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ABSTRACT

In two previous papers, we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D)
geometries with partial frequency redistribution as the scattering mechanism. We assumed Rayleigh scattering as
the only source of linear polarization (Q/I,U/I ) in both these papers. In this paper, we extend these previous
works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the
technique of Stokes vector decomposition in terms of the irreducible spherical tensors T K

Q , developed by Anusha
& Nagendra, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized
Preconditioned Bi-Conjugate-Gradient technique), developed by Anusha et al., is now generalized to the case of
RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for
multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1)
a comparison of emergent (I,Q/I,U/I ) profiles formed in one-dimensional (1D) media, with the corresponding
emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the
assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT
in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I,U/I ) profiles, which
is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of
the emergent (Q/I,U/I ) profiles in the line core, by producing significant changes in their magnitudes.
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1. INTRODUCTION

Multi-dimensional (multi-D) radiative transfer (RT) is impor-
tant to advance our understanding of the solar atmosphere. With
the increase in the resolving power of modern telescopes, and
the computing power of supercomputers, multi-D polarized line
RT is becoming a necessity and practically feasible. The multi-
D effects manifest themselves in the resolved structures on the
Sun. The finite dimensional structures on the solar surface lead
to inhomogeneity in the atmosphere, which is then no longer
axisymmetric. The presence of magnetic fields adds to the non-
axisymmetry in the microscopic scales through the Hanle effect.
The purpose of this paper is to address the relative importance
of non-axisymmetry caused by geometry and oriented magnetic
fields.

In recent decades, extensive studies on line RT in multi-D
media have been carried out. A historical account on these
developments is given in Anusha & Nagendra (2011, hereafter
Paper I). In Paper I we presented a method of Stokes vector
decomposition, which helped to formulate an “irreducible form”
of the polarized line transfer equation in a three-dimensional
(3D) Cartesian geometry. Such a formulation is advantageous
because the source vector and the mean intensity vector become
angle independent in the reduced basis. Also the scattering phase
matrix becomes independent of the outgoing directions (�).
This property leads to several advantages in numerical work.
It also provides a framework in which the transfer equation
can be solved more conveniently because the decomposition is
applied to both the Stokes source vector and the Stokes intensity
vector. In Anusha et al. (2011, hereafter Paper II), we focused
our attention on devising fast numerical methods to solve
polarized RT equation with partial frequency redistribution
(PRD) in a two-dimensional (2D) geometry. In Paper I and
Paper II, we considered the case of non-magnetic resonance

scattering polarization. Manso Sainz & Trujillo Bueno (1999)
and Dittmann (1999) solved the polarized RT equation in the
presence of a magnetic field (Hanle effect) in multi-D media.
Their calculations used the assumption of complete frequency
redistribution (CRD) in line scattering. In this paper we solve the
same problem, but for the more difficult and more realistic case
of Hanle scattering with PRD. The physics of PRD scattering is
treated using the frequency-domain-based approach developed
by Bommier (1997a, 1997b). The RT calculations in one-
dimensional (1D) geometry, using this approach, are described
in Nagendra et al. (2002). We extend their work to 2D and
3D geometries. For simplicity, we restrict to the case of angle-
averaged PRD functions.

The present paper represents a generalization to the magnetic
case, the decomposition technique developed in Paper I. It also
represents the generalizations to the 3D case, the Stabilized Pre-
conditioned Bi-Conjugate Gradient (pre-BiCG-STAB) method
developed in Paper II. Another generalization is the use of 3D
short characteristics formal solver in this paper, for the case of
PRD.

In Section 2, we describe the multi-D transfer equation in the
Stokes vector basis. The decomposition technique as applied to
the case of a magnetic multi-D media is described in Section 3. In
Section 4, we briefly describe the 3D short characteristics formal
solution method. Section 5 is devoted to a brief description of
the numerical method of solution. Results and discussions are
presented in Section 6. Conclusions are given in Section 7.

