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Transition properties of low-lying states in atomic indium
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We present here the results of our relativistic many-body calculations of various properties of the first six
low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method
in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p6]5s25p3/2 state
in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements
of the excited states of atomic indium that we have considered in the present work.
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I. INTRODUCTION

Indium (In) was laser cooled and trapped a few years
ago [1]. Following this experiment, a proposal was made
to search for the permanent electric dipole moment (EDM)
in this atom [2]. It would indeed be desirable to carry out
high precision measurements and many-body calculations of
other properties of this atom. A few measurements of the
magnetic dipole hyperfine structure constants of the first three
low-lying states of In are already available [3,4]. However, the
reported theoretical results obtained using different variants of
the relativistic coupled-cluster (RCC) method at the singles,
doubles, and important triples excitations level [CCSD(T)
method] are not able to reproduce them to within 1% accuracy
[2,5]. This suggests that the role of correlation effects for this
property is of crucial importance. In addition, it would also be
worthwhile to calculate different transition amplitudes in In for
a number of reasons. First of all, the behavior of the correlation
effects in these properties could be quite different than in the
hyperfine structure constants. Furthermore, these amplitudes
in conjunction with the hyperfine constants can be employed
to verify the accuracy of the wave functions for the proposed
EDM calculations [2] or perhaps for parity nonconservation if
at all an experiment to observe this effect is performed on this
atom in the future and also to determine the polarizabilities,
lifetimes, oscillator strengths, branching ratios, etc. for various
states.

In this work, we calculate the excitation energies (EEs) and
different transition amplitudes due to allowed and forbidden
electromagnetic transitions among the first six low-lying
states, giving a total of 34 possible transitions (see Fig. 1),
using the relativistic CCSD(T) method. These results are
further used to determine transition rates, branching ratios,
and lifetimes of the above states. These properties are
also important from an astrophysical point of view [6,7].
Safronova et al. have reported EEs and electric dipole (E1)
transition amplitudes for a number of states and compared
with previous calculations and measurements [5]. However,
they have only considered these transition amplitudes to
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estimate the lifetimes of various states, but contributions from
the forbidden transitions are not included. In our calcula-
tions, we have taken into account the forbidden transition
amplitudes in the evaluation of the lifetimes of different
states.

II. THEORY AND METHOD OF CALCULATIONS

The transition rates (in s−1) due to various transitions are
given by [8]

AE1
f →i = 2.02613 × 1018

λ3(2Jf + 1)
SE1

f →i , (2.1)

AM1
f →i = 2.69735 × 1013

λ3(2Jf + 1)
SM1

f →i , (2.2)

AE2
f →i = 1.11995 × 1018

λ5(2Jf + 1)
SE2

f →i , (2.3)

and

AM2
f →i = 1.491 × 1013

λ5(2Jf + 1)
SM2

f →i , (2.4)

where λ (in Å) and SO
f →i(=|〈f ||O||i〉|2) [in atomic unit (a.u.)]

are the wavelengths and line strengths due to the corresponding
transition operator O, respectively.

The lifetime (τf ) of a given state f is just the reciprocal of
the total transition rate of that state due to all possible transition
channels, that is,

τf = 1∑
O,i AO

f →i

, (2.5)

where AO
f →i is the transition rate due to operator O and

sum over i and O represents the total transition rate from
state f to all possible states i and due to all possible
operators.

The branching ratios due to an operator O from a state f

due to the lower states are given by

�O
f →i = AO

f →i∑
O,i A

O
f →i

= τf AO
f →i . (2.6)
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FIG. 1. Schematic low-lying energy level diagrams and decay
channels of the low-lying states in In.

To evaluate the line strengths, we use the following reduced
matrix elements at the single-particle orbitals level for the E1,
M1, E2, and M2 operators [9]:

〈κf || e1 || κi〉 = 〈κf || C(1) || κi〉
∫ ∞

0
drr

{
(Pf Pi + Qf Qi)

− ωr

5α

[
κf − κi

2
(Pf Qi + Qf Pi)

+ (Pf Qi − Qf Pi)

]}
, (2.7)

〈κf ||m1||κi〉
= 〈−κf || C(1) || κi〉

∫ ∞

0
drr

(κf + κi)

α
(Pf Qi + Qf Pi),

(2.8)

〈κf || e2 || κi〉 = 〈κf || C(2) || κi〉
∫ ∞

0
drr2

{
(Pf Pi + Qf Qi)

