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ABSTRACT

To explain the linear polarization observed in spatially resolved structures in the solar atmosphere, the solution
of polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries is essential. For strong
resonance lines, partial frequency redistribution (PRD) effects also become important. In a series of papers, we
have been investigating the nature of Stokes profiles formed in multi-D media including PRD in line scattering.
For numerical simplicity, so far we have restricted our attention to the particular case of PRD functions which are
averaged over all the incident and scattered directions. In this paper, we formulate the polarized RT equation in
multi-D media that takes into account the Hanle effect with angle-dependent PRD functions. We generalize here to
the multi-D case the method for Fourier series expansion of angle-dependent PRD functions originally developed
for RT in one-dimensional geometry. We show that the Stokes source vector S = (SI , SQ, SU )T and the Stokes
vector I = (I,Q,U )T can be expanded in terms of infinite sets of components S̃(k), Ĩ (k), respectively, k ∈ [0, +∞).
We show that the components S̃(k) become independent of the azimuthal angle (ϕ) of the scattered ray, whereas the
components Ĩ (k) remain dependent on ϕ due to the nature of RT in multi-D geometry. We also establish that S̃(k) and
Ĩ (k) satisfy a simple transfer equation, which can be solved by any iterative method such as an approximate Lambda
iteration or a Bi-Conjugate Gradient-type projection method provided we truncate the Fourier series to have a finite
number of terms.
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1. INTRODUCTION

Observations of the solar atmosphere reveal a wealth of infor-
mation about the spatially inhomogeneous structures. Modern
spectropolarimeters with high spatial and polarimetric resolu-
tion are able to distinguish the changes in the linearly polarized
spectrum caused by such structures. To model the spectropolari-
metric observations of such spatially resolved structures, one has
to solve a three-dimensional (3D) polarized line radiative trans-
fer (RT) equation. A historical account of the developments of
RT in multi-dimensional (multi-D) media is presented in detail
in Anusha & Nagendra (2011a, hereafter Paper I). In a series
of papers, we have been investigating the nature of linearly po-
larized profiles formed in multi-D media, taking into account
the partial frequency redistribution (PRD) in line scattering. In
Paper I, we developed a method for “Stokes vector decompo-
sition” in multi-D geometry in terms of “irreducible spherical
tensors” T K

Q (see Landi Degl’Innocenti & Landolfi 2004). It
was a generalization to the multi-D case, of the decomposi-
tion technique developed in Frisch (2007, hereafter HF07) for
the one-dimensional (1D) case. In Anusha et al. (2011, here-
after Paper II), we developed a fast numerical method called
the Pre-BiCG-STAB (Stabilized preconditioned Bi-Conjugate
Gradient), to solve the polarized RT problems in two-
dimensional (2D) media. In Anusha & Nagendra (2011b, here-
after Paper III), we generalized the works of Papers I and II
to include scattering in the presence of weak magnetic fields
(Hanle effect) in a 3D geometry. In all these papers we consid-
ered only angle-averaged PRD functions.

The polarized Stokes line transfer problems with angle-
dependent PRD in 1D planar geometries were solved by sev-
eral authors (see Dumont et al. 1977; McKenna 1985; Faurobert
1987, 1988; Nagendra et al. 2002, 2003; Sampoorna et al. 2008).
In this formalism, a strong coupling of incident and scattered

ray directions (�′ and � respectively) prevails in the scatter-
ing phase matrices as well as the angle-dependent PRD func-
tions, which brings in unmitigated numerical difficulties. To
simplify the problem, a method based on “decomposition of
the phase matrices” in terms of T K

Q combined with a “Fourier
series expansion” of the angle-dependent redistribution func-
tions rII,III(x, x ′,�,�′) of Hummer (1962) was proposed for
Hanle and Rayleigh scattering by Frisch (2009, hereafter HF09)
and Frisch (2010), respectively. Sampoorna et al. (2011) devel-
oped efficient numerical methods to solve angle-dependent RT
problems for the case of Rayleigh scattering, based on the de-
composition technique developed by Frisch (2010). Sampoorna
(2011) proposed a single scattering approximation to solve the
more difficult problem of RT with angle-dependent PRD includ-
ing the Hanle effect. However, all these works are confined to
the limit of 1D planar geometry.