2. THE POLARIZED HANLE SCATTERING LINE
TRANSFER EQUATION IN MULTI-D MEDIA

In this paper, we consider polarized RT in 1D, 2D, and 3D
media in Cartesian geometry (see Figure 1). We assume that the
1D medium is infinite in the X- and Y-directions but finite in
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Figure 1. RT in 1D, 2D, and 3D geometries. The Zmax, (Y, Zmax), and
(X, Y, Zmax) represent, respectively, the point, the line, and the plane on which
the emergent solutions are shown in this paper. The corresponding atmospheric
reference frame is shown in Figure 2. The points A and B marked on the 2D
geometry figure represent an example of the spatial points where the symmetry
of the polarized radiation field (Equation (26)) is valid in a 2D medium.

(A color version of this figure is available in the online journal.)

the Z-direction. For 2D, we assume that the medium is infinite
in the X-direction, but finite in the Y- and Z-directions. The 3D
medium is assumed to be finite in all the X-, Y- and Z-directions.
We define the “top surface” for a 1D medium to be the infinite
XY plane passing through the point Zmax. For a 2D medium, the
top surface is defined to be the plane passing through the line
(Y,Zmax), which is infinite in X-direction. For a 3D medium,
the top surface is the plane (X, Y,Zmax) which is finite in X-
and Y-directions. For a given ray with direction �, the polarized
transfer equation in a multi-D medium with an oriented magnetic
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Figure 2. Atmospheric reference frame. The angle pair (θ, ϕ) defines the
outgoing ray direction. The magnetic field is characterized by B = (Γ, θB, χB ),
where Γ is the Hanle efficiency parameter and (θB, χB ) defines the field
direction. Θ is the scattering angle.

field is given by

� · ∇I(r,�, x) = −[κl(r)φ(x) + κc(r)]

× [I(r,�, x) − S(r,�, x)], (1)

where I = (I,Q,U )T is the Stokes vector, with I, Q, and U
the Stokes parameters defined below. Following Chandrasekhar
(1960), we consider an elliptically polarized beam of light, the
vibrations of the electric vector of which describe an ellipse.
If Il and Ir denote the components of the specific intensity of
this beam of light along two mutually perpendicular directions
l and r, in a plane (see Figure 2) transverse to the propagation
direction, then we define

I = Il + Ir ,

Q = Il − Ir ,

U = (Il − Ir ) tan 2χ, (2)

where χ is the angle between the direction l and the semi-
major axis of the ellipse. The positive value of Q is defined to
be a direction parallel to l and negative Q to be in a direction
parallel to r. The quantity r = (x, y, z) is the position vector
of the ray in the Cartesian co-ordinate system. The unit vector
� = (η, γ, μ) = (sin θ cos ϕ , sin θ sin ϕ , cos θ ) describes the
direction cosines of the ray in the atmosphere, with respect to the
atmospheric normal (the Z-axis), where θ and ϕ are the polar and
azimuthal angles of the ray (see Figure 2). The quantity κl is the
frequency-averaged line opacity, φ is the Voigt profile function,
and κc is the continuum opacity. Frequency is measured in
reduced units, namely, x = (ν − ν0)/ΔνD , where ΔνD is the
Doppler width. The Stokes source vector in a two-level atom
model with unpolarized ground level is

S(r,�, x) = κl(r)φ(x)Sl(r,�, x) + κc(r)Sc(r, x)

κl(r)φ(x) + κc(r)
. (3)

Here, Sc is the continuum source vector given by (Bν(r), 0, 0)T

with Bν(r) being the Planck function. The line source vector is
written as

Sl(r,�, x) = G(r) +
∫ +∞

−∞
dx ′

×
∮

d�′

4π

R̂(x, x ′,�,�′, B)

φ(x)
I(r,�′, x ′).

(4)
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Figure 3. Definition of the position vector r and the projected distances r − s′�
which appear in Equation (6). r0 and r are the arbitrary initial and final locations
that appear in formal solution integral (Equation (6)).