− ωr

7α

[
κf − κi

3
(Pf Qi + Qf Pi)

+ (Pf Qi − Qf Pi)

]}
, (2.9)

and

〈κf || m2 || κi〉
= 〈−κf || C(2) || κi〉

∫ ∞

0
drr2 (κf + κi)

3α
(Pf Qi + Qf Pi),

(2.10)

where, j ’s and κ’s are the orbital and relativistic angular
momentum quantum numbers, respectively, P and Q represent
the radial parts of large and small components of single-
particle Dirac orbitals, respectively, ω = εf − εi for the orbital
energies εs, α is the fine structure constant and the reduced

Racah coefficients are given by

〈κf || C(k) || κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1),

×
(

jf k ji

1/2 0 −1/2

)
π

(
lκf

,k,lκi

)
,

(2.11)

with

π (l,m,l′) =
{

1 for l + m + l′ = even

0 otherwise.
(2.12)

In the above expressions and in the remaining part of the paper,
we have used a.u. unless they are mentioned explicitly.

In order to determine the above properties, we calculate
the atomic wave function (|
v〉) with a valence orbital v by
expressing it in the RCC framework as

|
v〉 = eT {1 + Sv}|�v〉, (2.13)

where we define a reference state |�v〉 by appending the
appropriate valence orbital v to the Dirac-Fock (DF) wave
function (|�0〉) with the configuration similar to cadmium,
that is, [4p6]4d105s2. Here T and Sv represent the excitation
operators due to core-core and core-valence electron correla-
tions. In the CCSD(T) method, the T and Sv operators are
defined as

T = T1 + T2 and Sv = S1v + S2v, (2.14)

where 1 and 2 in the subscripts represent for single and double
excitations, respectively.

The equations determining the coupled-cluster amplitudes
and energy can be expressed in compact forms as〈

�L
0

∣∣{Ĥ eT }|�0〉 = δ0,L
Ecorr, (2.15)

and〈
�L

v

∣∣{Ĥ eT }{1 + Sv}|�v〉 = 〈
�L

v

∣∣1 + Sv|�v〉
〈�v|{Ĥ eT }{1 + Sv}|�v〉

= 〈�L
v |δL,v + Sv|�v〉
Ev, (2.16)

where the superscript L(=1,2) represents for the excited
hole-particle states, Ĥ eT denotes the connected terms of
the Dirac-Coulomb (DC) Hamiltonian with the T operators,

Ecorr and 
Ev are the correlation energy and attachment
energy [also equivalent to negative of the ionization potential
(IP)] of the electron of orbital v, respectively. The reference
states in Eqs. (2.15) and (2.16) contain a different number
of particles, hence the Hamiltonian used in the respective
equations describe a different number of particles in our
Fock space representation. Contributions from the important
valence triple excitations are included perturbatively through
the above equations.

The transition matrix element of a physical operator O
between |
f 〉 and |
i〉 in our approach is given by

〈
f |O|
i〉√〈
f |
f 〉√〈
i |
i〉

= 〈�f |{1 + S
†
f }O{1 + Si}|�i〉√

〈�f |N + S
†
f NSf |�f 〉

√
〈�i |N + S

†
i NSi |�i〉

,

(2.17)
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where O = eT †
OeT and N = eT †

eT are two nontruncating
series in the above expression. We evaluate them by con-
sidering terms whose leading contributions arise in fourth-
order perturbation theory or lower. Contributions from the
normalization of the wave functions (N ) are determined
explicitly as follows:

N = 〈
f |O|
i〉√〈
f |
f 〉√〈
i |
i〉
− 〈
f |O|
i〉

= 〈
f |O|
i〉
[

1√〈
f |
f 〉√〈
i |
i〉
− 1

]
. (2.18)

We have used Gaussian-type orbitals (GTOs) to construct
the single-particle orbitals for the Dirac-Fock (|�0〉) wave
function. The large and small components of the Dirac orbitals
in this case are expressed as

Pκ (r) =
∑

k

cP
k rlκ e−αkr

2
, (2.19)

and

Qκ (r) =
∑

k

c
Q
k rlκ

(
d

dr
+ κ

r

)
e−αkr

2
, (2.20)

where the summation over k is for total number of GTOs used
in each symmetry, cP

k and c
Q
k are the normalization constants

for the large and small components, respectively, and we use
the ( d

dr
+ κ

r
) operator to expand the small component Dirac

orbitals to maintain the kinetic balance condition with its large
component. In the present calculations, we have considered
nine relativistic symmetries (up to g symmetry) and 28 GTOs
for each symmetry to generate the orbitals. In order to optimize
the exponents to describe orbitals from various symmetries in
a smooth manner, we use the even tempering condition:

αk = α0β
k−1, (2.21)

where α0 and β are two arbitrary parameters that can be chosen
suitably for different symmetries. We have considered α0 =
7.5 × 10−4 for all the symmetries and β are taken as 2.53, 2.45,
2.58, 2.75, and 2.83 for s, p, d, f , and g orbitals, respectively.
For the RCC calculations, we have considered excitations up

TABLE I. IPs (
Evs) of different states of In in cm−1. Absolute
error of our CCSD(T) results compared to the quoted results in [10]
are given as 
.

NISTa Othersb Koopmanc CCSD(T)c 


State (cm−1) (cm−1) (cm−1) (cm−1) (%)

5p1/2 46670.11 46189 41521.74 46581.47 0.19
5p3/2 44457.51 44031 39522.20 44361.04 0.22
6s1/2 22297.15 22442 20567.70 22291.74 0.02
6p1/2 14853.21 14833 13977.92 14819.07 0.23
6p3/2 14554.89 14532 13718.04 14519.46 0.24
5d3/2 13777.90 13581 12389.68 13633.48 1.05
5d5/2 13754.57 13554 12373.64 13603.88 1.10

aReference [10].
bReference [5].
cThis work.

TABLE II. Line strengths (in a.u.) due to allowed and forbidden
transitions between different states in In. Numbers given in the
parentheses and square brackets represent estimated errors and
powers in 10, respectively.

Transition DF CCSD(T) Others [5]

5d5/2
E1→ 6p3/2 251.95 188(2) 186

5d5/2
M2→ 6p3/2 4.9[3] 3.8(1)[3]

5d5/2
M2→ 6p1/2 893.6 685(5)

5d5/2
E1→ 5p3/2 20.55 16.3(5) 15.2

5d5/2
M2→ 5p3/2 399.59 474(10)

5d5/2
M2→ 5p1/2 62.44 92(3)

5d5/2
M1→ 5d3/2 2.40 2.41(1)

5d5/2
E2→ 5d3/2 5.0[3] 2.9(2)[3]

5d5/2
E2→ 6s1/2 9.4[3] 6.6(1)[3]

5d3/2
E1→ 6p3/2 27.88 20(1) 20.5

5d3/2
M2→ 6p3/2 0.0 3.5(1)[−3]

5d3/2
E1→ 6p1/2 139.07 104(5) 103

5d3/2
M2→ 6p1/2 83.44 65(3)

5d3/2
E1→ 5p3/2 2.30 1.84(2) 1.71

5d3/2
M2→ 5p3/2 0.0 0.27(1)

5d3/2
E1→ 5p1/2 9.84 7.7(4) 7.24

5d3/2
M2→ 5p1/2 5.90 4.9(3)

5d3/2
M1→ 6s1/2 4.8[−12] 2(1)[−9]

5d3/2
E2→ 6s1/2 6.3[3] 4.4(1)[3]

6p3/2
M1→ 6p1/2 1.33 1.33(1)

6p3/2
E2→ 6p1/2 1.64[4] 1.32(1)[4]

6p3/2
E1→ 6s1/2 88.96 72.9(1) 70.3

6p3/2
M1→ 5p3/2 4.9[−9] 2.1(5)[−4]

6p3/2
E2→ 5p3/2 131.93 106(8)

6p3/2
M1→ 5p1/2 9.2[−4] 6(1)[−4]

6p3/2
E2→ 5p1/2 96.90 77.3(8)

6p1/2
E1→ 6s1/2 45.81 37.5(1) 36.1

6p1/2
M1→ 5p3/2 1.0[−3] 1.4(3)[−3]

6p1/2
E2→ 5p3/2 149.33 120(7)

6p1/2
M1→ 5p1/2 3.9[−10] 1.2(8)[−5]

6s1/2
E1→ 5p3/2 11.26 8.8(2) 8.56

6s1/2
E1→ 5p1/2 4.68 3.67(2) 3.64

5p3/2
M1→ 5p1/2 1.33 1.31(1)

5p3/2
E2→ 5p1/2 236.42 181(1)

to first 16s, 16p, 16d, 14f , and 13g orbitals as the remaining
orbitals have large continuum energies.