In this paper, we generalize to the multi-D case, the Fourier
decomposition technique developed in HF09 for the 1D case. In
the first step, we decompose the phase matrices in terms of T K

Q as
done in Papers I and III. However, we now formulate a polarized
RT equation for multi-D that also includes angle-dependent PRD
functions. We set up a transfer equation in terms of a new set of
six-dimensional (6D) vectors called the “irreducible source and
the irreducible Stokes vectors.” In the second step, we expand the
rII,III(x, x ′,�,�′) redistribution functions in terms of a Fourier
series with respect to the azimuthal angle (ϕ) of the scattered
ray. Then we transform the original RT equation into a new RT
equation, which is simpler to solve because the latter has smaller
number of independent variables. This simplified (reduced)
transfer equation can be solved by any iterative method such
as the approximate Lambda iteration (ALI) or a Bi-Conjugate
Gradient-type projection method.

In Table 1 we list the important milestones in the specific
area of “formulation and solution of the polarized RT equation”
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Table 1
Evolution of Ideas in the Past Three Decades to Simplify the Difficult Problem of Formulating/Solving the Polarized Line Transfer Equation

Milestones B = 0 (Rayleigh Scattering) B �= 0 (Hanle Effect)

(1) Formulation of PM Chandrasekhar (1946) Stenflo (1978)
in Stokes vector formulation Hamilton (1947)

(2) Stokes vector RTE: 1D/CRD Rees (1978) Faurobert-Scholl (1991)
Nagendra et al. (2002)

(3) Stokes vector RTE: multi-D/CRD Paletou et al. (1999)

(4) Stokes vector RTE: Rees & Saliba (1982): AA Faurobert-Scholl (1991): AA
1D/PRD Dumont et al. (1977): AD Nagendra et al. (2002): AA/AD

Nagendra (1986): AA
Faurobert (1987): AA/AD

(5) PM decomposition Landi Degl’Innocenti & Landi Degl’Innocenti &
in terms of T K

Q Landi Degl’Innocenti (1988) Landi Degl’Innocenti (1988)

(6) Irreducible Stokes source Landi Degl’Innocenti Landi Degl’Innocenti
vector in Stokes vector RTE: 1D/CRD et al. (1987) et al. (1987)

(7) Irreducible Stokes source Manso Sainz & Manso Sainz &
vector in Stokes vector RTE: Trujillo Bueno (1999) Trujillo Bueno (1999)
multi-D/CRD Dittmann (1999) Dittmann (1999)

(8) Irreducible Stokes Frisch (2007) Frisch (2007)
vector RTE: 1D/PRD

(9) Formulation of polarized RM: Omont et al. (1972) Omont et al. (1973)
Domke & Hubeny (1988) Bommier (1997a, 1997b)

(10) RTE with RM: 1D/AA Faurobert-Scholl (1991) Nagendra et al. (2002)
Nagendra (1994)

(11) RTE with RM: Anusha & Nagendra (2011a) Anusha & Nagendra (2011b)
multi-D/AA Anusha et al. (2011)

(12) RTE with RM: 1D/AD Faurobert (1987) Nagendra et al. (2002)
Nagendra et al. (2002) Sampoorna et al. (2008)

(13) Fourier decomposition of Frisch (2009, 2010) Frisch (2009)
AD PRD functions: 1D

(14) RTE with RM based on Sampoorna et al. (2011) Sampoorna (2011)
Fourier expansions of Nagendra & Sampoorna (2011)
AD PRD functions: 1D

(15) a. RTE with RM: multi-D/AD
b. Fourier expansion of Present paper and Present paper and
AD PRD functions: multi-D Forthcoming paper Forthcoming paper
c. RTE with RM based on
Fourier expansions of
AD PRD functions: multi-D

Notes. RTE: radiative transfer equation; AA: angle-averaged; AD: angle-dependent; PM: phase matrix; RM: redistribution matrix; CRD:
complete frequency redistribution; PRD: partial frequency redistribution.

with resonance scattering and/or Hanle effect in 1D and multi-
D media in different formalisms. The emphasis is on showing
how the complexity of the problem is reduced to manageable
levels by the concerted efforts of several authors. It includes a
brief historical account of the formulation and decomposition
of polarized phase matrices and the redistribution matrices for
spectral lines. In the literature on this topic, the term “phase
matrix” refers only to the angular correlations in the polarized
light scattering (see, e.g., the Rayleigh scattering polarized phase
matrix described in Chandrasekhar 1960). The phase matrices
are, in general, frequency independent. The “redistribution
matrix,” on the other hand, contains both frequency and angle
correlations between the incident and scattered photons. The
formulation of the redistribution matrices in the astrophysical
literature (in the modern analytic form) dates back to the
pioneering work of Omont et al. (1972, 1973). The references

given here serve only to mark the milestones. No pretension is
made to give a full list of references.

