Sect. 3 we briefly recall the
decomposition technique of Frisch (2009), but suitably general-
ized here to accommodate the different forms of the Hanle scat-
tering redistribution matrices discussed in Sect. 2. In Sect. 4 we
present the equations of the SEM to solve the relevant trans-
fer problems. The exact form of the Hanle scattering redistribu-
tion matrix discussed in Sect. 2 is included in the decomposition
technique of Frisch (2009) in Sect. 3. It involves the azimuthal
Fourier coefficients on the order of 0, 1, 2, 3, and 4 of the mag-
netic redistribution functions (see Sampoorna et al. 2007a,b). In
Sect. 5 we discuss the properties of these functions. Section 6 is
devoted to the results, and the conclusions are given in Sect. 7.
An erratum is given in Sect. 8. In Appendix A we present the
composite redistribution functions that enter the exact form of
the Hanle scattering redistribution matrix. Appendix B contains
a listing of the azimuthal Fourier coefficients.

2. Redistribution matrix for the weak-field Hanle
scattering

In early works on scattering of radiation on atoms the prob-
lem of the frequency redistribution was ignored. For example,
the Rayleigh phase matrix for resonance scattering in the ab-
sence of magnetic fields was derived by Hamilton (1947, see also
Chandrasekhar 1950). In the presence of weak magnetic fields
the expression for the Hanle phase matrix was derived by Stenflo
(1978) and Landi Degl’Innocenti & Landi Degl’Innocenti
(1988).

The problem of frequency redistribution during scattering in
the presence of a weak magnetic field and collisions was origi-
nally addressed by Omont et al. (1973). However, they did not
present the explicit form of the Hanle scattering redistribution
matrix. But they remarked that the Hanle effect is operative only
in the line core and not in the line wings. Owing to the very short
life-time of the excited level in the wing frequencies, the Hanle
effect cannot effectively intervene during the scattering process.
On the basis of these results, a heuristic (in the sense that we
presume a decoupling of frequency redistribution function, and
the angular phase matrix) form for the elements of the Hanle re-
distribution matrix in the presence of a weak magnetic field B
can be written as

Rij(x,Q,x,Q,B) = R(x,x',0)P;(Q,Q',B), (1)

where i, j = 0, 1,2. R(x, x’, ®) stands for any of the type I, II,
or IIT PRD functions of Hummer (1962), and ® is the angle
between the incoming (€2") and outgoing () rays (see Fig. 1).
x and x” are outgoing and incoming frequencies in Doppler width
units. P; (2, €, B) are the elements of the Hanle phase matrix
(see Stenflo 1978; Landi Degl’Innocenti & Landi Degl’ Innocenti
1988). Equation (1) is valid only in the line core, namely x < x,
where x. denotes the transition frequency between line core and
the wings. For x > x., redistribution matrix is given by Eq. (1)
itself but with the Rayleigh phase matrix replacing the Hanle
phase matrix. We refer to this division into Hanle and Rayleigh
frequency domains as 1D cut-off approximation and x. as 1D
cut-off frequency — generally taken to be three Doppler widths.
This approximation but with the angle-averaged redistribution
function R(x, x") in Eq. (1) instead of R(x, x’, ®) was used in sev-
eral previous works (see e.g., Faurobert-Scholl 1992; Nagendra
et al. 1999).

A general PRD matrix that takes into account the effects of
elastic collisions in the presence of arbitrary magnetic fields was
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Fig. 1. Geometry showing the scattering process in the atmospheric co-
ordinate system (Z-axis along the atmospheric normal). The magnetic
field makes an angle 6 with respect to the polar Z-axis, and has an
azimuth y . (6, x') refer to the incident ray, and (6, y) to the scattered
ray defined with respect to the polar Z-axis. ® is the scattering angle.

derived by Bommier (1997). In the weak-field limit (Zeeman
splitting of the upper level much smaller than the Doppler width
of the line), the coupling of circular polarization to the linear po-
larization and also to the intensity is weak and can be neglected.
The resulting Hanle scattering redistribution matrix is exact in
the sense that it does not make use of the frequency domains to
represent the transition from Hanle scattering in the line core to
the Rayleigh scattering in the line wings. Bommier (1997) refers
to it as approximation I, because it is derived only under the
“weak-field limit”. Indeed, in approximation I the coupling of
frequency redistribution to the linear polarization is kept intact.
The angle-averaged version of this approximation I was used in
polarized line transfer computations by Sampoorna et al. (2008).

In the present paper we confine our attention only to pure
type-II scattering. Thus in the absence of elastic collisions,
the angle-dependent redistribution matrix under approximation I
may be written as (see Bommier 1997)

Rij(x,Q,x,Q,B)

= > TEGQNE (x, ¥, 0, B)-DI T, (j, ). )
koo

Here Tg (i, Q) are irreducible spherical tensors introduced by
Landi Degl’Innocenti (1984). The magnetic kernel is of the form

N§o (6, x',©,B) = @700 X" df . (05)dfy, 5 (~0p)
Q//
X Zg o (x, X', 0, B). 3)

Here 65 and yp represent the orientation of the magnetic field
in the atmospheric co-ordinate system (see Fig. 1). Explicit ex-
pressions for the reduced rotation matrices de, can be found
in Landi Degl’Innocenti & Landolfi (2004, Table 2.1, p. 57).
For a two-level atom with an unpolarized lower level and a
J — J' — J scattering transition (where J and J’ are the total
angular momentum quantum numbers of lower and upper levels,
respectively), Z}éQ takes the form

71 (x,x,0,B) = Ir
KQWH 7> FR + F[ + i(/.)ng/Q
X wl ) RET (%, X', ©, B), O]
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where I'r is the radiative de-excitation rate, I'y is the inelas-
tic collisional de-excitation rate, wr, is the Larmor frequency,
and g is the Landé factor of the upper level. The quantities w(JKJ)
are defined in Eq. (10.11) of Landi Degl’Innocenti & Landolfi
(2004). The composite redistribution functions of type-II (Rg’ﬁ)
are linear combinations of angle-dependent magnetic redistri-
bution functions of type-II (see Sampoorna et al. 2007a,b, also
Sampoorna 2011a). The explicit form of these functions for a
J =0 — 1 — Oscattering transition can be found in Appendix A
of Sampoorna et al. (2007b). For an arbitrary J — J’ — J scat-
tering transition the Rgﬁ are given in Appendix A of the present
paper.

