
The Astrophysical Journal, 720:1311–1317, 2010 September 10 doi:10.1088/0004-637X/720/2/1311
Copyright is not claimed for this article. All rights reserved. Printed in the U.S.A.

MAGNETIC TRANSPORT ON THE SOLAR ATMOSPHERE BY LAMINAR AND TURBULENT AMBIPOLAR
DIFFUSION

Y. Hiraki
1,3

, V. Krishan
2,4

, and S. Masuda
3

1 National Institute for Fusion Science (NIFS), Toki, Gifu, Japan; hiraki.yasutaka@nifs.ac.jp
2 Raman Research Institute, Bangalore 560 080, India

3 Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, Japan
Received 2009 August 10; accepted 2010 July 15; published 2010 August 19

ABSTRACT

The lower solar atmosphere consists of partially ionized turbulent plasmas harboring velocity field, magnetic field,
and current density fluctuations. The correlations among these small-scale fluctuations give rise to large-scale flows
and magnetic fields which decisively affect all transport processes. The three-fluid system consisting of electrons,
ions, and neutral particles supports nonideal effects such as the Hall effect and ambipolar diffusion. Here, we
study magnetic transport by the laminar- and turbulent-scale ambipolar diffusion processes using a simple model
of the magnetic induction equation. Based on a linear analysis of the induction equation, we perform a one-
dimensional numerical simulation to study the laminar ambipolar effect on medium-scale magnetic field structures.
The nonlinearity of the laminar ambipolar diffusion creates magnetic structures with sharp gradients in the scale
of hundreds of kilometers. We expect that these can be amenable to processes such as magnetic reconnection and
energy release therefrom for heating and flaring of the solar plasma. Analyzing the characteristic timescales of
these processes, we find that the turbulent diffusion timescale is smaller by several orders of magnitude than the
laminar diffusion timescale. The effect of the modeled turbulent ambipolar diffusion on the obtained field structures
is briefly discussed.
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1. INTRODUCTION

The generation and transport of magnetic fields, in astrophys-
ical objects in general and in the Sun in particular, is a subject of
great interest and an active area of investigation. Several variants
of the mean field dynamo have been suggested for the generation
and migration of the magnetic flux (Parker 1955; Moffat 1970;
Stix 1972; Krause & Rädler 1980). In a partially ionized plasma,
the collisions between charged particles and neutrals produce
additional diffusion mechanisms such as ambipolar diffusion
due to ion–neutral collisions and magnetic resistivity due to
electron–neutral collisions.

The Sun is endowed with a variety of temperature variations
resulting from a combination of thermal and radiative equilib-
ria and departures therefrom. The thermal and the nonthermal
nature of processes then translates into a plasma with varying
degrees of ionization. Thus, the ionization fraction α = ρi/ρn
could vary over several orders of magnitude where ρi and ρn
are, respectively, the ion and the neutral hydrogen mass den-
sities. Discrete structures such as sunspots, prominences, and
spicules contain plasmas with varying degrees of ionization. The
support of the neutral fluid against gravity is a major concern
in the stability of these structures. Although the ideal magne-
tohydrodynamics (MHD) are often used as a starting point of
an investigation, a partially ionized system dominated by the
charged particle–neutral collisions and the neutral particle dy-
namics necessitates a three-fluid treatment. The strong charged
particle–neutral coupling endows the neutral fluid with some
of the properties of a conducting fluid. The neutral fluid is thus
subjected to the Lorentz force along with the usual pressure gra-
dient force. This attribute has been invoked to find the support
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for neutral component of the partially ionized cold and dense
solar prominences (Leake & Arber 2006).

