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Abstract. We present some of the advances in our experimental and theoretical studies
of violations in fundamental symmetries in atoms. A part of this work was performed
under the auspices of a NSF–DST project. During this period, a number of experimental
techniques and theoretical methods were developed and employed for precision measure-
ments and their interpretation from first principles. Future directions of these studies are
briefly mentioned.
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1. Introduction

The long-term scientific collaboration between the Berkeley experimental group led
by one of the authors (DB) and the Indian theoretical group led by another (BPD),
was put on a solid basis by the support from a joint NSF–DST program. This
support resulted in numerous research visits between Berkeley and India, involving
researchers at all levels – from graduate students to principal investigators. In
this paper, we briefly summarize the results of the work in the area of testing
fundamental symmetries of Nature that were obtained during the course of the
collaboration and exchanges.

Space inversion (P ) is one of the fundamental discrete symmetries of Nature.
It is violated maximally in the weak interactions and the observation of parity
nonconservation (PNC) is an important probe to validate the predictions of the
Standard Model of particle physics. In this regard, the atomic PNC experiments
have a long history of providing unique tests of the Standard Model of particle
physics [1]. These are low-energy probes of phenomena which occur at several TeV
and complement the accelerator-based experiments. One guiding principle in the
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choice of candidate atoms is the Z3 dependence of the PNC effects in atoms [2].
Heavy atoms in general and Yb in particular are therefore the preferred candidates
to study these effects. The special features of PNC in Yb have been highlighted by
DeMille [3]. Theoretical work [3–5] has predicted that the effect in Yb should be
≈100× larger than that in Cs. Recently, an experiment at Berkeley [6,7] has con-
firmed this prediction. In addition, Yb has many stable isotopes, making it possible
to perform an isotopic comparison of the PNC effect. Using an isotopic comparison
to extract information on the Standard Model overcomes the uncertainties arising
from atomic theory. However, atomic theory is still needed to extract the value of
nuclear anapole moment. In addition, to assess the level of precision achieved in
the atomic PNC calculations, it is essential to study other related properties like
dipole polarizabilities, hyperfine interactions and allowed transition amplitudes. A
comparison of the theoretical and experimental results of these quantities helps to
quantify the accuracy of the atomic calculations. Besides atomic Yb, PNC effects
have also been studied in atomic Dy [8]. Atomic Dy is also a suitable candidate
to measure temporal variation of the fine structure constant α. This was theoret-
ically proposed by Flambaum and coworkers [9] and was experimentally measured
at Berkeley [10].

Permutation symmetry of the wave functions of a quantum system, consisting of
identical and indistinguishable particles, is related to the quantum statistics. One
may test the Bose–Einstein statistics, which describes bosons, with Landau–Yang
theorem [11,12] in the two-photon atomic transitions. At Berkeley, experimental
work with Ba began with the goal of providing a stringent test of Bose–Einstein
statistics for photons [13]. During this work we have measured polarizabilities of
numerous states. The Landau–Yang theorem is applied to the decay of atomic
states and elementary particles. One generalization of Landau–Yang theorem is
the decay process in the presence of external fields, which is the case in most of
the physical systems of interest. In the atomic experiments, other static fields are
present in the apparatus, and other fields are there in the decay of elementary
particles. This was examined in one of the theoretical investigations [14].

The remaining part of the paper is organized as follows: In the following section,
we discuss the experimental advances made during this project. We then discuss
the theoretical studies on the atomic structure of ytterbium (Yb), following which
we give a theoretical formulation to evaluate static polarizabilities of the ground
states of many atoms including Ba and Yb. Determination of other properties
including AC Stark shift in Yb is presented and discussed thereafter.

2. Atomic parity violation

2.1 Yb

The Yb parity-violation experiment utilizes a collimated atomic beam. The atoms
in the beam pass consecutively through two interaction regions. In the first in-
teraction region, the atoms are exposed to light at 408 nm that is resonant with
the 1S0 → 3D1 parity-forbidden transition. The light is produced by frequency-
doubling the output of a Ti-sapphire laser. The intensity of the 408 nm light is
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enhanced in an in-vacuum power-build-up optical cavity. The light–atom interac-
tion in the first interaction region occurs in the presence of orthogonal electric and
magnetic fields (E and B, respectively) applied by means of appropriate electrodes
and coils. The electric field is necessary to supply the reference Stark-induced tran-
sition amplitude, whereas the magnetic field separates the Zeeman components of
the transition, which is necessary to avoid the cancellation of the parity-violation
effect. The geometry can be understood by considering the rotational invariant
that corresponds to the parity-violation effect: the signal due to this effect scales
as

(ε ·B)(ε ·E×B), (1)

where ε is the light polarization vector. It is easy to see that this quantity changes
sign upon spatial inversion but remains invariant under the reversal of time.