For practical applications, Bommier (1997) also derived
the so-called approximations II and III, where the 2D fre-
quency space (x,x’) is decomposed into several domains, in
each of which the frequency redistribution is “decoupled” from
the polarization. Approximation II uses the angle-dependent
PRD functions, and approximation III the corresponding angle-
averaged functions of Hummer (1962). The approximations II
and III for the Hanle redistribution matrix have been considered
in Nagendra et al. (2002, see also Nagendra et al. 2003), where
a perturbation method is used to solve the concerned polarized
transfer equation. For approximation III a polarized accelerated
lambda iteration (ALI) method based on the core-wing approach
was later developed by Fluri et al. (2003).

Under approximation II and in the absence of elastic colli-
sions, the redistribution matrix is given by Eq. (2), but with the
replacement

N (x,x',0,B) = Nf, (m, B)Ry(x, x', ©). (5)

Here the index m (=1, 2) stands for different (x, x") frequency
domains. Under approximation III the redistribution matrix is
given by Egs. (2) and (5), but with the angle-dependent redistri-
bution function replaced by the angle-averaged one. The analytic
form of the magnetic kernels NgQ, (m, B) in different angle-
dependent (approximation II) and angle-averaged (approxima-
tion III) frequency domains can be found in Bommier (1997,
see also Nagendra et al. 2002; Anusha et al. 2011). It is useful
to note that in approximations II and III there is a factorization
of frequency redistribution and polarization, so that N, ng (m, B)
within a given domain depends only on B, unlike in approxima-
tion I which is a non-domain-based theory.

In the 1D cut-off approximation, N, ng

takes the form
N§o(x.x',0,B) = R(x,x',0)

v NgQ,(B), for
(1 - E)W](éQQ/, for

X < X,
X > Xc,

(6)

where Wy is the polarizability factor depending on the
J-quantum numbers of the upper and lower levels, and € is the
thermalization parameter.

3. A decomposition method for Hanle effect
with angle-dependent PRD

Here we describe the Stokes vector decomposition method,
which enables us to write the original “Stokes vector transfer
equation” in a simplified form. The simplification takes place
because the “decomposed (irreducible) transfer equation” be-
comes azimuth-angle-independent. In fact, this irreducible trans-
fer equation for the cylindrically symmetric Fourier components
of the radiation field allows us to formulate an iterative method

of solution. Here we present only the essential steps of this
decomposition technique. The full details are given in Frisch
(2009).

The polarized transfer equation for the Stokes vector can be
written in the component form as

,u% = [e(x) + r] [Li(1, x, Q) = Si(1, x, Q)], i=0,1,2, @)
where Q (0, y) is the ray direction with respect to the atmo-
spheric normal (see Fig. 1) and p = cos 6. The line optical depth
is denoted by 7 and ¢(x) is the normalized Voigt function. The
ratio of continuum to line absorption coefficient is denoted by r.
The total source vector is given by

@(X)S (T, x, Q) + 7S¢
o(x) +r

Si(,x, Q) = , (®)

where S; are the components of the unpolarized continuum
source vector. We assume that S.o = B,,, where B,, is the
Planck function at the line center, and S.; = Sc2 = 0. The
line source vector can be written as

S1i(r, x, Q) = Gi(7)

2 A
R,’j(x, Q, X/, Q,, B) dQ/
Ii(t, X', Q)— dx’
+f9§}§(; ) X, Q) ©

where Q' (¢',x’) is the direction of the incoming ray defined
with respect to the atmospheric normal, and dQ’ = sin 8’ d¢’ dy’.
The primary source is assumed to be unpolarized, so that
Go(1) = €B,, and G (1) = Ga(7) = 0.

Frisch (2009) has shown that the Stokes vector and the
source vector can be decomposed into six irreducible com-
ponents I’Q( and Sg. However, these components continue to
be non-axisymmetric because of the presence of an angle-
dependent PRD function. The problem can be simplified only
through the introduction of an azimuthal Fourier expansion of
the angle-dependent PRD function. Using this approach the I’é
can also be expanded over the azimuth y as

k=+00
1 )
I§Ee® =5 ) I @ x e,

k=—00

(10)

with similar expansions for G and S§ (see Frisch 2009, for

details). The Fourier coefficients 78‘)’( satisfy a non-LTE transfer
equation similar to Eq. (7), with the source term given by Eq. (8),
but with § fkg( and S ik)QK instead of §; and S ;. Because the con-

tinuum is assumed to be unpolarized, S é"g = 200k00k 000 By,-
The Fourier coefficients of the line source vector are given by

- » 1 +00 T
LS 8 |
Q/ —00
Ng‘gf (x,6,x,0',B)
(x)

1~ ,
(k—k") ,
Z EFKQ’,K’Q"(G)
K!QU
X FQ’i’)K’ (1, X, 0)sin@ d¢ dx’, (11)

where the primary source term Gg)K(‘r) = 200k00k000G0(T),
and k and k' together satisfy the condition ¥’ = k+ Q' — Q".
From this condition, it follows that for a given value of k, the
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values of k’ get restricted to k — 4 < k' < k + 4. The non-zero
azimuthal Fourier coeflicients are of the form

F(Q” [09)] (@) =

[ Z( DCTE, (1, 0)T 5.6, (12)

with K and K’ both even or both odd. 7'5 (i,6) are a combina-
tion of trigonometric functions, and are given by 7, 5 (i,Q) =
‘f'g (i,0)e'%¢. The analytic form of the magnetic kernel in the
Fourier basis A (Qk)QK depends on the level of approximation used
to represent the Hanle redistribution matrix (see Sect. 2 for de-

tails). Below we present the form of Ng‘g( for different choices

of approximation levels (1D cut-off, approximations II and I of
Bommier 1997).
In the 1D cut-off approximation

N(k)K(x 0,x,0,B) = P(x,0,x,0)
{NK .(B),

for
for

x < X,

X > Xc. (13)

(1 -e)Wkégo,

The Fourier coefficients #* of the angle-dependent PRD func-
tion are given by Eq. (14) of Frisch (2009, see also Eq. (8) of
Sampoorna 2011Db).