The evolution of the magnetic fields in such a plasma would
be affected by multifluid interactions in general and ambipolar
diffusion in particular (Brandenburg & Zweibel 1994; Chitre
& Krishan 2001). The solar magnetic flux, generated in the
convection zone, has to pass through the partially ionized solar
photosphere/chromosphere before it can appear high up in
the solar corona. This realization is rather recent and is now
receiving a lot of attention. Arber et al. (2007) have emphasized
the profound effects on the temperature and the current structure
of the overlying chromosphere and the corona that an inclusion
of the neutral medium can produce. It is clear that the transport
and/or generation processes of the magnetic field on the solar
photosphere must be studied in a partially ionized plasma. The
magnetic transport would occur through laminar scale flows as
well as turbulent fluctuations of the velocity field, the magnetic
field, and the current density with which the photosphere is well
endowed. Recently Krishan & Gangadhara (2008) have initiated
the study of mean-field dynamo in a partially ionized plasma.

In this paper, we investigate magnetic transports by the flow
generated by the magnetic field itself through the laminar and
the turbulent ambipolar diffusions in a simplified model. The
target height (500–2000 km) is between the photosphere and
the corona. The horizontal scale (≈ 200 km) of our interest is
comparable to or less than the scale height of the chromosphere,
or a mesoscale; the scale is smaller than that of granulations (a
few thousands of kilometers). The dynamics in this scale would
be critical as a driver of turbulences (tens of kilometers) and
be associated with various phenomena recently proposed such
as chromospheric reconnections (thinning of the current sheet)
and small-scale flares with a time scale of �1 day. We explain
briefly a three-fluid framework in Section 2. The linear analysis
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of the laminar ambipolar diffusion of the mesoscale magnetic
induction is given in Section 3.1. The fully nonlinear laminar
ambipolar diffusion is studied numerically in Section 3.2. The
height dependence on the magnetic structures and the correction
with a non-LTE electron density distribution are mentioned in
Section 4.1. We discuss the magnetic transport by turbulent
ambipolar diffusion and compare its timescale with that of the
laminar one in Section 4.2. In addition, we discuss the effect of
the turbulent ambipolar diffusion on the magnetic structure in
Section 4.3. We end the paper with a conclusion in Section 5.

For a low degree of ionization one can define a weakly ionized
plasma by the condition (Alfvén & Fälthammer 1962) that the
electron–neutral collision frequency νen ∼ 10−15nn( 8KBT

πmen
)0.5 is

much larger than the electron–ion collision frequency νei ∼
6 × 10−24niΛZ2(KBT )−1.5. This translates into the ionization
fraction ni/nn < 5 × 10−11 T 2 where n’s are the particle
densities and T is the temperature in Kelvin. A major part of
the solar photosphere (Krishan & Varghese 2008) qualifies as a
weakly ionized plasma.

2. THREE-COMPONENT MAGNETOFLUID

We consider the three-component weakly ionized plasma
consisting of electrons, ions, and neutrals with all having
uniform mass densities (Krishan & Gangadhara 2008). We
begin with the equation of motion of electrons including the
collisional drag force by the neutral gas as meneνen(Ve − Vn);
the electron–ion collisions have been neglected since the ionized
component is of low density. On neglecting the electron inertial
force, we obtain the Ohm’s law for the electric field E. For
timescales of interest larger than the ion–neutral collision
timescale, the ion dynamics (inertial term) can also be ignored.
Substituting for the form of E into the ion force balance equation,
we get the relative velocity Vn − Vi between the ions and the
neutrals as a function of plasma pressure and current density J.
From Faraday’s law of induction along with the forms of E and
Vn − Vi, we obtain the magnetic induction equation including
the effect of ion–neutral collisions,

∂B

∂t
= ∇ ×

[(
Vn − J

ene
+

J × B

cνinρi

)
× B

]
+ η∇2B (1)

where νin is the ion–neutral collision frequency and
η = meνenc

2/(4πe2ne) is the electrical resistivity predominantly
due to electron–neutral collisions. Note that the pressure gradi-
ent terms have been dropped for the incompressible case with
constant temperature. One can easily identify the Hall term
J/ene and ambipolar diffusion term J × B/cνinρi (Chitre &
Krishan 2001). The Hall term is much larger than the ambipolar
term for large neutral particle densities or for νin � ωci, where
ωci is the ion cyclotron frequency. In this system, the magnetic
field is not frozen to any of the fluids.