By exciting to the upper 3D1 state of the forbidden transition, the atoms decay,
with ≈70% probability to the metastable 3P0 state. It is in this state that they
travel to the second interaction region where they are detected with high efficiency
by re-exciting them to the 3S1 state, and collecting and detecting the ensuing
cascade fluorescence. The experiments have yielded results [6,7] corresponding to
the largest parity-violation effect observed so far, in agreement with theoretical
expectations [3–5].

There are theoretical issues in conjunction with this experiment that require care-
ful study. The foremost issue is perhaps the sign mismatch between two theoretical
results, [5] and [15], of the atomic PNC arising from the nuclear anaploe moment.
It is important to resolve this discrepancy to analyse the experimental results and
obtain bounds on the nuclear anapole moment. In a recent work, a Fock-space
coupled-cluster theory-based method was developed to calculate the structure and
properties of two-valence systems like atomic Yb [16]. Indeed, calculating the PNC
of Yb with improved accuracy is the motivation for developing the method.

Accurate calculations of atomic structure and properties, at a level commensu-
rate with the experimental data, is a theoretical challenge, especially for the high
Z atoms of interest in atomic PNC experiments and Yb is no exception. The-
oretically, there are standard ways, like different gauges in transition amplitude
calculations, to check the accuracy of the atomic calculations. A convincing and
more direct approach however, is to reproduce experimental data with ab-initio
atomic theory calculations. This is possible with the results obtained from the
precision experimental measurements in the context of atomic PNC observation
[17,18]. This is equivalent to testing the reliability of the state-of-the-art atomic
many-body theories and schemes of calculations.

Another, perhaps indirect, important outcome is the possibility to check the
neutron distribution. Although it is possible to probe the proton distribution in
nuclei from µ scattering through electromagnetic interaction, there is no direct
way to measure neutron distribution through scattering experiments and isotope
shifts. The atomic PNC experiments, which detect signatures of electron–nucleus
weak interactions, can probe the neutron density distributions [19]. Thus, atomic
PNC can provide valuable insights to fine tune and check nuclear models. PNC
measurements of the seven Yb isotopes offer the unique possibility of examining
variation in the neutron density across an isotope chain.
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2.2 Dy

The dysprosium (Dy) system has drawn attention in 1986 [20] because there are
nearly degenerate states of opposite nominal parity and the same total electronic
angular momentum. With Dy being a heavy atom (atomic number Z = 66), there
was hope that parity-violation effects in this system would be very large. This
expectation was confirmed by early theoretical estimates. Unfortunately, early
experimental studies showed that the effect was not as large as initially expected
[8]. A recent calculation by Dzuba et al [21] puts the expected effect just below the
experimental limit.

In the meantime, it was pointed out by Flambaum et al that the Dy system is a
very efficient system to search for a possible variation of the fine-structure constant
α, which led to successful experimental efforts at Berkeley [10,22,23]. The dyspro-
sium experiment also involves an atomic-beam apparatus. The odd-parity state of
the nearly degenerate states of interest for both the parity-violation measurements
and the variation-of-α experiment is populated using a sequence of three consec-
utive transitions (two laser-driven and one spontaneous) [24]. The radiofrequency
transitions between the nearly degenerate opposite-parity states are induced in the
interaction region, where the population of the shorter-lived even-parity states is
monitored by detecting the cascade fluorescence. Significant enhancement of the
experimental sensitivity and improved control of systematic effects is expected from
the second-generation apparatus, now fully operational and taking data, as well as
from transverse laser cooling of the dysprosium atoms in the beam recently demon-
strated at Berkeley [25–27] for all stable isotopes of Dy (including the ones with
nonzero nuclear spin). The new-generation experiment, presently accumulating
data, combines the search for temporal variation of α with the measurement of
parity violation, both at levels of sensitivity significantly better than the earlier
respective experiments.