The difficulty in implementing the approximation II in the
decomposition method given above was discussed in Sampoorna
(2011b). Basically the domains of approximation II depend on
both the frequencies (x, x’) and the scattering angle ®, while we
work in the Fourier basis which is inherently azimuth-angle in-
dependent. To handle this difficulty, Sampoorna (2011b) used
the angle-averaged frequency domains of approximation III, but
continued to use the angle-dependent PRD functions of Hummer

(1962). With this simplification N(Qé for approximation II is
given by

NOK(x 0,x,¢,B) =

NG N o (m, BYFY (x,0,x,6). (14)

For approximation I (non-domain-based PRD theory) the N (k)K

is given by Eqgs. (3) and (4), but with Rg ﬁ replaced by Rg){f K. In
this case, the Fourier azimuthal expansion is applied to the ‘mag-
netic redistribution functions’ instead of the Hummer’s PRD
functions.

Notice that the range of k values extend a priori from —co
to +oo, which produces an infinite set of integral equations for
S (k)K(T X,6). A numerical solution is possible only if we trun-
cate this infinite set. In practice the number of Fourier coeffi-
cients required is determined by the number of terms needed
to accurately represent the angle-dependent PRD function. For
the type-1I PRD function of Hummer (1962), Domke & Hubeny
(1988) have shown that at least five terms are needed to repre-
sent the exact value of the function to a sufficient accuracy. Thus
for k = 0, =1, 2, £3, +4, we obtain a set of 54 coupled inte-
gral equations. In the following section we present an iterative
method called the SEM to solve Eq. (11) efficiently (see Frisch
et al. 2009; Sampoorna et al. 2011).

4. Scattering expansion method for Hanle effect
with angle-dependent PRD

Here we present an iterative method based on a Neumann series
expansion of the components of the source vector contributing to
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the polarization. This iterative method was referred to as SEM by
Sampoorna et al. (2011), who applied it to the non-magnetic po-
larized line transfer problem with angle-dependent PRD. Indeed,
these authors showed that this method is faster than the core-
wing-based polarized ALI method.

The Neumann series amounts to an expansion in terms of
the mean number of scattering events (see Frisch et al. 2009).
Its first term yields the so-called “single scattered solution”. For
Rayleigh scattering with angle-dependent PRD the single scat-
tering approximation to the polarized source vector components
was presented by Frisch (2010). For the Hanle effect with angle-
dependent PRD the corresponding approximation was presented
recently by Sampoorna (2011b). The inclusion of higher-order
terms in the Neumann series allows us to include multiple scat-
tering effects in the expression for the polarized source vector
components.

We first neglect polarization in the calculation of Stokes 1,
i.e., we assume that Stokes / is cylindrically symmetric and is
given by the component 7(()0)0 itself to an excellent approxima-
tion. This component is the solution of a non-LTE unpolarized
radiative transfer equation with the line source vector given by

S1o(T.x,0) = €B,, + (1 — €)

+00 0) 9 g

x—f f rx6x, )IO(T,x',H’)sinH’dG'dx', (15)
@(x)

where 1@ = 7072, 19 172, and S% = §13°/2.

Equation (15) can be solved using a scalar ALI method based
on a core-wing approach. Keeping only the contribution of f(()o)o
on the RHS of Eq. (11) to the K = 2 Fourier coefficients, we
can show that values of k are limited to k = 0, %1, and +2 (see
Sampoorna 201 1b). Thus the single scattering approximation for

each component § fk)z

o can be written as
o *2 ,
(59205, 0)] <1> f* f Noli(x.0.x'.0/. B)
%(x)

% [®

o (16)

W@t X', 6)sing do/ dx'.

The superscript 1 stands for the single scattering approxima-
tion to the polarized component of the source vector. The cor-

1
responding radiation field [f(Qk)z]( ) for k = 0, £1, +2 is calcu-

lated with a formal solver and it serves as a starting solution for
calculating the higher-order terms.

The higher-order terms can be obtained by substituting for
I~(Qk,',)K/ appearing in the RHS of Eq. (11), from [I(O)K ] . Clearly,
as in the single scattering approximation, we continue to set
k' = 0, but include the coupling of (K = 2, Q) components with
other polarization components (K’ = 2, Q") that were neglected
in the single scattering approximation. However, we neglect the
coupling of the Fourier components k with other ¥ # 0 Fourier
components, even-though ¥ = +1 and +2 Fourier components
are available from the single scattered solution. The advantage of
retaining only the £ = 0 term in the RHS of Eq. (11) is that the
value of k, which is now decided by the condition k = Q" —Q’, is
now limited to 0, +1, +2, £3, and +4. In other words, only four
more values of k are needed to account for higher-order terms
compared to the single scattering approximation. Consequently,
the inclusion of higher-order terms increases the number of the
K = 2 Fourier coefficients that contribute to the source vector
from 25 for single scattering to 45 for higher orders of scat-
tering. We have verified that retaining the coupling of k with,
say, kK’ = x1 Fourier components does not lead to significant
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Fig. 2. Azimuthal Fourier coefficients of type-II plotted as a function of the outgoing frequency x for different choices of i and u'. Left panels

=(k),0

show 7}y and right panels show 71%0 The damping parameter ¢ = 0.001. Thin lines correspond to x” = 1 and thick lines to x’ = 4. Solid, dotted,
dashed, dot-dashed, and dash-triple-dotted lines correspond to k = 0, 1,2, 3, and 4, respectively. For notational brevity we simply dropped the M

dependence on the y-title of the plotted functions.

changes in the converged solution that was obtained when we
kept only & = 0 components. This clearly shows that the cou-
pling of k to & = 0 is the dominant one, while the coupling to
other k* # 0 Fourier components is negligible, and if retained,
it only increases the dimensionality of the problem (without any
increase in accuracy) because of the condition &’ = k+ Q' — Q”.