In Section 2, we describe the multi-D transfer equation in the
Stokes vector formalism. An irreducible transfer equation for
angle-dependent PRD functions in multi-D media is presented in
Section 3. In Section 4, a transfer equation in multi-D geometry
for the irreducible Fourier coefficients of the Stokes source
vector and the Stokes vector is established. Conclusions are
given in Section 6.

2. TRANSFER EQUATION IN TERMS
OF STOKES PARAMETERS

For a given ray defined by the direction �, the polarized
transfer equation in a multi-D medium for a two-level model
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Figure 1. Top: the atmospheric reference frame. The angle pair (θ, ϕ) defines the
scattered ray direction. The magnetic field is characterized by B = (Γ, θB, χB ),
where Γ is the Hanle efficiency parameter and (θB, χB ) define the field direction.
Bottom: the definition of the position vector r and the projected distances r−s′�
which appear in Equation (6). Here, r0 and r are the arbitrary initial and final
locations that appear in the formal solution integral (Equation (6)).

atom with unpolarized ground level is given by

� · ∇I(r,�, x) = −[κl(r)φ(x) + κc(r)]

× [I(r,�, x) − S(r,�, x)]. (1)

Equations analogous to Equation (1) for the unpolarized case can
be found in several references (see, e.g., Adam 1990; Mihalas
et al. 1978; Pomraning 1973). For the polarized case with PRD,
the transfer equations are given in Papers I–III. Here, I =
(I,Q,U )T is the Stokes vector with I, Q, and U being the Stokes
parameters defined as in Chandrasekhar (1960). The reference
directions l and r are marked in the top panel of Figure 1.
The positive value of Q is defined to be in a direction parallel
to l and negative Q in a direction parallel to r. The quantity
r = (x, y, z) is the position vector of the ray in the Cartesian
coordinate system (see the bottom panel of Figure 1). The unit
vector � = (η, γ, μ) = (sin θ cos ϕ , sin θ sin ϕ , cos θ ) defines
the direction cosines of the ray in the atmosphere with respect to
the atmospheric normal (the Z-axis), where θ and ϕ are the polar
and azimuthal angles of the ray, respectively (see Figure 1).

The quantity κl is the frequency-averaged line opacity, φ
is the Voigt profile function, and κc is the continuum opacity.
Frequency is measured in reduced units, namely x = (ν −
ν0)/ΔνD , where ΔνD is the Doppler width. The Stokes source
vector in a two-level model atom with unpolarized ground level
(see, e.g., Faurobert 1987; Nagendra et al. 2002) is

S(r,�, x) = κl(r)φ(x)Sl(r,�, x) + κc(r)Sc(r, x)

κl(r)φ(x) + κc(r)
. (2)

Here, Sc is the unpolarized continuum source vector given by
(Bν(r), 0, 0)T , with Bν(r) being the Planck function. The line
source vector (see, e.g., Faurobert 1987; Nagendra et al. 2002)
is written as

Sl(r,�, x) = G(r) +
∫ +∞

−∞
dx ′

∮
d�′

4π

× R̂(x, x ′,�,�′, B)

φ(x)
I(r,�′, x ′). (3)

Here, R̂ is the Hanle redistribution matrix with angle-dependent
PRD (see Section 4.2, approximation level II of Bommier
1997b); B represents an oriented vector magnetic field. The
thermalization parameter ε = ΓI /(ΓR + ΓI ), with ΓI and ΓR

being the inelastic collision rate and the radiative de-excitation
rate, respectively. The damping parameter is computed using
a = aR[1 + (ΓE + ΓI )/ΓR], where aR = ΓR/4πΔνD and ΓE is
the elastic collision rate. We denote the thermal source vector
by G(r) = ε Bν(r) with Bν(r) = (Bν(r), 0, 0)T . The solid
angle element d�′ = sin θ ′ dθ ′ dϕ′, where θ ∈ [0, π ] and
ϕ ∈ [0, 2π ]. The transfer equation along the ray path takes
the form

d I(r,�, x)

ds
= −κtot(r, x)[I(r,�, x) − S(r,�, x)], (4)

where s is the path length along the ray and κtot(r, x) is the total
opacity given by