3. Test of quantum statistics with Ba

According to Landau–Yang theorem [11,12], an initial J = 1 state cannot decay
into two photons. The theorem is very general and applicable to a wide range of
phenomena from atomic physics to elementary particle physics. The main ingredi-
ents of the proof lies in the fact that the initial J = 1 state gives us a vector to
specify the initial state of the decaying particle and the final photons have their
polarization vectors to specify their conditions. It turns out that there is no way in
which one can write a decay amplitude of the neutral vector particle to two photons
such that the final photons are transverse and the amplitude remains symmetric
under their interchange.

The experimental test of the theorem underway at Berkeley is using a collimated
atomic beam of barium, similar to the one in the Yb parity-violation experiment.
Similar to the Yb experiment, the Ba atoms also interact with laser light in an
in-vacuum power build-up cavity. In this case, however, the outputs of two inde-
pendent dye lasers are coupled to the cavity (their frequency is locked to the cavity
using the Pound–Drever–Hall technique). The two lasers can either be locked to the
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same longitudinal mode of the cavity to attempt to drive the forbidden two-photon
transition, or to two distinct modes in order to drive the same transition, which is
now allowed because the photons from the two lasers are no longer degenerate. In
both cases, the sum of the frequencies of the light from the two lasers is scanned
through the two-photon resonance. As in the Yb and Dy experiments, transition
can be detected by observing fluorescence.

The experiment has resulted not only in the new stringent limit on possible viola-
tion of Bose statistics by photons [28], but also in the observation (and a theoretical
analysis) of hyperfine-interaction enabled forbidden two-photon transitions [29].

An extension of the theorem, which has wider applications, is the modifications
in the presence of external fields. One scenario is to investigate the decay of neutral
spin-one particle in the presence of a uniform classical background magnetic field.
If the initial decaying particle has a magnetic moment then it can interact with the
magnetic field. Even if the initial particle does not have any magnetic moment,
magnetic fields can still enter into the scenario through their interaction with vir-
tual charged fermions or other charged particles propagating in the loops which
accompany the Feynman diagram of the decay process. There are many calcula-
tions as for example the photon self-energy or photon pair creation in a magnetic
field employing suitable fermion propagators [30]. In the presence of an external
magnetic field we can in general have 15 candidates for the decay amplitude. The
number of candidates reduces to nine if we apply other symmetries like CP and the
resultant decay amplitude shows anisotropic features [14].

4. Atomic Yb structure calculations

4.1 Valence correlation effects

The low-lying levels of atomic Yb given in figure 1 are important for the studies
related to parity-violating effects. In the calculations reported, the single electron
wave functions or orbitals generated in a sequence of multi-configuration Dirac–
Fock (MCDF) self-consistent field calculations with a limited configuration space.
The orbital space consists of (1-5)s, (2-5)p, (3-4)d and 4f as core; 5d, 6s and 6p as
valence; the remaining (7-9)s, (7-9)p, (6-9)d, (6-9)f and (7-9)g as virtual. The core
and valence orbitals are generated in a single calculation and the virtual orbitals of
the same principal quantum number or layer are generated together. The single-
particle orbitals generated using GRASP [31] and their orbital energies are given
in table 1.

The multiconfiguration Dirac–Fock calculations in general include the most im-
portant electron correlation effects. These effects can be taken into account more
accurately by performing large-scale configuration interaction calculations of the
atomic states that are needed to calculate a particular property. The electron cor-
relation has three sectors: core–core, core–valence and valence–valence. Each of
these can be studied by an appropriate choice of the configuration space in a con-
figuration interaction calculation. All these three cases have been studied for Yb
in a series of calculations.
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Figure 1. The low-lying energy levels (in cm−1) of atomic Yb. The double
arrow represents the HPNC mixing and single arrow represents the transitions
of interest for E1PNC measurement.

Table 1. The energies of the orbitals in atomic units.