The § 1(22 at order n are given by
D
392 50" = [392 @ x.0)|

+Z£f+mf Ngg,(x,G,x,G,B)Zl
7 2 —0 0 SD(X) 2

[Z

1
X T50, 5000 [T (7. X', 0’)](n 'sin@ ¢’ d’, a7

with £k = Q” — Q’. Notice that [S (k)2(‘r X, 0)] are zero for

k = +3 and +4. The explicit forms of e
Appendix B.

20, 2Q,,(H) are given in

5. Azimuthal Fourier coefficients of magnetic
redistribution functions

Extension of the decomposition technique of Frisch (2009) to
the Hanle redistribution matrix given by approximation I (see
Sect. 2), involves the application of the Fourier azimuthal ex-
pansion to the magnetic redistribution functions (see Sect. 3 and
Appendix A). Fora J = 0 —» 1 — 0 scattering transition there
are six components of type -II magnetic redistribution functions.
They are denoted by RY: MO , where X stands for H (Voigt type) or
F (Faraday-Voigt type), and M = 0,+1. We denote the corre-

sponding azimuthal Fourier coefficients by r%f)XM We note that

FOM and #OM are normalized to the correspondi i-
ILH ILF ponding magneti
cally shifted Voigt and Faraday-Voigt profile functions. All k # 0

components are normalized to zero.

The method of computation of azimuthal Fourier coefficients
of Hummer’s redistribution functions are discussed in detail in
Sect. 4 of Sampoorna et al. (2011). The same method has been
appropriately extended to compute the azimuthal Fourier coef-
ficients of magnetic redistribution functions. Hence we do not
again repeat those details here.

For a weak magnetic field (Hanle I' = 1), different M com-
ponents of type-II function differ very little (graphically indistin-
guishable). These differences are relevant when the difference of
two such components is formed in the composite redistribution
functions (see Eq. (A.2)). These difference quantities are respon-
sible for a smooth switch-over from Hanle scattering in the line
core to the Rayleigh scattering in the wings. Therefore we show
only the azimuthal Fourier coefficients gc)xo for k = 0,1,2,3,
and 4 in Fig. 2.

From the left panels of Fig. 2 we see that the behavior of
~§f)HO for k = 0, 1, and 2 are identical to those presented in Fig. 2
of Sampoorna et al. (2011). As expected, the k = 3 and k = 4
components are much smaller than the k = 0 component, except
for forward and backward scattering (see Figs. 2b and 2c). The
function rﬁ{)FO takes both positive and negative values not only for
k # 0 but also for k = 0, because it involves Faraday-Voigt-type
functions. For forward and backward scattering, 7 ﬁ)H exhibits
sharp peaks at [x] = 1 when x* = 1. On the other hand, for
forward scattering the function ﬂ‘)}: exhibits a zero cross-over at
[x| = 1 when x” = 1 (see Fig. 2e), which is typical of the behavior
of Faraday-Voigt functions. However, for backward scattering,

%f)FO shown in Fig. 2f does not show a cross-aver at |x| = 1. For
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~(k),0

_ 4 #K0 L :
x" =4, g behave similar to the corresponding 7y} (namely

dominance of the frequency coherent nature of type-II function).

6. Results and discussions

We considered isothermal, self-emitting plane-parallel atmo-
spheres with no incident radiation at the boundaries. These slab
models are characterized by (7, a, €, r), where T is the optical
thickness of the slab. The Planck function at the line center B,,
is taken as unity. A logarithmic depth grid with five points per
decade is used, with the first depth point at 7; = 107*. For the
frequency grid we used equally spaced points in the line core
and logarithmically spaced ones in the wings. Furthermore, the
maximum frequency xm,x was chosen such that the condition
@(xmax)T << 1 is satisfied. We have typically 70 points in the
interval [0, xm,x]. We used a seven-point Gaussian quadrature in
[0<pu<T1].

6.1. Comparison with the perturbation method

In this section we compare the emergent solutions obtained
from the SEM approach for angle-dependent PRD Hanle trans-
fer problem presented in Sect. 4 and the corresponding solution
computed from an independent method, namely the perturba-
tion method of Nagendra et al. (2002). We present this compari-
son for 1D cut-off approximation (Sect. 6.1.1), approximation II
(Sect. 6.1.2), and approximation I (Sect. 6.1.3).

‘We recall that the method presented in Nagendra et al. (2002)
solves the polarized transfer equation with angle-dependent
PRD and Hanle effect perturbatively in the Stokes vector ba-
sis. In this method it is necessary to discretize the azimuth y of
the radiation field apart from the frequency x and orientation 6.
As a result, the CPU and memory requirements for this method
are pretty high compared to the SEM approach described in the
present paper (because in the SEM we do not have to discretize
the azimuth y).

For all figures presented in this section, a = 1073, e = 1073,
r = 0 (pure line case), and the line of sight is defined by y = 0.11
and y = 0°. The magnetic field parameters are taken as I' = 1,
6 = 30°, and yp = 0°. For the perturbation method we used a
16 point trapezoidal grid for y € [0, 27].

6.1.1. 1D frequency cut-off approximation

Here we present the emergent solution computed with a 1D cut-
off approximation for the Hanle redistribution matrix (see Sect. 2
for more details). A 1D cut-off frequency with x. = 3 Doppler
widths was used.

