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Mean-field analysis of quantum phase transitions in a periodic optical superlattice
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We analyze the various phases exhibited by a system of ultracold bosons in a periodic optical superlattice using
the mean-field decoupling approximation. We investigate for a wide range of commensurate and incommensurate
densities. We find the gapless superfluid phase, the gapped Mott insulator phase, and gapped insulator phases

with distinct density wave orders.
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I. INTRODUCTION

Mean-field theory has proven to be a useful tool for
the analysis of the quantum phase transitions in lattice
systems [1,2]. The zero-temperature phase diagram of the
Bose-Hubbard model predicting the superfluid (SF) to Mott
insulator (MI) transition was first discussed by Fisher et al. [3].
Jaksch et al. [2] suggested the possibility of such a transition
in an optical lattice loaded with ultracold atoms and it was
subsequently observed experimentally by Greiner et al. in
2002 [4]. There are a number of reviews on this topic [5-7].
Several versions of mean-field theory have been used in the
context of ultracold atoms, including the Bogoliubov approx-
imation [8], the Gutzwiller approach [2], and the mean-field
decoupling approximation [9]. In the weak-interaction limit,
the Bogoliubov approach is useful. However, it is not suitable
for the study of the SF-MI phase transition since it is valid
only for weak interactions. In the decoupling approximation,
the Bose-Hubbard Hamiltonian is decoupled into single-site
Hamiltonians. The resulting mean-field equation can be solved
in two ways: either analytically using perturbation theory
or numerically by diagonalizing the Hamiltonian matrix
self-consistently using a convenient basis. The Gutzwiller
mean-field approach has been used in several papers to study
the Bose-Hubbard model in quantum lattices [2,10,11]. In this
paper, we have applied the decoupling approximation to a
d-dimensional periodic optical superlattice with a periodicity
of two sites [12].

A number of papers on ultracold atoms in different types of
optical superlattices have been published in the past few years
[12—17]. Experiments on this subject have been proposed and
carried out in different laboratories [18—20]. In this context,
it is desirable to understand the possible phases in different
kinds of optical superlattices. The main purpose of this study
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is to understand the phases in the d-dimensional optical
superlattice with a periodicity of two sites. For this purpose
we use mean-field theory in the decoupling approximation
to convert the full Hamiltonian into a sum of single-cell
Hamiltonians. Our findings for ultracold atoms in the optical
superlattice with a periodicity of two sites yields gapped
insulators accompanied by different crystalline orders in
addition to the usual Mott insulator and superfluid phases.
These unusual insulating phases have been generically referred
to as the superlattice-induced Mott insulators (SLMIs) in the
literature [17]. Unlike the normal Mott insulator phase in
which strong on-site interatomic interactions give rise to the
gapped insulator, the SLMI phases arise due to the superlattice
potential. Depending upon the distribution of bosons within
the unit cell, there can be various types of SLMI phases. If the
configuration of the occupancy of bosons within the unit cell
is such that the alternate sites are occupied by one atom and
the other being empty, then such an insulator is called SLMI-I.
The configuration in which the alternate sites are occupied by
two bosons and the other is empty is called SLMI-II. If the
configuration is such that alternate sites are occupied by two
bosons, and the other by one, then it is called SLMI-III.

The rest of the paper is organized in the following manner.
In the next section, we describe the application of the mean-
field decoupling approximation to an optical superlattice with
a periodicity of two sites. In Sec. III we present our results.
Our conclusions are given in Sec. I'V.

II. MEAN-FIELD CALCULATIONS
FOR THE OPTICAL SUPERLATTICE

The system of bosons in a general optical superlattice can
be best described by the Bose-Hubbard model as follows:

H=—t Z(ajaj +He)+ % Zﬁ,-(ﬁ,- —1- Zmﬁi.
(i,J) i i

(D

In the above equation, (i, j) denotes a pair of nearest neighbor
sites i and j, t denotes the hopping amplitude between adjacent
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sites, U represents the on-site interatomic interaction, &IT(&,-)
is the creation (annihilation) operator which creates (destroys)
an atom at site i, 1; = &3'&,- is the number operator, and wu;
represents the on-site chemical potential. For an optical lattice
w; = wu for all i. However, this is not true for the optical
superlattices and explicit dependence of w; on the lattice site
i depends on the specifics of the superlattices.