κtot(r, x) = κl(r)φ(x) + κc(r). (5)

The formal solution of Equation (4) is given by

I(r,�, x) = I(r0,�, x) exp

{
−

∫ s

s0

κtot(r − s ′′�, x) ds ′′
}

+
∫ s

s0

S(r − s ′�,�, x)κtot(r − s ′�, x)

× exp

{
−

∫ s

s ′
κtot(r − s ′′�, x) ds ′′

}
ds ′, (6)

where I(r0,�, x) is the boundary condition imposed at r0 =
(x0, y0, z0). Here, s is the distance measured along the ray
path (see the bottom panel of Figure 1). Equations (1)–(6) can
be solved using a perturbation method (see Nagendra et al.
2002, for the corresponding 1D case). However, the perturba-
tion method involves an approximation that the degree of linear
polarization is small (only a few percent). Where the degree of
polarization becomes large, the perturbation method cannot be
expected to guarantee a stable solution. A numerical disadvan-
tage of working in Stokes vector formalism is that the physical
quantities depend on all the angular variables (�,�′). Added to
this, the angle-dependent polarized RT problem demands high
angular grid resolution, thereby requiring enormous memory
and CPU time.
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3. TRANSFER EQUATION IN TERMS OF
IRREDUCIBLE SPHERICAL TENSORS

As shown in HF07, S and I can be decomposed into 6D
cylindrically symmetrical vectors S and I defined for a 1D
geometry as

S = (
S0

0 , S2
0 , S

2,x
1 , S

2,y
1 , S

2,x
2 , S

2,y
2

)T
,

I = (
I 0

0 , I 2
0 , I

2,x
1 , I

2,y
1 , I

2,x
2 , I

2,y
2

)T
. (7)

In Papers I and III, generalizations of the technique of HF07
to the multi-D case are discussed for the case of angle-
averaged PRD. We show here that the same decomposition
method can be applied to the corresponding angle-dependent
PRD case by replacing the angle-averaged PRD functions with
angle-dependent PRD functions. This leads to an additional
dependence of S on the scattered ray direction �. The vectors
I and S satisfy a transfer equation of the form

− 1

κtot(r, x)
� · ∇I(r,�, x) = [I(r,�, x) − S(r,�, x)],

(8)

where

S(r,�, x) = pxS l(r,�, x) + (1 − px)SC(r, x) (9)

and
px = κl(r)φ(x)/κtot(r, x). (10)

The irreducible line source vector is given by

S l(r,�, x) = G(r) +
1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π
Ŵ {M̂II(B, x, x ′)rII(x, x ′,�,�′)

+ M̂III(B, x, x ′)rIII(x, x ′,�,�′)}Ψ̂(�′)
× I(r,�′, x ′), (11)

with G(r) = (ε Bν(r), 0, 0, 0, 0, 0)T and the irreducible un-
polarized continuum source vector SC(r, x) = (SC(r, x), 0, 0,

0, 0, 0)T . We assume that SC(r, x) = Bν(r). Here, Ŵ is a diag-
onal matrix written as

Ŵ = diag{W0,W2,W2,W2,W2,W2}. (12)

Note that rII,III are the well-known angle-dependent PRD func-
tions of Hummer (1962), which depend explicitly on the scat-
tering angle Θ, defined through cos Θ = � · �′ computed using

cos Θ = μμ′ +
√

(1 − μ2)(1 − μ′2) cos(ϕ′ − ϕ). (13)

The matrix Ψ̂ represents the reduced phase matrix for the
Rayleigh scattering. Its elements are listed in Appendix D of
Paper III. The elements of the matrices M̂II,III(B, x, x ′) can be
found in Bommier (1997b). The formal solution now takes the
form

I(r,�, x) = I(r0,�, x)e−τx,max

+
∫ τx,max

0
e−τ ′

x (r ′)S(r ′,�, x) dτ ′
x(r ′). (14)

Here, I(r0,�, x) is the boundary condition imposed at r0. The
monochromatic optical depth scale is defined as

τx(x, y, z) =
∫ s

s0

κtot(r − s ′′�, x) ds ′′, (15)

where τx is measured along a given ray determined by the direc-
tion �. In Equation (14), τx,max is the maximum monochromatic
optical depth at frequency x when measured along the ray.