Orbital ε Orbital ε Orbital ε Orbital ε

1s −2267.671 5s −2.460 7s −0.232 8f5/2 −0.248
2s −388.915 5p1/2 −1.447 7p1/2 −0.165 8f7/2 −0.256
2p1/2 −370.075 5p3/2 −1.210 7p3/2 −0.169 8g7/2 −0.225
2p3/2 −331.507 4f5/2 −0.558 7d3/2 −0.279 8g9/2 −0.226
3s −89.729 4f7/2 −0.500 7d5/2 −0.250 9s −0.228
3p1/2 −81.442 5d3/2 −0.112 7f5/2 −0.260 9p1/2 −0.196
3p3/2 −73.114 5d5/2 −0.115 7f7/2 −0.260 9p3/2 −0.212
3d3/2 −59.211 6s −0.237 7g7/2 −0.226 9d3/2 −0.204
3d5/2 −57.410 6p1/2 −0.156 7g9/2 −0.225 9d5/2 −0.176
4s −18.689 6p3/2 −0.149 8s −0.240 9f5/2 −0.288
4p1/2 −15.288 6d3/2 −0.239 8p1/2 −0.204 9f7/2 −0.257
4p3/2 −13.386 6d5/2 −0.259 8p3/2 −0.191 9g7/2 −0.226
4d3/2 −7.798 6f5/2 −0.229 8d3/2 −0.236 9g9/2 −0.225
4d5/2 −7.442 6f7/2 −0.226 8d5/2 −0.222

To study the valence–valence correlation effects, the configuration space chosen
has single and double replacements from the valence to the virtual shells. This is
done in a series of calculations, in which one layer of virtual orbitals is added in
each calculation. The last in the series has 1294 configuration state functions and
the excitation energies calculated are given in table 2. The 5d6s 3D2 and 6s6p 3P0

levels have 0.2% and 17% minimum and maximum deviations, respectively from the
experimental data. In addition, there is a discrepancy between the theoretical level
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Table 2. The calculated excitation energies ETh and the experimental data
EExp in Kaysers. For comparison, the differences δE = ETh − EExp are also
given. The 6s6p and 5d6s multiplets exhibit opposite deviations from the
experimental data.

Excitation energies
Diff(δE)

Level ETh EExp ETh − EExp

6s6p 3P0 14326 17288 −2962
6s6p 3P1 14985 17992 −3007
6s6p 3P2 16487 19710 −3223
6s6p 1P1 24177 25068 −891
5d6s 3D1 25227 24489 738
5d6s 3D2 25251 24752 499
5d6s 3D2 25324 25271 53

sequence and experimental data. The calculated 6s6p 1P1 lies below the 5d6s 3DJ

multiplets, but from the experimental data it should lie between 5d6s 3D2 and
5d6s 3D3. The discrepancy could be a consequence of the correlation effects not
included in the calculations.

4.2 Core polarization effects

The core–valence correlation sector or core-polarization effect is an important con-
tribution not included in the previous series of configuration interaction calcula-
tions. This is included when configurations with replacements from the core and
valence shells are part of the configuration space. In the present work, the effect
of polarizing the 4d, 5s, 5p and 4f core shells were studied systematically. For
the level of precision required, the contributions from the deeper core shells can be
neglected. The core shells to be included is chosen after test calculations.

Initial or test calculations with the orbital (1-7)s, (2-7)p, (3-7)d, (4-7)f and 7g
were done to estimate the polarization effects of the core orbitals. That is, the
orbital space has only one layer of virtual orbitals. It is to be noted, based on the
multipole selection in the inter-electron Coulomb interaction that core orbital of
angular momentum l has dominant contribution from the virtual orbitals of orbital
angular momenta l and l ± 1. Hence, the inclusion of 7g is essential to get correct
core polarization effects of 4f . The results are given in table 3. Among the core
shells studied, the 4f and 5p core shells have large contributions. For the deeper
core shells, the effect of 4d and below are negligible. This can be explained in
terms of perturbative expansion, in which the increasing ionization energy of the
deeper core shells suppresses the contribution. Large contribution from 4f and 5p
is expected because the energy separation of 4f and 5p from the valence shells is
small. From the observed trend it is sufficient to consider 4f , 5p and 5s. There
are two important results in the calculations. First, the 5p core-polarization effect
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Table 3. The core–valence correlation sector or the core-polarization effects
from the 4f , 5p, 5s and 4d core shells. The core shells are excited in steps,
and in the table, the first column lists the core shells excited and δE is the
change in the excitation energy from the previous result.