The most important step in obtaining the mean-field Hamil-
tonian is the decoupling of &f& ; into single-site operators. For
this purpose, we make the following approximation:

a; =¢i+5li§aj=¢7+d;r'

Here ¢; = (a;) is the mean value and the superfluid order
parameter, and & is the small fluctuation over the mean
value. We assume ¢; to be real [1]; hence, ¢; = ¢; for all
i. Substituting the above approximation in the kinetic energy
term of the Eq. (1), we get

—tY (ala;+He)=—1) (@la; +aah)
(i,J) (i,J)

—t Y @lp; +aji + @iy +aLi + 2.

(i,J)

2)

We neglect the first term, which is second order in
fluctuation. The validity of such an approximation can be
assumed when ¢ is small compared to the the interaction U
and the superlattice potential A. Defining ¢; = % D s its, 8
being summed over z = 2d nearest neighbors with d being
the dimension of the optical lattice, we get the following
mean-field Hamiltonian:

HMF — _¢, Z[q_ﬁ,-(&j +d;) + i)

U
5 2omin = D= ) i, (3)
Substituting d@; = a; — ¢; in the above equation, we get

HMF — 47 Z[d_’i(“j +a;) — gidil

-}-%Zn[(n,- — 1)—2#;’”5, “4)

which can be written as a sum of single-site Hamiltonians, i.e.,
MF _ MF

HY' =% HM"", where
MF ¥

L = —gi(al +a) + digi + g"i(”i - —pini. ()
zt 2

We have divided the single-site mean-field Hamiltonian by zz
to make it and other parameters dimensionless, and thus U=
U/zt and i; = w;/zt are the dimensionless on-site interaction
and chemical potential, respectively.

For an optical lattice, all the sites are equal, and thus u; =
w and ¢; = ¢ for all i. The Hamiltonian Hl.M F can then be
diagonalized in the following manner. By assuming an initial
value for the superfluid order parameter ¢, the matrix elements
of the mean-field Hamiltonian are constructed in the number
occupation basis |n), where n = 0,1,2, ... ,ipax, Where np,x
is the maximum number of bosons allowed per site whose
value depends on the on-site interaction U and the chemical
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potential . Relatively small values of np,, should suffice
for large values of U and small values of p and vice versa.
Since we have taken four different values of U ranging from
2 to 15 and the density is always less than 4, we have taken
Nmax = 10 in our calculation. The Hamiltonian matrix is then
diagonalized to obtain the lowest eigenstate, which is used
to obtain the new value for ¢. Using this value for ¢, the
calculation is repeated till ¢ is converged.

We now extend the mean field for the optical superlattice,
which is formed by the superposition of two optical lattices
with different wavelengths and a relative phase shift with
respect to each other. This superlattice has a periodicity of
two sites, and thus each unit cell consists of 2¢ sites with
alternate sites having an energy shift A;. Such a system can
be described by the Bose-Hubbard model (1) by taking into
account the relative energy shifts of the potential minima such
that u; = u — A;, where A; denotes the energy shift and is
called the superlattice potential.

In this optical superlattice, the sites are not equal since
i = u — A; is not same for all i. However, the difference is
restricted only within the unit cell and the whole system is built
using this unit cell. The unit cell in the superlattice considered
here consists of 2¢ sites. Since all dimensions are equivalent
and the periodicity is two in our system, we can work on any
one such direction, and hence we denote the two neighboring
sites by 1 and 2. The mean-field Hamiltonian for such a unit
cell can be written as

HM' = —¢o(a] +a1) — ¢1(a) + @) + 241
U
+ E[nl(”ll — 1)+ na(ny — 1]
— @ilny +nal + Ay + Aano. (6)

In order to diagonalize the above Hamiltonian, we express
all the operators including the Hamiltonian in the occupation
number basis. Then we take initial guess values of the
superfluid order parameters, ¢; and ¢,. After diagonalizing
the HMF matrix using the standard Jacobi method, we find
the ground-state energy and the ground-state wave function.
From the relation ¢; = (a;), we calculate the superfluid order
parameters using the ground-state wave function. We then
substitute these new values of ¢ and ¢, in H,. and iterate the
process, until the values of ¢; and ¢, converge to 107, The
different phases are then analyzed based on the values of these
superfluid densities.