Substituting for the form of the relative velocity Vn − Vi into
the equation of motion of the neutral fluid, we get the equation

ρn

[
∂Vn

∂t
+ (Vn · ∇)Vn

]
= −∇p +

J × B

c
, (2)

where p = pn + pi + pe, the viscosity of the neutral fluid has
been neglected, and νinρi = νniρn is assumed. Observe that the
neutral fluid is subjected to the Lorentz force as a result of the
ion–neutral coupling due to their collisions.

3. MAGNETIC TRANSPORT BY AMBIPOLAR
DIFFUSION

We investigate the characteristics of the laminar ambipolar
diffusion, contributing to a mesoscale magnetic transport, on the
basis of theoretical and numerical approaches. In what follows,
the process can be described analytically in a simple form.
By performing simulations of a finite amplitude perturbation,
we reproduce fine structures of magnetic fields and associated
current densities through nonlinear diffusion. The motivation
of this test study is to understand the ambipolar effect, and in
our future studies we will perform a fully consistent simulation,
including the Hall term and the neutral fluid dynamics.

3.1. Linear Analysis

In order to highlight the effect of ambipolar diffusion on
magnetic transport, we ignore in the following study all other
effects, i.e., the large-scale neutral fluid flow, the Hall flow,
the α and β dynamo effects, and the viscosity. It is, in fact,

estimated that the ambipolar term ≈ B
2
/4πLνinρi is comparable

to, or larger than the Hall term ≈ cB/4πLene at heights of
500–2000 km if the mean field B is certainly large (Singh
& Krishan 2010). If the characteristic scale L is as small as
≈ 100 km, they dominate over the mean neutral flow V n that is
assumed as �103 cm s−1; dynamo effects are negligible at the
height of interest. Furthermore, we can neglect compressibility
and radiative effects because the plasma pressure is decoupled
from the mesoscale system in the above height range; these are
necessary for the system where the ion and the neutral flow
fields work.

The laminar ambipolar diffusion of the magnetic induction is
described as

∂B

∂t
= ∇ ×

[
J × B

cνinρi
× B

]
. (3)

In the local Cartesian geometry assumed for a spherical ob-
ject of large radius, we choose the magnetic induction as
B = (0, By(x), Bz(x)) where By(x), Bz(x) are respectively the
toroidal and the poloidal components and (x, y, z) represent the
latitudinal, azimuthal, and radial coordinates; we omit the bar
in B. Although the physical plasma parameters such as density,
temperature, and magnetic induction vary substantially along
the vertical direction z, we perform here a local analysis and
assume the parameters to be prescribed at a given height z.
With this choice we can write the y- and the z-components of
Equation (3) as

∂By

∂t
= 1

a

(
∂B2

∂x

)
∂By

∂x
+

By

a

∂2B2

∂x2
(4)

and
∂Bz

∂t
= 1

a

(
∂B2

∂x

)
∂Bz

∂x
+

Bz

a

∂2B2

∂x2
(5)

which can be combined as

∂B2

∂t
= 1

a

(
∂B2

∂x

)2

+
2

a
B2 ∂2B2

∂x2
. (6)

Here a = 8πνinρi and B2 = (B2
y + B2

z ).
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We first attempt a linear solution of Equation (6). Writing
B2 = f and f = feq + f1 with ∂feq

∂t
= 0 we find that the

equilibrium profile is governed by the equation:

∂2feq

∂x2
= − 1

2feq

(
∂feq

∂x

)2

(7)

with a solution

feq (x) = (b1x + b2)2/3 . (8)

As expected in the presence of ambipolar diffusion
(Brandenburg & Zweibel 1994), b1 and b2 are the integration
constants. The components of the equilibrium magnetic field can
be determined by substituting for B2

eq = feq in Equations (4)
and (5). We find

Beqy = b3f
1/2
eq , Beqz = (

1 − b2
3

)1/2
f 1/2

eq , (9)

where b3 is a constant. Assuming the exponential time depen-
dence of f1 as exp(γ t) we find that f1 satisfies the second-order
differential equation:

∂2f1

∂x2
+

1

feq

∂feq

∂x

∂f1

∂x
+

(
1

feq

∂2feq

∂x2
− γ a

2feq

)
f1 = 0. (10)

By using the transformation f1 = f
−1/2
eq g, Equation (10) can be

recast as
∂2g

∂x2
− γ a

2feq
g = 0. (11)

For a constant feq, it describes spatially harmonic oscillations
for γ < 0 with γ as the temporal damping rate, while spatially
damped oscillation is described for γ > 0 with γ as the growth
rate.