One can develop iterative methods to solve Equations (8)–
(14). Because the physical quantities (e.g., S) still depend on �,
it is not numerically very efficient. In the next section, we present
a method to transform Equation (8) into a new RT equation,
which is simpler to solve.

4. TRANSFER EQUATION IN TERMS OF
IRREDUCIBLE FOURIER COEFFICIENTS

HF09 introduced a method for Fourier series expansion of
the angle-dependent PRD functions rII,III(x, x ′,�,�′). Here we
present a generalization to the multi-D case, the formulation
given in HF09.

Theorem: In a multi-D polarized RT including angle-dependent
PRD and Hanle effect, the irreducible source vector S and the
irreducible Stokes vector I exhibit Fourier expansions of the
form

S(r,�, x) =
k=∞∑

k=−∞
eikϕ S̃(k)

(r, θ, x),

I(r,�, x) =
k=∞∑

k=−∞
eikϕ Ĩ (k)

(r,�, x), (16)

and that the Fourier coefficients S̃(k)
and Ĩ (k)

satisfy a transfer
equation of the form

− 1

κtot(r, x)
� · ∇Ĩ (k)

(r,�, x) = [Ĩ (k)
(r,�, x) − S̃(k)

(r, θ, x)].

(17)

Proof: The proof is given for the general case of a frequency
domain-based PRD (approximation level II) which was derived
by Bommier (1997a, 1997b). Since the angle-dependent PRD
functions rII,III(x, x ′,�,�′) are periodic functions of ϕ with a
period 2π , we can express them in terms of a Fourier series

rII,III(x, x ′,�,�′) =
k=∞∑

k=−∞
eikϕ r̃

(k)
II,III(x, x ′, θ,�′), (18)

where the Fourier coefficients r̃
(k)
II,III are given by

r̃
(k)
II,III(x, x ′, θ,�′) =

∫ 2π

0

d ϕ

2π
e−ikϕ rII,III(x, x ′,�,�′). (19)

We let

G(r) =
k=∞∑

k=−∞
eikϕ G̃

(k)
(r), (20)

where

G̃
(k)

(r) =
∫ 2π

0

d ϕ

2π
e−ikϕ G(r). (21)
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Note that

G̃
(k)

(r) =
{

G(r) if k = 0,
0 if k �= 0.

(22)

We can write

SC(r, x) =
k=∞∑

k=−∞
eikϕ S̃(k)

C (r, x), (23)

where
S̃(k)

C (r, x) = δk0SC(r, x). (24)

Substituting Equation (18) into Equation (11) and using Equa-
tions (24) and (9) we get

S(r,�, x) =
k=∞∑

k=−∞
eikϕ S̃(k)

(r, θ, x), (25)

where

S̃(k)
(r, θ, x) = pxS̃

(k)
l (r, θ, x) + (1 − px)S̃(k)

C (r, x), (26)

with

S̃(k)
l (r, θ, x) = G̃

(k)
(r) +

1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π
Ŵ

{
M̂II(B, x, x ′)r̃ (k)

II (x, x ′, θ,�′)

+ M̂III(B, x, x ′)r̃ (k)
III (x, x ′, θ,�′)

}
× Ψ̂(�′)I(r,�′, x ′). (27)

Substituting Equation (27) into Equation (14) we get

I(r,�, x) =
k=∞∑

k=−∞
eikϕ Ĩ (k)

(r,�, x), (28)

where

Ĩ (k)
(r,�, x) = Ĩ (k)

(r0,�, x)e−τx,max

+
∫ τx,max

0
e−τ ′

x (r ′)S̃(k)
(r ′, θ, x) dτ ′

x(r ′), (29)

with

Ĩ (k)
(r0,�, x) = δk0I(r0,�, x). (30)

Here, S̃(k)
depends only on r ′ but not the variable of integration

τ ′
x(r ′) which is measured along a given ray determined by the

direction �. Substituting Equation (29) into Equation (27) we
obtain

S̃(k)
l (r, θ, x) = G̃

(k)
(r) +

1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π
Ŵ

{
M̂II(B, x, x ′)r̃ (k)

II (x, x ′, θ,�′)

+ M̂III(B, x, x ′)r̃ (k)
III (x, x ′, θ,�′)

}
Ψ̂(�′)

×
k′=+∞∑
k′=−∞

eik′ϕ′ Ĩ (k′)
(r,�′, x ′). (31)

Now from Equations (25) and (28) and Equation (8) it is
straightforward to show that the Fourier coefficients S̃(k) and
Ĩ (k) satisfy a transfer equation of the form

− 1

κtot(r, x)
� · ∇Ĩ (k)

(r,�, x) = [Ĩ (k)
(r,�, x) − S̃(k)

(r, θ, x)].