III. RESULTS

Taking the superlattice potential for the two distinguished
sites within the unit cell A; =0 and A, = A, we present
our results for a wide range of A, densities p, and four
characteristic values of the on-site interaction U, chosen to
cover a substantial part of the phase diagram. In our analysis,
we have taken z¢t = 1.0, so all quantities such as U, A, and p
are expressed in units of z7.

First we investigate the effect of the superlattice potential
on the superfluid phase. In Figs. 1 and 2, we plot, respectively,
for U = 2 the average density p and the superfluid density p*
as a function of the chemical potential u for different values
of A starting from 0.5 to 5.5 at an interval of 1.0. Here p
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FIG. 1. (Coloronline) Variation of average density p as a function
of the chemical potential p for U = 2, but for different values of A
starting from 0.5 (red solid curve) to 5.5 (magenta double dash dot
curve) at the intervals of 1.0.

and p° are, respectively, the average density and the superfluid
density of a unitcell,i.e., p = (p; + p2)/2, p° = (qbf + qﬁ%)/Z.
It is known that for U = 2, A = 0, the model (1) is always
in the superfluid phase [1] irrespective of the value of the
density p.

From Figs. 1 and 2, we find that density p increases
with an increase in w for finite, but small values of A. The
superfluid density p*° remains finite for all densities, which
implies that the system continues to be in the superfluid phase
as in the case of A = 0. However, as A is increased further,
say, for example, A = 4.5, the density develops a plateau at
p = 1/2 for a range of w values. This is the signature of a
finite gap in the energy spectrum in this range of p values
and vanishing compressibility « = g—ﬁ. Figure 2 suggests
vanishing superfluid density in the same range of n. For all
other densities, i.e., p # 1/2, including integer densities, the
superfluid density remains finite. These features confirm that,
for U = 2, model (1) is in the superfluid phase for all values
of p # 1/2 for all values of 1. However, for p = 1/2 there is
a superfluid to an insulator phase transition as A is increased.

This insulator phase is different from the standard Mott
insulator phase arising due to the on-site interaction. Here U =
2 is small and the Mott insulator phase is not expected. The

FIG. 2. (Color online) Variation of average superfluid density p*
as a function of p for the same set of parameters as in Fig. 1.
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TABLE 1. Results for U = 2.0.

A P u o1 05 n ny

0.5 0.620 0.00 0.58 0.45 0.73 0.51
0.5 1.022 0.70 0.87 0.75 1.12 0.92
0.5 2.017 2.60 1.72 1.57 2.13 1.91
1.5 0.490 0.20 0.52 0.21 0.77 0.21
1.5 1.020 1.20 0.98 0.62 1.32 0.71
1.5 2.020 3.10 1.87 1.41 2.34 1.69
2.5 0.490 0.47 0.39 0.08 0.91 0.08
25 1.030 1.71 1.11 0.49 1.53 0.53
25 2.030 3.61 2.02 1.26 2.57 1.49
35 0.500 0.70 0.07 0.01 0.99 0.01
35 1.020 2.10 1.14 0.33 1.70 0.34
35 2.030 4.10 2.16 1.10 2.79 1.28
4.5 0.500 0.40 0.00 0.00 1.00 0.00
4.5 1.000 2.40 1.08 0.19 1.82 0.19
4.5 2.000 4.50 2.24 0.91 2.96 1.03
55 0.500 0.30 0.00 0.00 1.00 0.00
55 1.000 2.60 0.89 0.10 1.91 0.10
55 2.000 5.00 2.36 0.77 3.18 0.84