3.2. Simulation of Laminar Ambipolar Diffusion

From the magnetic induction Equation (3), we can determine
the characteristic scales of the length L, the time T, and the
magnetic field B0 as

L =
√

B2
0T

a
=

√
1

2
v2

AT ν−1
in . (12)

Note that the spatial scale depends on the time scale since we
use only the induction equation, and thus L should be defined
from given T and B0. We consider the situation around a height
of 1000 km on the Sun where ambipolar diffusion is important
and the values of the various parameters are B0 = 100 G,
νin = 2.5 × 105 s−1, and ρi = 1.7 × 10−13 g cm−3 (Singh
& Krishan 2010). We assume T = 21.6 s so as to resolve
the characteristic scale of the mesoscale magnetic transport
(≈ 1 day), which nearly corresponds to the laminar ambipolar
diffusion time TLA (see Section 4.2). Using Equation (12), the
spatial scale is estimated to be L ≈ 4.59 km and the system
size is Ls = 500L ≈ 2300 km. The characteristic value of the
current density is found to be j0 = cB0/4πL ≈ 520 kA.

We set the initial distribution of magnetic fields, Beqy and
Beqz, using the equilibrium solution feq of Equation (8) that
are written as Equation (9). The field parameters are fixed
as b1 = 10−3, b2 = 0.1, and b3 = 0.9. In our study, we
give a perturbation only to the Beqy component, representing
a shear of the toroidal field introduced by vertical plasma

convection. Meanwhile, the poloidal component Beqz, assumed
to be much less than the toroidal component, is not perturbed.
We perform nonlinear simulations of Equations (4)–(6) using
the initial conditioning with an assumed perturbation of the
Gaussian form, C sin(20πx/Ls) exp(−x2/(80L)2). We take two
case studies with small and large initial perturbations where
amplitudes are set to be C = 0.1 and C = 0.5, respectively.
We adopt an Adams–Bashforth-type multistep method for
time integration; the resolution is set to be Δt = 4.32 s in
order to follow the Courant–Friedrichs–Lewy (CFL) stability
condition. The third-order upwind biased method is used for
finite differencing of the advection term. For the boundary
condition at the two sides, all quantities are fixed in terms of
feq shown just above. The current densities are calculated to be
jy = − c

4π

∂Bz

∂x
and jz = c

4π

∂By

∂x
.

Figure 1 shows latitudinal variations in the magnetic field
components, By, Bz, and the amplitude, |B|, at times of t = 0
and 1 day in the case of small perturbation; dotted lines show
the initial profiles. We find that the fluctuation in By decreases
with time and its phase shifts slightly to the −x direction by
≈ 10L or ≈ 45.9 km, whereas the structure with a magnitude
of ≈ 10 G is produced in the Bz-component; the currents are
induced with an amplitude of 2–3 kA and a latitudinal scale of
200 km. Through generation of the poloidal field, the amplitude
|B| is strongly relaxed to have no visible deviation from the
equilibrium value f

1/2
eq . We find that the anti-phase of Bz peaks

with By peaks, or propagation of By modes, is associated with
the relaxation process. These behaviors are quite similar to those
in an activator–inhibitor system, or a reaction–diffusion system,
and realized by the competition among By, Bz, and |B| with
different diffusion coefficients and source terms. We confirmed
that similar results are obtained within a wide parameter range
if C is small. Because this behavior can appear in the extreme
case Beqz � Beqy , ambipolar diffusion process is important
in the production of a strong poloidal field from the toroidal
field.