Core shells
6s6p 5d6s

excited 3P0
3P1

3P2
1P1

3D1
3D1

3D1

14264 14924 16426 24174 25218 25239 25308

4f 14831 15496 17050 23938 24320 24404 24552
δE 567 572 624 −236 −898 −835 −756

4f , 5p 15676 16352 17967 24398 23537 23635 23807
δE 845 856 917 460 −783 −769 −745

4f , 5f , 5s 15693 16370 17989 24430 23468 23567 23744
δE 17 18 22 32 −69 −68 −63

4f , 5f , 5s, 4d 15693 16370 17990 24429 23461 23561 23739
δE 0 0 1 −1 −7 −6 −5

lifts the 6s6p 1P1 above the 5d6s multiplets. This takes the level sequence closer
to the experimental data but not the same. In the experimental data 6s6p 1P1 lies
between 5d6s 3D2 and 5d6s 3D3. Second 5s and 5p produces a different shift to
6s6p 1P1 in comparison to 4f and 4d.

4.3 Core–core correlation effects

The core–core correlation effects are calculated by including configurations with
double excitations from the core shells in the configuration space. The results of
4f core–core correlation effects are given in table 4. The results show that the
contribution of 4f–4f core correlation effects is minimal. The changes are in the
same range as in the core–polarization contribution from 5s.

5. Static polarizability calculations

Calculations of atomic polarizabilities have come a long way since the classic work of
Dalgarno and Lewis [32]. A few calculations of the polarizabilities of heavy atomic
systems have been performed in the past few years using the linearized as well as
the non-linearized relativistic coupled-cluster (RCC) theory. These are based on
approaches that sum over a set of intermediate states. There has been considerable
interest in accurate calculations of the dipole polarizabilities of alkaline-earth atoms
and Yb [33–39]. We have given an approach [40] to calculate the polarizabilities of
the ground states in these systems by avoiding the usual sum-over-states approach
by solving the perturbed RCC wave function to first order in the dipole and all
orders in the residual Coulomb interaction that has been discussed here.
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Table 4. The contribution from the configurations with double excitations
from the 4f shell. The column Without and With are the excitation energies
without and with double excitations from the 4f shell.

Excitation energies

Level Without With Change

6s6p 3P0 14664 14698 −34
6s6p 3P1 15327 15362 −35
6s6p 3P2 16877 16917 −40
5d6s 3D1 23695 23612 83
5d6s 3D2 23804 23724 80
5d6s 3D3 24001 23923 178
6s6p 1P1 23824 23992 −168

In a uniform DC electric field E = E ẑ, the energy shift ∆E of the ground state
|Ψ(0)

0 (π, J0,M0)〉 with the parity eigenvalue π and angular momentum J0 = 0 and
its azimuthal value M0 = 0 is given by

∆E = −1
2
αE2, (2)

where α is the static polarizability and can be expressed as

α = −2
∑

I

|〈Ψ(0)
0 (π, J0,M0)|Dz|Ψ(0)

I (π′, JI ,MI)〉|2
E0 − EI

, (3)

where subscript 0 and I represent ground and excited states of the Dirac–Coulomb
(DC) Hamiltonian (H(DC)

0 ), respectively, the superscript (0) represents unperturbed
wave functions, Dz is the zth component of the electric dipole operator, JI , MI are
the angular momentum quantum numbers of the intermediate states, π and π′ are
the parity quantum numbers for states of opposite parity and E0 and EI are the
energies of the ground and intermediate states, respectively.

In a more explicit form, the above expression can be written as

α = 〈Ψ(0)
0 (π, J0,M0)|Dz|Ψ(1)

0 (π′, J ′,M ′)〉
+〈Ψ(1)

0 (π′, J ′,M ′)|Dz|Ψ(0)
0 (π, J0,M0)〉

= 〈Ψ0|Dz|Ψ0〉, (4)

where

|Ψ0〉 = |Ψ(0)
0 (π, J0,M0)〉+ |Ψ(1)

0 (π′, J ′,M ′)〉, (5)

with |Ψ(1)
0 (π′, J ′,M ′)〉 as the first-order correction with the angular momentum

J ′(= 1) and M ′ due to the operator Dz to the original unperturbed wave function,
|Ψ(0)

0 (π, J0,M0)〉, in the presence of an external electric field and given by
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|Ψ(1)
0 (π′, J ′,M ′)〉 =

∑

I

|Ψ(0)
I (π′, JI ,MI)〉

×〈Ψ
(0)
I (π′, JI , MI)|Dz|Ψ(0)