reason for the formation of an insulator phase for U = 2 is due
to the superlattice potential, and to distinguish this insulator
from the Mott insulator phase, we call it a superlattice-induced
Mott insulator [17] as mentioned earlier. In order to understand
the SLMI phase, the distribution of bosons within the unit
cell is tabulated in Table I. As we discussed in the previous
section, the unit cell consists of 2¢ sites and each cell has
two distinct sites, which we refer to as 1 and 2. The values
of site densities p; and p, and superfluid densities pj and p;
are listed in the table for different values of A. For A < 3.7,
the on-site superfluid densities pj and p; remain finite for
all densities. However, for A > 3.7 and density p = 1/2, we
find pj = p5 = 0and p; = 1,0, = 0. This implies, within the
unit cell, that one site is occupied and the other site is empty.
Since this unit cell repeats to cover the entire lattice, it has
every alternate site occupied with the other being empty like a
charge density wave (CDW) phase, which normally arises due
to nearest neighbor interaction. However, it should be noted

2.5
H U=5.0 1

FIG. 3. (Color online) Variation of average density of a unit cell
p as a function of the chemical potential i for U = 5, but for different
values of A starting from 0.2 (red solid curve) to 7.2 (orange large
dashed curve) at intervals of 1.0.
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FIG. 4. (Color online) Variation of average superfluid density of
a unit cell as a function of u for the same set of parameters as in
Fig. 3.

here in this work that the CDW-like density distribution is due
to the superlattice potential and there is no nearest neighbor
interaction involved. Since the distribution of bosons follows a
pattern [101010 -- -] in all 4 directions of the lattice, we call
this phase SLMI-I to distinguish it from SLMI-II discussed
below. Table I also confirms that there is no insulating phase
for densities p = 1 and 2.

Results for U = 5 are similar to those of U = 2. In Figs. 3
and 4 we plot, respectively, density p and the superfluid
density p* as a function of u for different values of A.
The system is in the superfluid phase at p = 1/2 and p =1
initially for low values of A (< 2.6). For A > 2.6, a plateau
appears in the p versus pu plot for p = 1/2, suggesting a gap
in the energy spectrum. The superfluid density vanishes in
this region. This plateau at p = 1/2 widens as A increases.
However, the system remains in the SF phase at p = 1 for all
the values of A considered. In Table II, we tabulate the values
of site densities and superfluid densities within the cell and
we conclude that the transition from the SF to the SLMI-I
phase is at A = 2.6, when the superfluid density vanishes, and

the occupancy configuration is of the form [1 010 ---]. On
TABLE II. Results for U = 5.0.

A P 2 Pi P n 1

0.2 0.523 0.0 0.370 0.35 0.57 0.48
0.2 1.030 2.5 0.270 0.26 1.03 1.02
0.2 2.080 7.5 1.190 1.17 2.09 2.06
22 0.500 0.9 0.110 0.06 0.95 0.06
22 1.010 33 0.433 0.36 1.13 0.90
22 2.000 8.1 1.250 1.09 2.19 1.81
32 0.500 0.5 0.000 0.00 1.00 0.00
32 1.000 3.8 0.570 0.42 1.22 0.78
32 2.010 8.7 1.350 1.08 2.30 1.73
4.2 0.500 0.2 0.000 0.00 1.00 0.00
4.2 0.990 53 0.790 0.29 1.65 0.34
4.2 2.010 10.2 1.540 0.91 2.62 1.40
7.2 0.500 0.2 0.000 0.00 1.00 0.00
7.2 1.010 5.8 0.620 0.18 1.82 0.20
72 2.020 10.7 1.54 0.83 2.73 1.30
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0 3 6 9 12 15 18

FIG. 5. (Color online) Variation of average density of a unitcell p
as a function of the chemical potential u for U = 10, but for different
values of A, varying from 0.2 (red solid curve) to 14.2 (orange large
dashed curve) at intervals of 2.0.

the other hand, at other values of p and for all values of A, the
superfluid densities p} and p; remain finite.