Figure 3 shows the log I, Q/I, and U/I for T = 1 (panel (a)),
and T = 10 (panel (b)). The solid line shows the multiple
scattered solution from the SEM approach, and the dashed line
shows the corresponding multiple scattered solution from the
perturbation method. The single scattered solution is shown as
a dotted line for comparison. Spikes or dents observed around
x = 3 are caused by the abrupt cut-off used. Clearly, the multiple
scattered solution from the SEM approach compares fairly well
with the corresponding solution from the perturbation method.
The slight differences noticed around the line center are caused
by the finite resolution of the azimuth angle grid used in the per-
turbation method (with 16 points). We have verified that these
differences decrease when we increase the number of azimuth
points from 16 to 36, but at the cost of huge memory and CPU
time. In the SEM approach the transfer problem is solved on a
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(a) T'= 1, 10 cutoff approximation (b) T = 10*, 1D cutoff approximation
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Fig. 3. Comparison of the multiple scattered solution from the SEM
(solid lines) and of that from the perturbation method (dashed lines).
Dotted lines represent the single scattered solution. The 1D cut-off ap-
proximation is used with x. = 3. The model parameters are (a, €, r) =
(1073, 1073, 0) and the magnetic field parameters are (I, g, x5) =
(1, 30°, 0°). The line of sight is represented by u = 0.11 and y = 0°.
Panel a) corresponds to 7 = 1 and panel b) to T = 10*. The positive
Q direction corresponds to the linear polarization perpendicular to the
solar limb.

basis of azimuth-independent (reduced) Fourier coefficients. The
azimuth dependence is finally recovered when transforming into
the Stokes vector basis (see our Eq. (10), and Egs. (B.1)—(B.3)
of Frisch 2007).

6.1.2. 2D frequency domains

Here we present the solutions computed using the domain-based
Hanle scattering redistribution matrix (approximation II) dis-
cussed in Sect. 2. Figure 4 shows the emergent solutions for
T = 1 (panel (a)), and T = 10* (panel (b)). The solid lines
again represent the multiple scattered solution from SEM ap-
proach, and the dashed lines represent the corresponding solu-
tion from the perturbation method. We recall that angle-averaged
frequency domains of approximation III with angle-dependent
PRD functions are used in the SEM approach, while the ac-
tual approximation II (angle-dependent frequency domains) of
Bommier (1997) is used in the perturbation method.

As for the 1D cut-off approximation, the differences ob-
served near the line center between the multiple scattered solu-
tion from the SEM approach and the perturbation method are
caused by the finite resolution of the y grid in the perturba-
tion method. However, considerable differences are observed be-
tween the two solutions in the transition region 3 < x < 4. These
differences are not caused by the finite resolution of the y grid in
the perturbation method. But they are caused by the use of angle-
averaged frequency domains to solve the angle-dependent PRD
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Table 1. CPU time requirements for the SEM approach proposed in
this paper and the perturbation method of Nagendra et al. (2002) for
different values of optical thickness 7.

Optical SEM approach Perturbation method
thickness 7 (CPU time in min) (CPU time in min)
1 10 36
10 95 275
100 110 413
103 101 448
10* 112 532

Notes. The PRD function computation times are excluded from the
CPU time given in this table, because they are common to both the
methods. The model parameters and the grid specifications are the same
as those discussed in Sect. 6.1. The computations were performed on a
Sun Fire V20z Server, 2385 MHz, with a single-core AMD Opteron
processor.

a) T =1, 2D frequency domains b) T = 10* 2D frequency domains
quency quency
_2 0
-9 -1
~ -4 ~ R
8 -5 g -3
J J
-8 -4
- -5
-8 . -6

Q7T (%)

UT (%)

Frequency

Frequency

Fig.4. Same as Fig. 3, but with 2D frequency domains of Bommier
(1997) in the Hanle PRD matrix.

transfer problem in the SEM approach. However, there seems to
be no way to include self-consistently the angle-dependent fre-
quency domains explicitly in the SEM approach. Our attempts to
derive azimuth-averaged frequency domains were not success-
ful, and still remain an open theoretical problem. Nevertheless,
the SEM approach is shown to be numerically superior to the
perturbation method, as can be seen from Table 1.

In Table 1 we compare the CPU time requirements for SEM
and perturbation method for 7 = 1, 10, 100, 103, and 10*. From
Table 1 we see that the SEM approach is faster than the per-
turbation approach, particularly for slabs of larger optical thick-
ness 7. This is because as T increases, the perturbation method
converges slowly, because it is basically a classical lambda iter-
ation on Stokes source vector components S ¢ and S ¢, and actu-
ally fails to converge for higher values of 7', whereas the SEM
approach works for any value of 7" and for any choice of the

(a) T = 1, Non-domain based PRD (b) T = 10*, Non-domain bosed PRD
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3 3
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0 1 2 3 4 5 6 0 2 4 6 8 0 12
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Fig.5. Comparison of the multiple scattered solution from the SEM
(solid lines) and that from the perturbation method (dashed lines).
Dotted lines represent the single scattered solution. Approximation I
(non-domain-based PRD) is used for the SEM approach, while approx-
imation II (2D angle-dependent frequency domains) is used in the per-
turbation method. Other model parameters are the same as in Fig. 3.

model parameters. Because the starting solution, namely the sin-
gle scattered solution, is already a good approximation to the full
solution (compare solid and dotted lines in Figs. 3-5), the SEM
converges faster and thereby requires less CPU time. Moreover,
the SEM approach requires about 1 GB of main memory, while
the perturbation method requires about 11 GB for the same line
transfer problem.