(32)

This proves the theorem. Equation (18) represents the Fourier
series expansion of the angle-dependent redistribution functions
rII,III(x, x ′,�,�′). The expansion is with respect to the azimuth
ϕ of the scattered ray. In this respect, our expansion method
differs from those used in Domke & Hubeny (1988), HF09,
HF10, and Sampoorna et al. (2011), all of whom perform
expansion with respect to ϕ − ϕ′, where ϕ′ is the incident ray
azimuth. The expansion used by these authors naturally leads
to axisymmetry of the Fourier components Ĩ (k), because of the
1D planar geometry assumed by them. In a multi-D geometry,
the expansion with respect to ϕ − ϕ′ does not provide any
advantage. In fact, Ĩ (k) continue to depend on ϕ due to finiteness
of the coordinate axes X and/or Y in the multi-D geometry,
under expansions either with respect to ϕ or ϕ −ϕ′. The Fourier
expansion of S in terms of ϕ (or ϕ−ϕ′) leads to axisymmetric S̃(k)

in 1D as well as multi-D geometries. Thus, both the approaches
are equivalent.

4.1. Symmetry Properties of the
Irreducible Fourier Coefficients

From Equation (19) it is easy to show that the components
r̃

(k)
II,III satisfy the conjugation property

r̃
(k)
II,III = (

r̃
(k)
II,III

)∗
. (33)

In other words, the real and imaginary parts of r̃
(k)
II,III are

respectively symmetric and anti-symmetric about k = 0.
Using Equation (33) we can rewrite Equation (18) as

rII,III(x, x ′,�,�′) = r̃
(0)
II,III(x, x ′, θ,�′)

+
k=∞∑
k=1

{
e−ikϕ r̃

(−k)
II,III (x, x ′, θ,�′)

+ eikϕ r̃
(k)
II,III(x, x ′, θ,�′)

}
(34)

or

rII,III(x, x ′,�,�′) =
k=∞∑
k=0

(2 − δk0)eikϕ r̃
(k)
II,III(x, x ′, θ,�′).

(35)

In Equation (35), the Fourier series constitutes only the terms
with k � 0. This is useful in practical applications. With this
simplification, we can show, following the steps similar to those
given in Section 4, that Equation (16) now becomes

S(r,�, x) =
k=∞∑
k=0

eikϕ (2 − δk0)S̃(k)
(r, θ, x),

I(r,�, x) =
k=∞∑
k=0

eikϕ (2 − δk0)Ĩ (k)
(r,�, x), (36)
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Figure 2. Comparison of the exact (solid lines) and Fourier expansion (dash-triple-dotted lines) of rII and rIII functions with five terms retained in the series
(Equation (35)).

Figure 3. Frequency dependence of real parts of r̃
(k)
II,III(x, x′, θ,�′). Solid, dotted, dashed, dot-dashed, and dash-triple-dotted lines correspond, respectively, to k = 0,

k = 1, k = 2, k = 3, and k = 4.

where

S̃(k)
(r, θ, x) = pxS̃

(k)
l (r, θ, x) + (1 − px)S̃(k)

C (r, x), (37)

with

S̃(k)
C (r, x) = δk0SC(r, x) (38)

and

S̃(k)
l (r, θ, x) = G̃

(k)
(r) +

1

φ(x)

∫ +∞

−∞
dx ′

×
∮

d�′

4π
Ŵ

{
M̂II(B, x, x ′)r̃ (k)

II (x, x ′, θ,�′)

+ M̂III(B, x, x ′)r̃ (k)
III (x, x ′, θ,�′)

}
Ψ̂(�′)

×
k′=+∞∑
k′=0

eik′ϕ′
(2 − δk′0)Ĩ (k′)

(r,�′, x ′). (39)

The components of S̃(k)
and Ĩ (k)

in general form countably
infinite sets.1 We have verified that for practical applications it
is sufficient to work with five terms in the Fourier series (k ∈
[0, +4]). Figure 2 shows a plot of the rII,III functions computed
using an exact method (as in Nagendra et al. 2002), and those
computed using Equation (35) with k ∈ [0, +4], namely keeping
only the five dominant components in the series expansion. A
similar comparison of the exact and series expansion methods
for rII is presented by Domke & Hubeny (1988), who also
show that five dominant components are sufficient to accurately
represent the angle-dependent rII function.