0 (π, J0,M0)〉
E0 − EI

×δ(J ′, JI)δ(M ′,MI)δ(M0,MI). (6)

The first-order perturbed wave function |Ψ(1)
0 (π′, J ′,M ′)〉 can be obtained using

an approach that explicitly avoids summing over intermediate states.
Using the CC ansatz, the all-order unperturbed wave function |Ψ(0)

0 (π, J0,M0)〉
for closed-shell atoms can be expressed as

|Ψ(0)
0 (π, J0,M0)〉 = eT (0) |Φ0(π, J0,M0)〉, (7)

where |Φ0(π, J0,M0)〉 are the Dirac–Fock (DF) wave functions determined using
the mean-field approximation and T (0) are the electron excitation operators due to
Coulomb interaction from the corresponding DF states.

To obtain |Ψ(1)
0 (π′, J ′,M ′)〉, we proceed as follows:

Let us operate (H(DC)
0 − E0) on both sides of eq. (6), i.e.

(H(DC)
0 − E0)|Ψ(1)

0 (π′, J ′,M ′)〉
=

∑

I

(H(DC)
0 − E0)|Ψ(0)

I (π′, JI ,MI)〉

×〈Ψ
(0)
I (π′, JI ,MI)|Dz|Ψ(0)

0 (π, J0,M0)〉
E0 − EI

=
∑

I

(EI − E0)|Ψ(0)
I (π′, JI ,MI)〉

×〈Ψ
(0)
I (π′, JI ,MI)|Dz|Ψ(0)

0 (π, J0,M0)〉
E0 − EI

= −
∑

I

|Ψ(0)
I (π′, JI ,MI)〉

×〈Ψ(0)
I (π′, JI ,MI)|Dz|Ψ(0)

0 (π, J0,M0)〉. (8)

Using the completeness principle of the atomic states of the DC Hamiltonian,∑
α |Ψ(0)

α 〉〈Ψ(0)
α | = 1, we get

∑

I

|Ψ(0)
I (π′, JI ,MI)〉〈Ψ(0)

I (π′, JI ,MI)| = 1−
∑

K 6=I

|Ψ(0)
K (π, JK ,MK)〉

×〈Ψ(0)
K (π, JK ,MK)|. (9)

Substituting eq. (9) in eq. (8), we get

(H(DC)
0 − E0)|Ψ(1)

0 (π′, J ′,M ′)〉 = −Dz|Ψ(0)
0 (π, J0,M0)〉

+
∑

K

|Ψ(0)
K (π, JK ,MK)〉〈Ψ(0)

K (π, JK ,MK)|Dz|Ψ(0)
0 (π, J0,M0)〉

= −Dz|Ψ(0)
0 (π, J0, M0)〉, (10)
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where the second term does not contribute because |Ψ(0)
K (π, JK ,MK)〉 and

|Ψ(0)
0 (π, J0,M0)〉 have the same parity.
The above equation represents a first-order perturbed equation with Dz as the

perturbation and the first-order energy is equal to zero. The unperturbed wave
function is represented by |Ψ(0)

0 (π, J0,M0)〉 and |Ψ(1)
0 (π′, J ′,M ′)〉 is its first-order

correction. In order to obtain the solution for |Ψ(1)
0 (π′, J ′,M ′)〉, we solve eq. (10)

using the following (R)CC approach.
Using the above CC ansatz for closed-shell atoms, we can express the total wave

function |Ψ0〉, which is of mixed parity and angular momentum, by

|Ψ0〉 = eT |Φ0(π, J0, M0)〉, (11)

where we now define

T = T (0) + T (1), (12)

with T (1) representing the excitation operators containing all orders in the Coulomb
interaction and one order in Dz. Substituting eq. (12) in eq. (11), we get

|Ψ0〉 = eT (0)+T (1) |Φ0(π, J0,M0)〉
= eT (0)

(1 + T (1))|Φ0(π, J0, M0)〉, (13)

where only terms up to linear in T (1) (i.e. those terms up to one order in Dz) are
retained.

It is clear from eq. (13) that the first-order perturbed wave function can now be
written as

|Ψ(1)
0 (π′, J ′,M ′)〉 = eT (0)

T (1)|Φ0(π, J0,M0)〉. (14)

The T (1) amplitudes are determined using the following equations:

〈Φ∗0|H(DC)
0 T (1)|Φ0〉 = −〈Φ∗0|Dz|Φ0〉, (15)

where we have used the relation O = e−T (0)
OeT (0)

= ((OeT (0)
)con.