6.1.3. Non-domain-based PRD theory

Figure 5 shows a comparison between the emergent solu-
tions computed using approximation I (non-domain-based PRD)
in the SEM approach (solid lines) and the approximation II
(domain-based PRD) in the perturbation method (dashed lines).
For thin slabs (panel (a)) both solutions match at all the frequen-
cies, except near the line center, which as before is caused by
the finite resolution of the y grid in the perturbation method. For
thicker slabs (panel (b)) we note that Q/I is nearly insensitive
to the frequency space decomposition, while U/I shows some
difference particularly at the transition region 3 < x < 4. The
non-domain-based PRD theory produces smoother U/ profiles
at all frequencies, while the domain-based PRD theory produces
sharp peaks at the transition region between the line core and
line wings owing to abrupt cut-offs.

6.2. Hanle Stokes profiles computed with angle-dependent
and angle-averaged non-domain-based PRD matrix

Following Sampoorna et al. (2011, see however Sect. 8 of the
present paper for an erratum to that paper), here we present a
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Fig. 6. The emergent /, Q/1, and U/I profiles at ¢ = 0.11 and y = 0° computed for the angle-averaged (dashed lines) and the angle-dependent
(solid lines) non-domain-based PRD. Panel a): thin lines 7 = 20, medium thick lines 7 = 200, and thick lines 7 = 2 x 10°. Panel b): thin lines
T =2 x 10*, medium thick lines 7 = 2 x 10°, and thick lines 7 = 2 x 108. Other model parameters are (a, €, r) = (1073, 107*, 0). The absolute

differences A(Q/I) and A(U/I) in percentage are also shown.

comparison of emergent Hanle Stokes profiles computed with
angle-dependent and angle-averaged PRD functions for sev-
eral atmospheric parameters. For this purpose we consider the
non-domain-based PRD matrix (approximation I) of Bommier
(1997). The angle-averaged version of this PRD matrix has been
implemented in a polarized ALI code in Sampoorna et al. (2008).
We used this code to compute the angle-averaged solutions,
while the corresponding angle-dependent solutions were com-
puted using the SEM approach presented in this paper.

For a study of the differences between angle-dependent and
angle-averaged emergent solutions, we consider a standard at-
mospheric model (7, a, €, r) = (2 X 103, 1073, 1074, 0) around
which we vary the various atmospheric parameters one at a
time, keeping other parameters fixed. For all figures presented
in this section the magnetic field parameters are (I, 05, yp) =
(1, 30°, 0°). Furthermore, in all figures of this section the solid
lines represent the angle-dependent solutions and the dashed
lines represent the corresponding angle-averaged solutions.

6.2.1. Effect of optical thickness T

In Fig. 6 we compare the emergent I, Q/I, and U/I profiles
computed with angle-averaged (dashed lines) and the angle-
dependent (solid lines) non-domain-based PRD matrix for dif-
ferent values of optical thickness T. We cover a range of op-
tical thickness from thin slabs (T = 20) to very thick slabs
(T = 2 x 10%). Below each of the Q/I and U/I panels we also
plot the absolute difference A(X/I) = [(X/I)ap — (X/I)aal in per-
centage, where X stands for Q or U and the acronyms AD for
angle-dependent and AA for angle-averaged.

As the optical thickness T increases, the amplitude of the
near wing peak in Q/I initially increases until 7 = 2 x 10
For T > 2 x 10* the near wing peak amplitude decreases. This
trend is also followed by the absolute difference A(Q/I). The
biggest differences are noted for T = 2 x 10°, however. The
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U/I profiles on the other hand show considerable differences in
their shapes themselves for all values of 7. Only for 7' = 20 the
angle-dependent and angle-averaged solutions match near the
line center. For other values of T differences are observed for
all frequencies in the range 0 < x < 5. The absolute difference
A(U/I) is most pronounced for 7 = 20. Consequently, angle-
dependent PRD effects are more important for U/ profiles than
for Q/I profiles.

It is interesting to note that the U/ profiles for T > 2 x 10*
are all identical. Moreover, the intensity / and Q/I in the line
core are nearly the same for these optical thicknesses. This
behavior can perhaps be explained with the concept of ther-
malization depths and thermalization frequencies (Frisch 1980).
The thermalization depth 7y, defines the depth below which the
source function for Stokes I departs from the Planck function,
and above which the source function is equal to the Planck func-
tion. The thermalization frequency xy, defines the frequency be-
low which the source function equals the Planck function for 7 >
T, and above which the source function departs from the Planck
function at all depths. In the case of angle-averaged type-II redis-
tribution function of Hummer (1962), Frisch (1980) and Hubeny
(1985) show that the thermalization depth and thermalization
frequency in the line core are x{ = a'¢™'/ and 7§ = 1/e,
while in the line wings they are x;; = 1/ V€ and T = 1/(ae¥’?),
respectively. For @ = 107 and € = 107 we have x{ = 2.15,

74 =10% x% =100, and 7% = 10°. Clearly, all photons with fre-
quencies x < xj, are thermalized for 7 > 2 X 10*, which explains

the observed behavior of I, Q/1, and U/I at these frequencies.

6.2.2. Effects of the thermalization parameter e
and the continuum strength parameter r

Figure 7a shows the effect of € on the difference between
the angle-dependent and angle-averaged emergent solutions.
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Fig.7. The emergent I, Q/I, and U/I profiles at £ = 0.11 and y = 0° computed for the angle-averaged (dashed lines) and the angle-dependent
(solid lines) non-domain-based PRD. Panel a): thin lines € = 1072, medium thick lines € = 107°, and thick lines € = 0. Panel b): thin lines r = 1078,
medium thick lines = 107%, and thick lines » = 10~*. Other model parameters are (T, a) = (2 x 10°, 10~3). For panel a) r = 0, and for panel b)
€ = 107*. The absolute differences A(Q/I) and A(U/I) in percentage are also shown.