In Figures 3 and 4 we study the frequency dependence of the
real and imaginary parts of r̃

(k)
II,III(x, x ′, θ,�′) for a given incident

frequency point (x ′ = 2 for r̃
(k)
II and x ′ = 0 for r̃

(k)
III ). We show

1 If a set has a one-to-one correspondence with the set of integers, it is called
a countably infinite set.
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Figure 4. Frequency dependence of imaginary parts of r̃
(k)
II,III(x, x′, θ,�′). Solid, dotted, dashed, dot-dashed, and dash-triple-dotted lines correspond, respectively, to

k = 0, k = 1, k = 2, k = 3, and k = 4.

the behavior of five (k = 0, 1, 2, 3, 4) Fourier components. Note
that r̃

(0)
II,III are real quantities.

Equations (29) and (32) together with Equations (37)–(39)
can be solved using an iterative method. In a subsequent
paper, we develop a fast iterative method (pre-BiCG-STAB)
and present the solutions of polarized RT in multi-D geometry
including Hanle effect with angle-dependent PRD.

After solving for S̃(k)
and Ĩ (k)

, we can construct S and I
using Equation (36). Since S and I are real quantities, these
expansions reduce to the following simpler forms:

S(r,�, x) =
k=∞∑
k=0

(2 − δk0){cos(kϕ)Re{S̃(k)
(r, θ, x)}

− sin(kϕ)Im{S̃(k)
(r, θ, x)}}, (40)

and

I(r,�, x) =
k=∞∑
k=0

(2 − δk0){cos(kϕ)Re{Ĩ (k)
(r,�, x)}

− sin(kϕ)Im{Ĩ (k)
(r,�, x)}}, (41)

where S = (S0
0 , S2

0 , S
2,x
1 , S

2,y
1 , S

2,x
2 , S

2,y
2 )T and I = (I 0

0 , I 2
0 ,

I
2,x
1 , I

2,y
1 , I

2,x
2 , I

2,y
2 )T .

Once we obtain S and I , the Stokes source vector and Stokes
intensity vector can be deduced using the following formulae
(see Appendix B of HF07 and also Paper I):

I (r,�, x) = I 0
0 +

1

2
√

2
(3 cos2 θ − 1)I 2

0

−
√

3 cos θ sin θ
(
I

2,x
1 cos ϕ − I

2,y
1 sin ϕ

)

+

√
3

2
(1 − cos2 θ )

(
I

2,x
2 cos 2ϕ − I

2,y
2 sin 2ϕ

)
,

(42)

Q(r,�, x) = − 3

2
√

2
(1 − cos2 θ )I 2

0

−
√

3 cos θ sin θ
(
I

2,x
1 cos ϕ − I

2,y
1 sin ϕ

)

−
√

3

2
(1 + cos2 θ )

(
I

2,x
2 cos 2ϕ − I

2,y
2 sin 2ϕ

)
,

(43)

U (r,�, x) =
√

3 sin θ
(
I

2,x
1 sin ϕ + I

2,y
1 cos ϕ

)
+

√
3 cos θ

(
I

2,x
2 sin 2ϕ + I

2,y
2 cos 2ϕ

)
. (44)

The quantities I 0
0 , I 2

0 , I
2,x
1 , I

2,y
1 , I

2,x
2 , and I

2,y
2 also depend on

r,�, and x. Similar formulae can also be used to deduce S
from S.