We have considered only the singly and doubly excited states (known as CCSD
method) denoted by T1 and T2, respectively, with the appropriate superscripts in
these calculations. However, we have estimated contributions from the neglected
triple excitations by constructing the corresponding triple excitation operators from
the contraction between T2 and H

(DC)
0 . These contributions are treated as possible

error bars for CCSD results.
Using eqs (7) and (14), the expression for the polarizabilities using the (R)CC

operators can be expressed as

α =
〈Φ0|eT †DzeT |Φn〉
〈Φ0|eT †eT |Φ0〉

=
〈Φ0|(T (1)†

︷︸︸︷
D(0)

z +
︷︸︸︷
D(0)

z T (1))|Φ0〉
N0

, (16)
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Table 5. Static dipole polarizabilities in divalent atoms He, Be, Mg, Ca, Sr,
Ba and Yb (in a.u.). Results from this work are based on CCSD method
and contributions from important triple excitations are given as error bars in
parentheses.

Atoms Expts Others This work

He 1.383746(7) [41] 1.383193 [42] 1.382(1)
1.389 [33]

Be 37.755 [43], 37.69 [34], 37.9 [35] 37.8(5)

Mg 71.5(3.1) [44] 71.35 [34], 72.0 [35], 71.3(7) [36] 73(2)

Ca 169(17) [44] 159.4 [34], 152.7 [44], 157.1(1.3) [36] 155(5)
152 [45], 158.0 [37]

Sr 186(15) [44] 201.2 [34], 193.2 [35], 197.2(2) [36] 200(7)
190 [45], 198.9 [37]

Ba 268(22) [46] 264 [38], 273 [45], 273.9 [37] 268(9)

Yb 142(36) [47] 111.3(5) [36], 141.7 [48], 157.30 [39] 144(6)

where for computational simplicity we define
︷︸︸︷
D(0)

z = eT (0)†
DzeT (0)

and the norms

of the wave functions are given by N0 = 〈Φ0|eT (0)†
eT (0) |Φ0〉. We compute these

terms by expressing as effective one-body and two-body terms using the generalized
Wick’s theorem.

In table 5, we present our results of electric dipole polarizabilities for various
atoms and compare them with the available experimental results. We have consid-
ered lighter atoms including He to make sure that our new approach is also giving
reasonably good results compared to their experimental results. Then the method
has been employed to calculate these properties in Ba and Yb. From the error bars
in parantheses from the perturbed triple excitation contributions, it is clear that
these contributions are becoming important for heavy atoms.

To emphasize the importance of correlation effects in these calculations, we
present the DF and the leading RCC contributions in table 6 for the electric dipole
polarizabilities. For all the cases considered, the DF results are larger than the
total results. From the individual RCC contributions, we find that only the terms
arising from DzT

(1)
1 and its conjugate (cc) are significant. Given that these terms

include the DF, leading core polarization and other important correlation effects
to all orders, it is not surprising that they should collectively make up the largest
contribution.

6. Calculations of atomic properties of Yb

6.1 The 5d6s 3DJ–6s6p 3PJ electric dipole transitions

The 5d6s 3D1–6s2 1S0 M1 transition amplitude is an important quantity of interest
for the ongoing Yb atomic parity non-conservation experiments. The semi-empirical
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Table 6. Contributions from DF and important perturbed CC terms (in a.u.)
for the considered atoms.

Atoms DF (
z}|{
Dz T

(1)
1 + cc)−DF

z}|{
Dz T

(1)
2 + cc N0

He 1.495 −0.12 0.005 −0.1E-4
Be 45.82 −7.94 −0.09 0.02
Mg 82.44 −8.77 −0.21 0.03
Ca 184.14 −29.23 −0.07 −0.26
Sr 234.41 −34.46 −0.17 −0.08
Ba 328.32 −61.18 0.09 0.81
Yb 183.32 −39.86 0.032 1.10

[3] values are in agreement with the experimentally measured value [17] of the
transition amplitude. However, there are no theoretical calculations. As a step
towards the theoretical calculation of the M1 transition, the E1 transition between
5d6s 3DJ and 6s6p 3PJ multiplets were studied to test the accuracy of the atomic
states calculated.