III. RESULTS AND DISCUSSION

In accordance with Koopman’s theorem, the energies of
the virtual orbitals obtained in our calculations are the IPs at
the DF level, since our DF wave function is computed using
the closed-shell configuration [4p6]4d105s2. We present the
IPs from NIST [10], from other calculations as well as our
calculations in Table I.
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TABLE III. Wavelengths (λ) in Å, transition rates (A) in s−1, branching ratios (�) and lifetimes (τ ) in ns for the considered excited states
in In. We consider the calculated and experimental values of λs to determine the above quantities which are given as I and II, respectively.
We present the recommended (Reco) values for τ s after accounting possible errors and compare them with their experimental (Expt.) results.
Numbers given in the parentheses and square brackets represent estimated errors and powers in 10, respectively.

Upper Lower Channel λf →i AO
f →i τf τf

state (f ) state (i) O I II I II �O
f →i I II Reco Expt.

5d5/2 6p3/2 E1 1.09[5] 1.25[5] 48781.17 32544.0 0.0002 6.22 6.27 6.3(2) 7.6(5)a

6p3/2 M2 6.1[−10] 3.1[−10] ∼0.0 7.1(6)b

6p1/2 M2 8.23[4] 9.10[4] 4.5[−5] 2.7[−5] ∼0.0
5p3/2 E1 3251 3257 1.61[8] 1.60[8] 0.9998
5p3/2 M2 3.2[−3] 3.2[−3] ∼0.0
5p1/2 M2 3032 3038 8.9[−4] 8.8[−4] ∼0.0
5d3/2 M1 3.38[6] 4.29[6] 2.8[−7] 1.4[−7] ∼0.0
5d3/2 E2 1.2[−12] 3.7[−12] ∼0.0
6s1/2 E2 1.15[4] 1.14[4] 6.10 5.61 ∼0.0

5d3/2 6p3/2 E1 1.13[5] 1.29[5] 7316.78 4935.01 3.0[−5] 5.99 6.03 6.0(3) 6.3(5)a

6p3/2 M2 7.1[−16] 3.7[−16] ∼0.0 7.0(4)c

6p1/2 E1 8.43[4] 9.30[4] 8.78[4] 6.55[4] 4.0[−4]
6p1/2 M2 5.7[−11] 3.5[−11] ∼0.0
5p3/2 E1 3254 3259 2.71[7] 2.69[7] 0.16
5p3/2 M2 2.8[−6] 2.7[−6] ∼0.0
5p1/2 E1 3035 3040 1.40[8] 1.39[8] 0.84
5p1/2 M2 7.1[−5] 7.1[−5] ∼0.0
6s1/2 M1 1.16[4] 1.17[4] 1.1[−8] 1.0[−8] ∼0.0
6s1/2 E2 5.99 5.53 ∼0.0

6p3/2 6p1/2 M1 3.34[5] 3.35[5] 2.4[−4] 2.4[−4] ∼0.0 57.67 58.34 58(1) 55(4)d

6p1/2 E2 8.9[−7] 8.7[−7] ∼0.0
6s1/2 E1 1.29[4] 1.29[4] 1.73[7] 1.71[7] 0.9999
5p3/2 M1 3351 3344 0.04 0.04 ∼0.0
5p3/2 E2 69.99 70.73 4.1[−6]
5p1/2 M1 3119 3114 0.13 0.13 ∼0.0
5p1/2 E2 73.34 73.93 4.3[−6]

6p1/2 6s1/2 E1 1.34[4] 1.34[4] 1.58[7] 1.56[7] 0.9999 63.16 63.81 63.8(8) 55(4)d

5p3/2 M1 3385 3378 0.49 0.49 ∼0.0
5p3/2 E2 150.79 152.35 9.7[−6]
5p1/2 M1 3148 3143 0.005 0.005 ∼0.0

6s1/2 5p3/2 E1 4531 4513 9.58[7] 9.70[7] 0.6431 6.71 6.63 6.6(2) 7.5(7)a

5p1/2 E1 4117 4103 5.33[7] 5.38[7] 0.3569 7.0(3)e

7.4(3)f

5p3/2 5p1/2 M1 4.50[4] 4.52[4] 0.0967 0.0957 0.9969 10.31[9] 10.42[9] 10.4(2)[9]
5p1/2 E2 0.0003 0.0003 0.0031

aReference [11].
bReference [12].
cReference [13].
dReference [14].
eReference [15].
fReference [16].