Here, R̂ is the Hanle redistribution matrix and B represents an
oriented vector magnetic field. ε = ΓI /(ΓR +ΓI ) with ΓI and ΓR

being the inelastic collision rate and the radiative de-excitation
rate, respectively. The thermalization parameter ε is the rate
of photon destruction by inelastic collisions. The damping
parameter is computed using a = aR[1 + (ΓE + ΓI )/ΓR], where
aR = ΓR/4πΔνD and ΓE is the elastic collision rate. We denote
the thermal source vector by G(r) = ε Bν(r) with Bν(r) =
(Bν(r), 0, 0)T . The solid angle element d�′ = sin θ ′ dθ ′ dϕ′,
where θ ∈ [0, π ] and ϕ ∈ [0, 2π ]. The transfer equation along
the ray path takes the form

d I(r,�, x)

ds
= −κtot(r, x)[I(r,�, x) − S(r,�, x)], (5)

where s is the path length along the ray and κtot(r, x) is the total
opacity given by

κtot(r, x) = κl(r)φ(x) + κc(r).

The formal solution of Equation (5) is given by

I(r,�, x) = I(r0,�, x) exp

{
−

∫ s

s0

κtot(r − s ′′�, x)ds ′′
}

+
∫ s

s0

S(r − s ′�,�, x)κtot(r − s ′�, x)

× exp

{
−

∫ s

s ′
κtot(r − s ′′�, x)ds ′′

}
ds ′. (6)

I(r0,�, x) is the boundary condition imposed at r0 =
(x0, y0, z0). The ray path on which the formal solution is de-
fined is shown in Figure 3.

3. DECOMPOSITION OF S AND I FOR MULTI-D
TRANSFER IN THE PRESENCE OF A MAGNETIC FIELD

As already discussed in Paper I, a decomposition of the Stokes
source vector S and the intensity vector I in terms of the irre-
ducible spherical tensors is necessary to simplify the problem.
In Paper I, it was a generalization to the 3D non-magnetic case,
of the decomposition technique for the 1D transfer problems,

developed by Frisch (2007, hereafter HF07). Here we extend
our work of Paper I to include the magnetic fields. A similar
technique, but in the Fourier space was presented in Faurobert-
Scholl (1991) and Nagendra et al. (1998), who solved the Hanle
scattering RT problem in 1D geometry. The solution of polar-
ized Hanle scattering transfer equation using the angle-averaged
and angle-dependent redistribution matrices was presented in
Nagendra et al. (2002), where a perturbation method of solution
was used. A Polarized Approximate Lambda Iteration method
to solve similar problems, using the Fourier decomposition tech-
nique was presented in Fluri et al. (2003), but only for the case
of angle-averaged PRD.

A general theory of PRD for the two-level atom problem with
Hanle scattering was developed by Bommier (1997a, 1997b).
It involves the construction of PRD matrices that describe
radiative plus collisional frequency redistribution in scattering.
It is rather difficult to use the exact redistribution matrix R̂ in
the polarized transfer equation. For convenience of applications
in line transfer theories, Bommier (1997b) proposed three levels
of approximations to handle the R̂ matrices. In approximation
levels II and III, the R̂ matrices were factorized into products of
redistribution functions of Hummer (1962) and the multi-polar
components of the Hanle phase matrix. The collisions enter
naturally in this formalism. It is shown that such a factorization
of R̂ can be achieved only in certain frequency domains in the
2D (x, x ′) frequency space. In this paper we refer to this way of
writing the PRD Hanle R̂ matrix, as the “domain-based PRD.”
The definition of the domains is given in Bommier (1997b, see
also Nagendra et al. 2002, 2003; Fluri et al. 2003). We use the
domain-based PRD, but write the relevant equations in a form
suitable for our present context (multi-D transfer). We recall that
in the special case of non-magnetic scattering, the domain-based
PRD equations for R̂ matrix naturally go to the Domke–Hubeny
redistribution matrix (Domke & Hubeny 1988). We start by
writing Hanle phase matrix in the atmospheric reference frame
in terms of the irreducible spherical tensors for polarimetry,
introduced by Landi Degl’Innocenti & Landolfi (2004, hereafter
LL04). In this formalism the (i, j )th element of the Hanle phase
matrix is given by