As expected, the intensity / increases with an increase in e,
while the degree of polarization (both Q/I and U/I) decreases.
The differences between Q/I profiles computed with the angle-
dependent and angle-averaged PRD essentially decrease at all
frequencies as € increases from 107 to 1072, But for the U/I
profiles the differences decrease for |x| < 3, beyond which the
differences are the same for both € = 107% and 1072, In the same
figure we also show the case of conservative scattering (¢ = 0).
Here an unpolarized incident radiation is given as the lower
boundary condition, namely, fg)K(‘r =T,x,60) = 00k0k00002B,,,
because there is no primary source of photons. The emergent
Q/I and U/I are confined to the line core (Jx| < 3), where we ob-
serve some differences between the angle-dependent and angle-
averaged cases.

The effect of the continuum strength parameter r on the dif-
ferences between angle-dependent and angle-averaged profiles
is shown in Fig. 7b. As in the non-magnetic case (see Fig. 11 of
Sampoorna et al. 2011), there is a gradual decrease of the differ-
ences between angle-dependent and angle-averaged Q/1 profiles
with an increase in r, particularly at the near wing maxima. The
U/I profiles on the other hand show only a small sensitivity to
r in the frequency range 2 < x < 5, where the differences also
decrease with an increase in r.

6.2.3. Center-to-limb variations

As in Sampoorna et al. (2011), we show in Fig. 8 the center-to-
limb variation of the emergent I, Q/I, and U/I profiles and also
of the difference between angle-dependent and angle-averaged
polarization profiles. Clearly as u — 1 the absolute differences
in both Q/I and U/I tend to zero. However, there are signifi-
cant differences in the shapes of the U/I profiles computed with
angle-dependent and angle-averaged PRD. Also the magnitude

of Q/I profiles computed with angle-dependent PRD is smaller
than those computed with angle-averaged PRD, while the oppo-
site is the case for U/I profiles. It is interesting to note that the
amplitude of the minima in angle-dependent U/ at x = 3 seems
to increase as y changes from 0.7 to 0.97.

7. Conclusions

We have developed an iterative method based on the Neumann
series expansion of the polarized source vector components to
solve the complex transfer problem with angle-dependent PRD
and Hanle effect. This method, originally developed by Frisch
et al. (2009) for CRD problems, was generalized to the angle-
dependent PRD non-magnetic transfer problems by Sampoorna
et al. (2011), who referred to it as the scattering expansion
method (SEM). Thanks to the decomposition method developed
by Frisch (2009), we were able to formulate here an efficient it-
erative method to solve this complex problem. In this method,
the polarized radiation field is first decomposed into six irre-
ducible components, which remain non-axisymmetric because
of the use of angle-dependent PRD function, however. These
non-axisymmetric components are then reduced to 6 X (2n; — 1)
Fourier components using a Fourier azimuthal expansion of the
angle-dependent PRD function (where n; is the number of pos-
itive k values including zero). Clearly, one obtains an infinite
set of integral equations for the Fourier components of the irre-
ducible source vector because k in general takes values from —oo
to +co. Sampoorna (2011b) showed that the number of Fourier
components can be limited to 26 when one applies the single
scattering approximation (see e.g., Frisch et al. 2009). This is
because the value of k is limited to kK = 0, =1, +2 in this case. The
single scattering approximation gives a reasonable approxima-
tion to the full solution. We showed how to include higher-order
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Fig. 8. The emergent /, Q/1, and U/I profiles for different values of the heliocentric angle computed for the angle-averaged (dashed lines) and the
angle-dependent (solid lines) non-domain-based PRD. The atmospheric model used is (7, a, €, r) = (2x10%,1073,107#, 0). The absolute differences

A(Q/I) and A(U/I) in percentage are also shown.

terms to develop the SEM approach as a solution technique.
Including higher-order terms increases the number of Fourier
components to 46 because k now takes values 0, =1, +2, £3,
and +4. For the Hanle scattering redistribution matrix, we have
considered both the exact (approximation I of Bommier 1997)
and approximate (approximation II of Bommier 1997, 1D cut-
off approximation) forms. We confined our attention only to pure
type-1I scattering.

We have shown that the SEM approach is computationally
more efficient (see Table 1) than the perturbation method of
Nagendra et al. (2002). When a 1D cut-off approximation is
used for the Hanle redistribution matrix, both the SEM approach
and the perturbation method give nearly the same solutions.
Howeyver, the differences between the solutions obtained from
both the methods occur near the transition region 3 < x < 4,
when the approximation II of Bommier (1997) is used. The rea-
son is that in the SEM approach angle-averaged frequency do-
mains are used for handling the angle-dependent transfer prob-
lem, while actual angle-dependent frequency domains are used
in the perturbation method. Because the SEM approach is de-
vised based on azimuthally symmetric Fourier components, the
actual angle-dependent frequency domains cannot be imple-
mented in this approach. It needs the derivation of azimuth-
averaged frequency domains, which is beyond the scope of the
present paper. In spite of this difficulty, we have shown that
SEM approach is still able to handle angle-dependent transfer
using angle-averaged frequency domains to a sufficient accuracy.
Furthermore, the SEM approach can handle slabs of any opti-
cal thickness, while the older perturbation method suffers from
convergence problems for thick slabs because it essentially is a
method based on classical lambda iteration on the linear polar-
ization components of the source vector.

We have carried out a detailed numerical study to analyze the
role of angle-dependent PRD effects. For this purpose we have
used the angle-dependent and angle-averaged versions of the
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non-domain-based PRD matrices (approximation I) of Bommier
(1997). In the presence of a weak magnetic field the Q/1 profiles
computed with angle-dependent and angle-averaged PRD show
significant differences both around the line core and near wing
maxima for 7 < 2 x 10°. For T > 2 x 10* the differences are
small and appear mainly near the line core. The U/ profiles on
the other hand show significant differences in the shape itself at
all optical depths and almost at all frequencies. Therefore we re-
confirm the conclusions of Nagendra et al. (2002) that the U/I
profiles are highly sensitive to the angle-dependence of the PRD
function, and should be taken into account for magnetic field de-
termination based on Hanle effect.