As observed from Table I, our IP results are within 0.5%
except for the 5d states (which are around 1% accurate)
compared with the results given in [10]. In an earlier work,
Safronova et al. reported the results for these quantities based
on the linearized version of the relativistic CCSD(T) method
using a B-spline basis [5]. The major differences between
this and our work are the different basis sets used in the
two calculations and the additional nonlinear clusters in our
calculation. Our results are in better agreement with the high
precision NIST results than those of [5] for all the states that

we have considered. Given the high accuracy of our IPs and
therefore the excitation energies, we can accurately determine
the wavelengths for various transitions in order to determine
the transition rates and the lifetimes of different excited states.
We can also use the wavelengths from NIST data to obtain
the lifetimes and compare them with the results from the
relativistic CCSD(T) method.

In Table II, we present the line strengths obtained using the
DF and relativistic CCSD(T) methods for both the allowed and
forbidden transitions. Safronova et al. have given the results
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only for the allowed transitions [5] and they have not verified
explicitly the contributions from the forbidden transitions. In
fact, our transition strengths for the allowed transitions differ
slightly from theirs and the cause of the differences between the
approximations employed in the two cases have already been
discussed earlier. The influence of the forbidden transitions
should be verified in the determination of transition rates, BRs,
and lifetime estimations as they may be important in some
cases.

We present the wavelengths, transition rates, branching
ratios, and lifetimes of different states of In in Table III.
These quantities are determined using both the calculated
wavelengths that are estimated from the excitation energies
obtained in this work and the experimental wavelengths from
NIST data [10]. The ab initio results are given as I and
wherever the experimental wavelengths are used they are
given as II. We also give measured lifetimes results based
on different experimental techniques [11–16] in the same
table.

The difference between the experimental results and ob-
tained calculations for EEs are treated as possible uncertainties
associated with them, which are given in percentage in Table I.
Uncertainties in the calculated transition matrix elements
are obtained by finding out the contributions from higher
angular momentum orbitals using the dominant many-body
perturbation diagrams and are mentioned in the parentheses of
the results presented in Table II. In the final lifetime estimation
of various states, we consider central values given as II in
Table III and uncertainties are determined from the above error
bars. These results are reported as recommended values (Reco)
in Table III.

As we find from the above table, the branching ratios due
to the allowed transition channels completely dominate over
the forbidden transition channels. Therefore, the lifetimes
of the excited states except for the 5p3/2 state are almost
entirely determined by the allowed transitions. The 5p3/2 state
is the fine structure partner of the ground state; its lifetime
is determined from the forbidden transitions. For this case,
the M1 transition clearly dominates over the E2 transition
and that is evident from their branching ratios. We obtain
a large lifetime, ∼10 s, for this state. The lifetime of the
5d5/2 state obtained from our calculation is in reasonable

agreement with the available experimental data. We find
that the lifetime of this state is almost entirely due to the
E1 decay channel to 5p3/2 state. As the wavelength of the
transition 5d5/2 → 6p3/2 is very large, the branching ratio of
this transition is small. Our calculated lifetime for the 5d3/2

state agrees well with the experimental results. We find 84%
and 16% branching ratios from this state to the ground and
5p3/2 states, respectively, through the E1 channel. Contri-
butions from the forbidden transitions are also negligible
in this case. Similar agreement between our calculated and
experimental results for the lifetimes of the 6p states are found,
but the experimental results have large error bars compared to
our calculations. There is also a marginal difference between
the measured lifetimes and the calculated lifetimes of the 6s

state, although they are within the common error bar. The
branching ratios from this state to the ground and 5p3/2 states
are of the order of 35% and 64%, respectively. This trend is
different for the 5d3/2 state as discussed above.

IV. CONCLUSION

We have estimated the branching ratios and lifetimes of
certain low-lying excited states of indium. We have carried
out calculations of the excitation energies and line strengths
using the relativistic coupled-cluster method. We have also
compared our ab initio results with the results obtained using
the experimental wavelengths and measured lifetimes from
different experimental techniques. We find that the forbidden
transitions do not contribute significantly to the lifetimes of
most of the states that we have considered. A large lifetime for
the 5p3/2 state (∼10 s) has been found from this work, which is
completely due to the forbidden transitions to its fine structure
partner; the ground state.
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