Figure 2 shows a square of the deviation from the equilibrium
magnetic field, i.e., the variable g in Equation (11) in units of
G

5
2 . We compare the relaxation timescales of the linear analysis

in Section 3.1 and of the nonlinear simulation results. Adopting
the perturbation scale as the spatial wavenumber kx = 20π/Ls,
the former timescale −γ −1 = a/2feqk

2
x is estimated to be

1.45×103 s, which is exactly consistent with the latter timescale.
We also find the structure resembling a sinusoidal half-mode,
different from a initial Gaussian, in its fully relaxed state. The
temporal variation reveals that the half-mode is formed through
dissipations of higher modes as well as the amplitude itself. As
the solution of Equation (11) with γ < 0, the half-mode is the
lowest stable state in the fixed boundary condition with weak
nonlinearity.

Figure 3 shows the distribution of magnetic fields and
amplitude at t = 54,000 s in the case of large perturbation
to the equilibrium profile. We clearly find that by this time
intense peaks in By are diffused to form weak slopes and sharp
troughs with different latitudinal scales. Since a large phase shift
in By does not occur due to the fast relaxation (≈ 103 s) of fields,
most of the magnetic energy is converted to Bz and its structure is
characterized by the fine peaks (scales of 100 km and amplitudes
of ≈ 70 G) along with broad troughs (scales of 200 km). Bz is
out of phase to By similar to the case of small perturbation.
We consider that the asymmetric feature, i.e., generation of
the sharp poloidal field structure, is one of consequences of
the strong nonlinear diffusion. Since the diffusion rate of a By
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Figure 1. Latitudinal distribution of (a) magnetic fields By, Bz, and (b) their
amplitude |B| in units of G at t = 0 s (dotted curves) and t = 1 day (solid
curves). As a small initial perturbation, a sinusoidal function with a Gaussian
scale of ≈ 370 km and a maximum amplitude of ≈10 G is given to the By-
component. The equilibrium field function is shown in the text. (c) Distribution
of current densities, jy (dashed curve) and jz (dotted curve), in units of kA at
t = 1 day. High currents are found to be produced at the regions where magnetic
fields are condensed (x ≈ 1050 km) as seen in panel (a).

trough at, e.g., x ≈ 1050 km is quite slow proportional to the
field amplitude |B|, the magnetic energy in its surroundings is
converted to that in Bz through the diffusion of |B|. The strong
and sharp currents with a maximum amplitude of 70 kA are
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g
, G

5/
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Figure 2. Temporal variation of perturbative magnetic field amplitude defined

as g in units of G
5
2 (see the text) for the case of small perturbation. Curves with

higher peaks correspond to those at t = 0 s, ≈ 15, 100 s, and 1 day, respectively;
the latter two curves are multiplied by a factor of 50 for illustration. g is relaxed
into the lowest linear harmonics kx = π/Ls, Ls be system size.

produced at the regions where the magnetic field is condensed.
Positive jy and jz are induced at the right edges of the troughs in
By and the peaks in Bz; on the other hand, negative currents are
induced at the right edges of the broad field areas.

We can see another feature of the strong nonlinear effect in the
relaxed shape of |B|, which reveals a visible weak structure in
Figure 3(c). In Figure 4, the shape of g is relaxed to the Gaussian
profile as initially provided as an envelope. We distinguish
clearly the relaxed structure from the sinusoidal half-mode of
a solution of Equation (11) seen in a small perturbation case.
Formation of broad slopes in By contributes to its formation. It
is clear from these studies that nonlinear ambipolar diffusion
has a large impact on the configuration of an ambient magnetic
field.