6.2 The ac Stark shift of 5d6s 3D1 level

In the parity non-conservation experiment, a strong laser field of 408 nm drives
the 5d6s 3D1–6s2 1S0 transition. This induces ac Stark shift to the levels and
can add to the uncertainty in the measured E1PNC. An interesting feature of the
5d6s 3D1 ac Stark shift is the presence of odd-parity 6snp levels nearly resonant
to the applied laser field. This can produce large ac Stark shift to 5d6s 3D1, but
experimental results show otherwise [18]. A theoretical study can perhaps provide
an insight into the effect of near-resonant 6snp states.

The ac Stark shift or the light shift of an atomic state |Ψi〉 in a laser of frequency
ω and intensity I is

∆E(ω) =
I

2

∑

j

∆Eij |〈Ψi|rij |Ψj〉|2
∆E2

ij − ω2
, (17)

where rij is the dipole transition matrix element between the ith state and opposite
parity intermediate jth states, and ∆Eij = Ei−Ej is the energy difference. In the
expression, the matrix element 〈Ψi|rij |Ψj〉 can be calculated either theoretically or
from the experimental data. The calculation from the experimental data is difficult
when there are several decay channels, which is true of high-lying states like the
near-resonant 6snp states. Theoretically, an estimate of 〈Ψi|rij |Ψj〉 can be made
using the multi-configuration Dirac–Fock wave functions of the 6snp states. For
the ac Stark shift of 5d6s 3D1, the dominant single-particle matrix elements are
|6s|r|np〉|. The radial component of the single-particle matrix elements are given in
table 7. It is also possible to calculate the radial matrix elements semi-empirically
using Bates–Damgaard approximation [49]. It is a central field core approximation
and the radial matrix element is a function of the effective quantum number n∗.

Pramana – J. Phys., Vol. 75, No. 6, December 2010 1053



D Budker et al

Table 7. The single electron radial matrix elements. The n∗ are the effective
principal quantum number calculated from the experimental data, which are
used in the BD approximation to calculate radial dipole matrix elements.
The BD value and MCDF value are the matrix elements calculated using BD
approximation and MCDF wave functions respectively.

Matrix element n∗ BD value MCDF value

〈6s|d|6p〉 1.43 1.82 −4.29
〈6s|d|7p〉 1.81 2.44 −0.94
〈6s|d|8p〉 1.97 2.40 −0.46
〈6s|d|9p〉 2.06 2.25 −0.29
〈6s|d|10p〉 2.12 2.10 −0.21
〈6s|d|11p〉 2.15 2.02 −0.16
〈6s|d|12p〉 2.18 1.93 −0.13
〈6s|d|13p〉 2.20 1.87 −0.11

The BD approximation of the radial matrix elements are given in table 7. There
is a large discrepancy between the MCDF values and BD approximation results,
and except 〈6s|d|6p〉 the BD matrix elements are an order of magnitude larger than
the MCDF results. The possible reason is the low value of n∗ calculated from the
experimental data, usually n − 5 ≥ n∗ ≤ n − 4. It is found that n∗ calculated
from the theoretical np ionization energies yields BD matrix elements which are in
agreement with the MCDF values. This shows the method is not suitable for Yb
because of the large ionization threshold energy, which is an indication of strong
correlation effects and inaccuracy of a central field approximation of the valence
shells.

From the calculations, the contribution from the near-resonant 6snp to the
5d6s 3d1 ac Stark shift is negligible. The dipole matrix elements are an order
of magnitude smaller than the most dominant 6s6p states and there are cancella-
tions between the 6snp states on opposite sides of the resonance position. Thus, in
the 408 nm laser field only the 6s2 1S0 ac Stark shift affects the 5d6s 3D1–6s2 1S0

transition.

7. Conclusion

An overview of certain experimental and theoretical aspects of violations of funda-
mental symmetries in atoms has been presented. Experimental techniques to mea-
sure parity violation in ytterbium and dysprosium and test the violation of Bose
statistics by photons are discussed. Theoretical studies on some of the properties
related to parity violation in ytterbium have been performed and a new theoret-
ical approach has been developed to estimate the static dipole polarizabilities of
closed-shell atoms. Theoretical work on parity violation in ytterbium is currently
in progress.
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