5. NUMERICAL CONSIDERATIONS

The proposed Fourier series expansion (or Fourier decom-
position) technique to solve multi-D RT problems with angle-
dependent PRD functions essentially transforms the given prob-
lem in the (θ, ϕ) space (see Section 3) into the (θ, k) space (see
Section 4). Let nϕ denote the number of azimuths (ϕ) used in
the computations and nk the maximum number of terms retained
in the Fourier series expansions. In the (θ, ϕ) space, the source
terms S depend on nϕ , whereas in the (θ, k) space the source
terms S̃(k) depend on nk. In Figure 2 we have demonstrated that
it is sufficient to work with nk = 5 (i.e., k ∈ [0, 4]), whereas
for 2D RT problems it is necessary to use nϕ = 8, 16, 24, or
32, depending upon the accuracy requirements of the problem.
Since nk is always smaller than nϕ , the computational cost is
reduced when we work in the (θ, k) space.

In addition to the computation of rII,III(x, x ′,�,�′) functions,
we need to compute r̃

(k)
II,III(x, x ′, θ,�′) in the (θ, k) space.

This additional computation does not require much CPU time.
Moreover, if we can fix the number of angles and frequency
points to be used in the computations, it is sufficient to compute
these functions only once, which can be written in a file. In
subsequent transfer computations, these data can simply be read
from the archival file.

To demonstrate these advantages, we have compared the CPU
time requirements for the two methods, one which uses the (θ, ϕ)
space and the other which uses the (θ, k) space. Both approaches
use Pre-BiCG-STAB as the iterative method to solve the 2D
transfer problem. We find that with nϕ = 32, the CPU time
required to solve a given problem in the (θ, k) space is seven
times less than that required in the (θ, ϕ) space. For practical
problems requiring more azimuthal angles, the advantage of
using a Fourier decomposition technique is much larger.

To demonstrate the correctness of the proposed Fourier
decomposition technique for the multi-D transfer, we consider
a test RT problem in the 2D medium. A complete study of

7
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Figure 5. Emergent, spatially averaged I,Q/I,U/I profiles computed for a
test 2D RT problem with angle-dependent PRD using two methods, one which
uses (θ, k) space (solid lines) and the other which uses the (θ, ϕ) space (dotted
lines). Both the approaches use the Pre-BiCG-STAB as the iterative method.
Both methods produce nearly identical results, proving the correctness of the
proposed Fourier decomposition technique for angle-dependent PRD problems
in multi-D RT. The results are plotted for μ = 0.1 and ϕ = 27◦. The details and
other model parameters are given in Section 5.

the solutions of 2D RT problems with angle-dependent PRD
will be taken up in a forthcoming paper. Figure 5 shows the
emergent, spatially averaged Stokes profiles formed in a 2D
medium, computed using the two methods mentioned above.
The model parameters are the total optical thickness in two
directions, namely TY = TZ = T = 20, the elastic and inelastic
collision rates, respectively, are ΓE/ΓR = 10−4, ΓI /ΓR = 10−4,
and the damping parameter of the Voigt profile is a = 2×10−3.
We consider the pure line case (κc = 0). The internal thermal
sources are taken as constant (the Planck function Bν = 1). The
medium is assumed to be self-emitting (no incident radiation on
the boundaries). We consider the case of zero magnetic field.
The branching ratios for this choice of model parameters are
(α, β(0), β(2)) = (1, 1, 1). These branching ratios correspond to
a PRD scattering that uses only the r̃

(k)
II (x, x ′, θ,�′) function.

We use a logarithmic frequency grid with xmax = 3.5 and a
logarithmic depth grid in the Y - and Z-directions of the 2D
medium. We have used a three-point Gaussian μ-quadrature
and a 32-point Gaussian ϕ-quadrature. In Figure 5 we show
the results computed at μ = 0.1 and ϕ = 27◦. The fact
that both the methods give nearly identical results proves the
correctness of the proposed Fourier decomposition technique for
multi-D RT.

6. CONCLUSIONS

In this paper, we formulate the polarized RT equation in multi-
D media that includes angle-dependent PRD and the Hanle ef-
fect. We propose a method for decomposition of the Stokes
source vector and Stokes intensity vector in terms of irreducible
Fourier components S̃(k) and Ĩ (k), using a combination of the
decomposition of the scattering phase matrices in terms of irre-
ducible spherical tensors T K

Q and the Fourier series expansions
of angle-dependent PRD functions. We also establish that the
irreducible Fourier components S̃(k) and Ĩ (k) satisfy a simple trans-
fer equation, which can be solved by any iterative method such
as an ALI or a Bi-Conjugate Gradient-type projection method.

We thank Professor H. Frisch for helpful comments/
suggestions that helped to improve the manuscript. We also
thank Dr. Sampoorna for useful discussions.
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