4. DISCUSSION

4.1. Height Dependence on the Magnetic Transport

Neutral and ionic compositions, and their temperatures in the
solar atmosphere, 500–2000 km, are known to vary strongly by
several orders of magnitude. Our model formulation is still valid
in a certain latitudinal scale; however, it is useful to perform a
similar calculation using parameters in the other height. Figure 5
shows latitudinal distributions of the magnetic field amplitude
|B| for the small perturbation case at the height of 500 km and
1500 km. We readily find that the obtained behaviors of |B| and
the poloidal field production (Bz, not shown) are equivalent
to the case in Figure 1 except for their spatial scales. This
is because model Equations (4)–(6) can be normalized into
dimensionless equations; the timescale is fixed as ≈ 1 day, thus
the spatial scale changes according to Equation (12). Since the
ion density ρi and the collision frequency νin decrease with
height along with the magnetic field B0, the scale of magnetic
structures does not change largely with height, i.e., ≈ 400 km
at z = 500 km and ≈ 250 km at z = 1500 km. However, recent
numerical studies suggest that the ion density derived from
a local thermal equilibrium has several orders of uncertainty
(Leenaarts & Wedemeyer-Böhm 2006). Taking their calculated
ionization degrees (Figure 6 in their paper), we can correct the
above spatial scales to be ≈ 1300 km at z = 500 km and ≈ 80 km
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Figure 3. Similar plots as in Figure 1 but the scale and input parameters are
different; (a) By and (b) Bz are separated for illustration, |B| in panel (c) and
jy,z in panel (d). Solid curves in panels (a)–(c) show the values at t = 54,000 s,
while dotted show initial values. For the study of strong nonlinearity, a large
amplitude of initial perturbation (≈ 60 G in maximum) is provided. In panel
(d), higher currents (≈ 70 kA) are produced at x ≈ 1050 km compared with a
small perturbation case.
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Figure 4. Similar plots as in Figure 2 but for the case of large field perturbation.
Curves with higher peaks correspond to those at t = 0 s, ≈ 8640 s, and 54,000 s,
respectively; the latter two curves are multiplied by a factor of 20 for illustration.
g is relaxed into a Gaussian form similar to the initial perturbation.
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Figure 5. Magnetic field amplitudes |B| in units of G at t = 0 s (dotted curves)
and t = 1 day (solid curves) for the case of small perturbation; the plasma
parameters at a height of (a) 500 km and (b) 1500 km are used.

at z = 1500 km, whereas it remains unchanged to be ≈ 200 km
at z = 1000 km. Thus, the magnetic field structure becomes
small with an increase in height. Considering expansion of a
magnetic flux tube, ambipolar diffusion seems to be effective in
the lower height.
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4.2. Timescale Analysis on Turbulent and Laminar Ambipolar
Diffusions

One way of studying turbulence in a system is by splitting
the physical quantities into small-scale and large-scale parts.
Following the standard procedure of the mean-field dynamo
(Krause & Rädler 1980), the velocity Vn −J/ene +J ×B/cνinρi
and the magnetic field B are split into their average large-scale
parts as B and the fluctuating small-scale parts as B ′. Applying
this theory to the magnetic induction equation, the temporal
variation in the mean field B is obtained as the zeroth-order
component. Ambipolar diffusion consists of two terms, the first
of which represents the laminar component ∼ (J ×B)×B seen
in Equation (3), while the second term represents the turbulent
process ∼ (J ′ × B ′) × B. Here, we point out the importance
of the turbulent ambipolar diffusion by comparing its timescale
with the laminar process using a fluctuating field analysis. The
laminar and the turbulent ambipolar diffusions of the magnetic
induction are described as

∂B

∂t
= ∇ ×

[
J × B

cνinρi
× B +

J ′ × B ′

cνinρi
× B

]
. (13)

We estimate the second term as follows:

J ′ × B ′ = −∇B ′2

8πc
+

B ′ · ∇B ′

4πc
. (14)

The left-hand side is the average Lorentz force due to magnetic
fluctuations and we assume that it is nonzero. On the right-hand
side, the first term is symptomatic of the turbulent magnetic
pressure and the second is the contribution to the turbulent
curvature. If magnetic fluctuations are introduced in a fluid
initially at rest, the Lorentz force will drive motion in the fluid.
In an incompressible fluid, the direction of the flow is along
the predominant component of the fluctuating field. This arises
through the curvature term B ′ ·∇B ′ since only the solenoidal part
of the Lorentz force can drive flows in an incompressible fluid
or in a compressible fluid under the Boussinesq approximation
as discussed by Ogilvie (2003). The gradient part of the Lorentz
force is compensated for by the pressure gradient. Here, we shall
make an approximate estimate of this term as