8. Erratum

Figures 6-8 and Figs. 10—12 of Sampoorna et al. (2011) are
slightly erratic, and consequently the conclusions drawn based
on them. These figures show the comparison of the non-
magnetic Stokes Q and Q/I profiles computed with angle-
dependent (solid lines) and angle-averaged (dashed lines) PRD
functions. The error lies in the fact that these comparisons
were not made on the same footing. The angle-averaged func-
tions in Sampoorna et al. (2011) were computed using the
method described in Gouttebroze (1986) combined with the fre-
quency grid refinement discussed in Sect. 4 of Sampoorna et al.
(2011). In the present paper we calculated the angle-averaged
PRD functions by explicitly angle-averaging the corresponding
angle-dependent PRD functions (see Eqgs. (103) and (104) of
Bommier 1997), using a 31-point Gauss-Legendre quadrature.
This method of computing the angle-averaged PRD function is
also combined with the frequency grid refinement discussed in
Sect. 4 of Sampoorna et al. (2011). We found that these two
different methods of computing the same angle-averaged func-
tion give slightly different emergent Stokes Q profiles. This in
turn affects the difference between the Q/I profiles computed
with the angle-dependent and angle-averaged PRD functions.
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We note that Stokes 7 is not much affected by any of the two
methods used for computing angle-averaged PRD function.

We think that computing the angle-averaged functions by ex-
plicit angle-averaging is on par with the computation of corre-
sponding angle-dependent functions because the error made (if
any) in the computation will be on a similar order. Consequently,
only one conclusion of Sampoorna et al. (2011, see last two sen-
tences in their abstract and first two sentences of last but one
paragraph of their conclusions section) is incorrect. Instead that
conclusion should read as follows: the relative difference in the
emergent polarization rate Q/I computed with angle-dependent
and angle-averaged PRD functions is between 10% and 30%
for slabs with optical thickness 20 < T < 2 X 103, the largest
differences occurring in the near wing peaks. For slabs of op-
tical thickness T > 2 x 10* the differences are comparatively
smaller (and occur only around the line core) and therefore
angle-averaged PRD functions can safely be used. These con-
clusions now agree with the conclusions of the present paper
and those of Nagendra et al. (2002) and Faurobert (1987, 1988).

Appendix A: Composite redistribution functions
of type-ll

The composite redistribution  function of  type-II,
Rg”ﬁ(x, x',0,B) are obtained after applying the Doppler
broadening to the rest frame quantity (v — v’)CDZ’K L, J5v)
of Bommier (1997, see her Eq. (81)), where (DIQ(’K(J, J'; V') are

generalized profile functions (see Landi Degl’Innocenti et al.
1991). For a J — J' — J scattering transition, it takes the form

Rgzﬁ(x, X,0,B)= 327 + DK + 1)

3 (e (_J& 0 zfz)

MM’ Npp’

% J 1 )\ J 1 J 1 1 K
-N -p MJ\-N -p" M')\-p p" QO
L[ IH | pILH | : (pILF ILF

X B [RMN + Ry 1 (RM’N - RMN)] ,

where M, M’ and N denote the magnetic substates of the upper
level J” and the lower level J, respectively. The magnetic redis-
tribution functions R Al,,g and Rll F are defined in Egs. (24)-(26)
of Sampoorna (2011a), but w1th the energy conservation term
Xyn» set to zero because it is neglected in approximation I (see
Sect. 4.1 of Bommier 1997). Here “H” stands for Voigt type and
“F” for Faraday- Voigt type functions.

In the present paper we consideredonlyaJ =0 — 1 —> 0
scattering transition. In this case the explicit form of R are
listed in Appendix A of Sampoorna et al. (2007b), where it is
denoted by the symbol ok Q . For easy reference we list them
herein a sllghtly different form (namely, M, M’ here corresponds
to —q and —¢’ of Sampoorna et al. 2007b).

(A.1)

R = 3 (R + R+ R,
7331121 — é (RHH + RII H) + iRI)IOH’
R = 3[R+ 2RI+ R (RY — R,
22121 — ; [RIIH +RIIH +1(Rl_l,ll:) _Rlll(,)F)] ,
R = (Roy) » forQ=1.2. (A.2)

Appendix B: The azimuthal Fourier

coefficients F(Q —Q
QK Q@

The azimuthal Fourier coefficients F(,(QQ ,?)Q are defined in

Eq. (12). It is easy to verify that they satisfy the following
properties

Q-0 1" _ 0-0)

[FKQK Q’] =Ty Q' .KQ° (B.1)
~(0-0") — (Q'-0)

FK QK/ r - (_1)Q+Q [FKQ K/Q ] . (B.Z)

Owing to the above-mentioned symmetry relations, there are
only 13 independent coefficients. For i = 0, 1 and the reference
angle y = 0 (see Landi Degl’Innocenti & Landolfi 2004), the
form of ‘f'g(i, w) are given in Eq. (A.6) of Frisch (2010). For

i = 2 and the reference angle y = 0, ‘f'g (i, u) are given by
T0(2.p) =0 T5Q2.0) =0

. V3 . V3
Tr@p) = i\l =p T3 = i

Using Eq. (A.6) of Frisch (2010) and our Eq. (B.3) in Eq. (12),
we obtain the following explicit form for these coefficients :

(B.3)

1
T = 1 Thoog = =31 = D),
00,00 — 20,00 — 2 \/_
(1) (2)
0= 1—p 1"2 2,00 — _(1_ %),
[ = —(9,14 —124% +5),
- V3
F(l) — 4 —/12(2 _ 3;12)’
2021 2\/5
_ V3
I, = ——(1 =1+ 3,
20,22 4\/5

Iy = —(1 - )1+ 24,

M3, = 20201 -2,

1:(211),22 = %H 1—p2(1+ ),

P50 =~ g1 =21 =42,

rg;)zz = _(1 + 1% F(2242) 2= —(1 — 1), (B.4)
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