Results for U = 10 are different from those of U = 5. This
difference is mainly due to the fact that model (1) has SF
to MI transitions for integer densities. For p = 1, the critical
U, ~ 5.8 for the SF-MI transition [1] and this implies that, for
U = 10, model (1) is in the Mott insulator phase for p = 1. In
Figs. 5 and 6 we plot, respectively, density p and the superfluid
density p® as a function of u for different values of A. From
these figures the following conclusions are drawn. For small
values of A, the plateau in the p versus u plot exists only for
p = 1 and p* vanishes in the same range of p, confirming the
expected SF to MI transition for p = 1. The system remains
in the superfluid phase for all other densities. However, as we
increase A, the plateau region at p = 1, i.e., the MI region,
shrinks first, completely disappears for some values of A, and
reappears again for higher values of A.

A plateau develops at p = 1/2 for A > 2.3 and at p = 3/2
for A > 5.3. From the tabulated values of p; and p, in Table I1I,
we see that the insulator phase at p = 1/2 is the same as SLMI-
I. The insulator phase at p = 3/2 has a density distribution
[2121 -], which we call SLMI-III. The insulator phase
at p = 1 for higher values of A has an occupation at alternate

0.8 ————
U=10.0
0.6

5 1
/
mQ_ 0.4+ Nz
0.2 B

l

i
()i— L =
0 3 18

FIG. 6. (Color online) Variation of average superfluid density of
a unit cell as a function of p for the same set of parameters as in
Fig. 5.
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TABLE III. Results for U = 10.0.

s

s

A o 2 o 0 n ny

0.2 0.48 0.00 0.30 0.29 0.53 0.44
0.2 1.00 2.00 0.00 0.00 1.00 1.00
0.2 2.00 14.50 0.00 0.00 2.00 2.00
2.2 0.50 1.20 0.00 0.00 1.00 0.00
2.2 1.00 3.00 0.00 0.00 1.00 1.00
2.2 2.00 15.00 0.00 0.00 2.00 2.00
6.2 0.50 0.50 0.00 0.00 1.00 0.00
6.2 1.00 7.50 0.00 0.00 1.00 1.00
6.2 1.50 12.00 0.00 0.00 2.00 1.00
10.2 0.50 0.19 0.00 0.00 1.00 0.00
10.2 1.00 9.97 0.65 0.32 1.51 0.47
10.2 1.50 12.16 0.00 0.00 2.00 1.00
14.2 0.50 0.10 0.00 0.00 1.00 0.00
14.2 1.00 10.70 0.00 0.00 2.00 0.00
14.2 1.50 15.60 0.00 0.00 2.00 1.00

lattice sites [2 0 2 O ---], which we refer to as the SLMI-II
phase.

Thus, for U = 10.0, for A < 2.3 the system exhibits a Mott
insulator phase for p = 1 and a SF phase else where. For 2.3 <
A < 5.3, the system has two insulating phases: SLMI-I for p =
1/2 and a MI phase for p = 1. The system is in the superfluid
phase for the rest of the densities. For A > 5.3 the system
shows SLMI-I for p = 1/2,aMIl phase for p = 1, SLMI-III for
o = 3/2, and SF for other densities. For p = 1 the MI phase
is lost for A > 6.5 and reappears as SLMI-II for A > 13.1.
The results for U = 10.0 are in qualitative agreement with
those obtained using Density Matrix Renormalization Group
(DMRG) [17].

The system for U = 15.0 behaves similarly to that for
U =10.0. At p =1/2, the system starts off in the gapless
SF phase for low values of A(= 0.2), as evident from Figs. 7
and 8 and Table IV. But at p = 1.0 and 2.0, the system is
in the MI phase at this value of A. As A is increased to a
value greater than 2.2, a gap appears at p = 1/2, marking the
transition from the SF to the SLMI-I phase, as seen in Table IV,
where we have vanishing superfluid densities, and also a

2 T
U=15.0
1.5 e —
I ’,) ]
/iy
e T = /.7
1 /

[ 1 ! / ./
O_S_——.I__!_..__._/./ -

0 ! ! ! ! !
0 3 6 9 12 15 18

n

FIG. 7. (Color online) Variation of average density of a unit cell p
as a function of the chemical potential i for U = 15, but for different
values of A, varying from 0.2 (red solid curve) to 18.2 (violet large
dot dashed curve) at intervals of 3.0.
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i U=15.0
0.6