J ′ × B ′ ≈ c

4πλcor
B ′2, (15)

where λcor is the correlation length of the magnetic fluctuations.
We follow Krause & Rädler (1980) in order to estimate

the mean square of the magnetic fluctuations B ′2. In the high
conductivity limit (η ≈ 0), the fluctuation B ′ is produced
by the interaction of the turbulent velocity field V ′

E with the
mean magnetic field B over a time scale τcor, where τcor is
the correlation timescale of the fluctuating fields. Thus, the
elemental field B ′

el is given by

B ′
el ≈ V ′

Eτcor

λcor
B. (16)

After a time interval τcor the turbulent field V ′
E changes nearly

completely. This new realization of the turbulent V ′
E interacts

with B to produce another elemental field B ′
el uncorrelated with

the previous field element. Each field element survives over
the dissipation time scale τdis ≈ λ2

cor/η much larger than the

correlation time τcor. Thus, the total fluctuating field B ′ is the
incoherent sum of these elemental fields B ′

el. The number n of
these elemental fields is given by

n ≈ τdis

τcor
= λ2

cor

ητcor
. (17)

Thus, to the order of magnitude, B ′ is found to be

B ′ ≈ √
nB ′

el ≈
√

V ′
E

2
τcor

η
B. (18)

And
B ′2 ≈ RMSB

2
(19)

where

RM = 〈V ′
E〉λcor

η
, S = 〈V ′

E〉τcor

λcor
(20)

are respectively the magnetic Reynolds number and the Strouhal
number; rms of V ′

E is denoted as 〈·〉.
We can now estimate the time scales of the laminar ambipolar

diffusion, TLA and the turbulent ambipolar diffusion, TTA from
the magnetic transport Equations (13) as

TLA ≈ 4πL
2
ρiνin

B
2 , TTA ≈ 4πLλcorρiνin

B ′2
, (21)

where L is the characteristic spatial scale associated with the
mean magnetic field B. Substituting from Equation (20), we
find the ratio of the two timescales to be

TTA

TLA
= (RMS)−1 λcor

L
. (22)

Now the magnetic Reynolds number RM � 1, the Strouhal
number S < 1 and the correlation length λcor � L; therefore,
the turbulent ambipolar diffusion timescale TTA can be much
smaller than the laminar ambipolar diffusion timescale TLA. This
is exactly what is expected of a turbulent transport process. The
reason for the greater efficiency of a turbulent transport over a
laminar transport is that in a turbulent process a physical attribute
on a mesoscale is transferred to a small scale and it is much easier
for a small-scale quantity to diffuse than for a mesoscale one to
diffuse. For the typical values of the physical parameters at a
height of interest (see Section 3.2, L ≈ 100–200 km in Figures 1
and 3), we find TLA ≈ 104 s, �1 day, and TTA could be smaller
by several orders of magnitude.

4.3. The Effects of the Turbulent Diffusion

In this section, we first assess the effect of turbulent ambipolar
diffusion on the mesoscopic magnetic structures provided in
Section 3.2. We tried to perform a test simulation including the
modeled turbulent effect; the details are shown below. Second,
we point out some contributions of ambipolar diffusion to
observed fine structures in the solar atmosphere.

In Section 4.2, we evaluated the magnitude of the turbulent
diffusion timescale, TTA, and found the relation TTA/TLA = ε
as Equation (22); ε is a small parameter. Using Equations (15)
and (19), we can write the magnitude of the turbulent Lorentz

force as 4π |J ′ × B ′|/c ≈ B ′2/λcor = B
2
/εL. As the curvature

term is predominant in Equation (14), this force points parallel to
the fluctuating field B ′. However, we cannot solve the fluctuating
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field B ′ self-consistently with the mean field B. We assume
here that the direction of the turbulent field, ξ (x), changes
temporarily, while its long-time average meets the relation
〈ξ (x)〉 = 0; that is, the turbulence is isotropic. For numerical
convenience, we define the value as −1 � ξ � 1 for each
spatial point using a uniform random number; we assign the
same value of ξ between the time scale of λcor. Thus, we
can write the turbulent ambipolar term in Equation (13) as

− ∂
∂x

B
2
ξ × B/8πνinρiε where we convert 1/L to ∂

∂x
not to

change the form of the diffusion equation. Operating ∇×, we get
the y- and z-components of the term as 1

εa
∂
∂x

( ∂B2

∂x
ξBy,

∂B2

∂x
ξBz)

and solve Equations (4)–(6) by adding this turbulent effect; ε is
assumed to be 0.1.

We see the temporal variation in magnetic fields for which
most parameters are set to be the same as the small perturbation
case in Section 3.2. For numerical efficiency, we set the system
size Ls = 46 km and the resolution Δx = 0.046 km. At the
very initial phase, the peaks in Bz become pointed and produce
some new peaks with a small spatial scale λcor ≈ 0.5 km. We
also find that a strong current is induced at the steep gradient
of the field. However, we cannot reproduce the further time
variation, suffering from numerical oscillations; this is because
ξ defined by a random number is not appropriate for fluid
simulation. We should renormalize the turbulent effect to be
treated successfully in the laminar scale and will study the
produced magnetic structures through the interaction of these
scales. Another important effect of turbulent ambipolar diffusion
is to transport magnetic energy in the radial direction. Similar
to molecular diffusion, local enhancement of the energy in the
lower atmosphere (≈ 500 km) leads to its systematic increase
up to �1000 km with a certain scale height. Based on our
timescale analysis, the transport of a strong magnetic shear, or
a thin current sheet, can be realized on a very short timescale
(e.g., t ≈ 100–200 s).

We briefly mention a possible role of the ambipolar diffusion
process implied in some observable atmospheric phenomena.
For the last few decades, magnetic reconnection in partially
ionized plasma with ambipolar and Hall effects has been ana-
lyzed (see Krishan 2009, and references therein). The evidence
for chromospheric reconnection is clearly found from recent
satellite observations such as a large number of fine (highly
convective) structures in the vicinity of sunspots. In our pre-
vious study, the slab scale and the formation speed of the
Sweet–Parker-type current sheet are estimated with a simple

analysis of the induction equation in the MHD regime. This
study presents a nonlinear analysis of the ambipolar effect,
which results in the formation of thin current sheets with a
mesoscale �100 km and a short time scale of 103 s. Since the
scale is close to the kinematic regime, we point out the impor-
tance of turbulent ambipolar diffusion in the further thinning
process of the current sheets. We expect that nonlinear ambipo-
lar diffusion works as one of the mechanisms sustaining ob-
served fine structures through radial magnetic transport from the
chromosphere.

5. CONCLUSION

We find that ambipolar diffusion is an important effect in
the partially ionized part of the solar atmosphere. The laminar
ambipolar transport is found to create magnetic structures with
steep gradients in a horizontal scale of 100–200 km. The
turbulent part of ambipolar diffusion could transport these
structures on a timescale which could be shorter by orders of
magnitude than all the other processes. Thus, the formation
and migration of magnetic structures to higher up in the solar
atmosphere could be the result of ambipolar diffusion.

Y.H. thanks the Raman Research Institute (Bangalore, In-
dia) for supporting his visit during which a part of this work
was done. Another part was done during V.K.’s stay as a vis-
iting professor at the Solar-Terrestrial Environment Laboratory
(STEL) of Nagoya University.
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Krause, F., & Rädler, K.-H. 1980, Mean-Field Magnetohydrodynamics and

Dynamo Theory (Oxford: Pergamon)
Krishan, V. 2009, MNRAS, 400, 2200
Krishan, V., & Gangadhara, R. T. 2008, MNRAS, 385, 849
Krishan, V., & Varghese, A. B. 2008, Solar Phys., 247, 343
Leake, J. E., & Arber, T. D. 2006, A&A, 450, 805
Leenaarts, J., & Wedemeyer-Böhm, S. 2006, A&A, 460, 301
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