0.5+

FIG. 8. (Color online) Variation of average superfluid density of
a unit cell as a function of u for the same set of parameters as in
Fig. 7.

occupancy configuration of [1 0 1 0---]. Also, at p = 3/2,
another gap appears at A = 4.8, implying the transition from
the SF phase to the gapped SLMI-III phase with a configuration
[2121 ---]. As A becomes greater than 11.7, the system at
p = 1.0 undergoes a phase transition from the MI to the SF
phase, shown by the nonzero values of the superfluid density.
As A becomes beyond 18.1, the gap reappears once again,
showing that the system has entered into the gapped SLMI-II
phase with configuration [2020 - - -].

IV. CONCLUSIONS

We have analyzed the various phases exhibited by a system
of bosons in an optical superlattice with a unit cell consisting
of two distinct lattice sites using the mean-field decoupling
approximation, for various values of the superlattice potential,
A, corresponding to four values of the on-site interaction U.
For U = 2.0, we find that the system resides in the SF phase
for all densities for small values of A. At p = 1/2, there is
a transition from the SF to the SLMI-I phase at A = 3.7,
but for other densities, it remains in the gapless SF phase.
For U = 5.0, the system undergoes a SF to SLMI-I phase
transition for p = 1/2 at A = 2.6, but it remains in the SF
phase for other densities and A. For U = 10.0, the system
undergoes a SF to SLMI-I phase transition at A = 2.3 for
p = 1/2. However, for p = 1, the system starts in the MI

TABLE IV. Results for U = 15.0.

s

A P 2 ] 0 n ny

0.2 0.52 0.10 0.28 0.28 0.57 0.47
0.2 1.00 1.30 0.00 0.00 1.00 1.00
0.2 2.00 17.80 0.00 0.00 2.00 2.00
6.2 0.50 0.18 0.00 0.00 1.00 0.00
6.2 1.00 6.66 0.00 0.00 1.00 1.00
6.2 1.50 16.11 0.00 0.00 2.00 1.00
152 0.50 0.10 0.00 0.00 1.00 0.00
15.2 1.02 15.10 0.60 0.30 1.55 0.49
18.2 0.50 0.09 0.00 0.00 1.00 0.00
18.2 1.0 16.00 0.00 0.00 2.00 0.00
18.2 1.50 19.08 0.00 0.00 2.00 1.00
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phase, as the value of U is large, and as A is increased, the gap
in the MI phase shrinks and eventually goes to zero, marking
the MI-SF phase transition at & = 6.5. The system stays in the
gapless SF phase for 6.5 < A < 13.1. As A is increased further
the system undergoes a phase transition from SF to SLMI-IT at
A = 13.1. For p = 3/2, we see a phase transition from SF to
the SLMI-III phase at A = 5.3. Similar behavior is observed
for U = 15.0, with the system for p = 1/2 undergoing a
phase transition at A = 2.2. For p = 1, the system makes a
transition from the MI to the SLMI-I phase at . = 11.7, and
then from the SF to the SLMI-II phase at A = 18.1. Also a
phase transition is made from the SF to the SLMI-III phase
at A = 4.8. It should be possible to extend this calculation
to superlattices with different periodicity. The charge density
wave order in the SLMI phase will depend on the number
of distinct sites within the unit cell. The mean-field approach

PHYSICAL REVIEW A 84, 033631 (2011)

is exact for infinite dimensions, but the error, because of the
neglect of the fluctuations, becomes severe in low dimensions
[21]. However, it proves to be an excellent tool for qualitative
analysis (e.g., analyzing the phase diagram), which is our focus
in this paper. Since the parameters of the Hamiltonian can be
varied over a large range of values by tuning the strength of
the optical potentials, we hope our detailed study of model
(1) will stimulate experimental studies that could lead to the
observation of superlattice-induced Mott insulators.
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