[P̂H (�,�′, B)]ij =
∑
KQ

T K
Q (i,�)

×
∑
Q′

MK
QQ′ (B)(−1)Q

′T K
−Q′ (j,�′),

(7)

where (i, j ) = (1, 2, 3) and

MK
QQ′(B) = ei(Q′−Q)χB

∑
Q′′

dK
QQ′′ (θB)dK

Q′′Q′(−θB)
1

1 + iQ′′ΓB

,

(8)

where the dJ
MM ′ are the reduced rotation matrices given in LL04.

The magnetic Hanle ΓB parameter takes different values in
different frequency domains (see Appendix B). T K

Q (i,�) are the
irreducible spherical tensors for polarimetry with K = 0, 1, 2,
−K � Q � +K (see Landi Degl’Innocenti & Landolfi 2004).
In this paper, we consider only the linear polarization. Therefore,
K = 0, 2 and Q ∈ [−K, +K]. For practical use, we need to
further expand the P̂H matrix in each of the domains in terms of
T K

Q . The required domain-based expansions of the PRD matrices
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in terms of T K
Q were already given in HF07, applicable there to

the case of 1D Hanle transfer. We present here the corresponding
equations that are applicable to the multi-D transfer, which
now become ϕ dependent (in the 1D case, those phase matrix
components were ϕ independent). We restrict our attention in
this paper to the particular case of angle-averaged redistribution
functions (approximation level III of Bommier 1997b).

The ij th element of the redistribution matrix in the atmo-
spheric reference frame (Bommier 1997b) can be written as

Rij (x, x ′,�,�′, B) =
∑
KQ

WKT K
Q (i,�)

× {
rII(x, x ′)P K

Q,II(j,�
′, B)

+ rIII(x, x ′)P K
Q,III(j,�

′, B)
}
. (9)

The weights WK depend on the line under consideration (see
LL04). Here, rII(x, x ′) and rIII(x, x ′) are the angle-averaged
versions of redistribution functions (see Hummer 1962). The
quantities P K

Q,II(j,�
′, B) and P K

Q,III(j,�
′, B) take different

forms in different frequency domains. They are described in
Appendix B.

Denoting GK
Q = δK0δQ0G(r), where G(r) = εBν(r), we can

write the ith component of the thermal source vector as

Gi(r) =
∑
KQ

T K
Q (i,�)GK

Q(r). (10)

The line source vector can be decomposed as

Si,l(r,�, x) =
∑
KQ

T K
Q (i,�)SK

Q,l(r, x), (11)

where

SK
Q,l(r, x) = GK

Q(r) +
1

φ(x)

∫ +∞

−∞
dx ′

∮
d�′

4π

×
3∑

j=0

WK

{
rII(x, x ′)P K

Q,II(j,�
′, B)

+ rIII(x, x ′)P K
Q,III(j,�

′, B)
}
Ij (r,�′, x ′).

(12)

Note that the components SK
Q,l(r, x) now depend only on the

spatial variables (x, y, z), frequency x. The (θ, ϕ) dependence
is fully contained in T K

Q (i,�). These quantities are listed in
LL04 (chapter 5, Table 5.6, p 211). Substituting Equation (11)
in Equation (6), the components of I can be written as

Ii(r,�, x) =
∑
KQ

T K
Q (i,�)IK

Q (r,�, x), (13)

where

IK
Q (r,�, x) = IK

Q,0(r0,�, x)e−τx,max

+
∫ τx,max

0
e−τ ′

x (r ′)[pxS
K
Q,l(r ′, x)

+ (1 − px)SK
Q,C(r ′, x)

]
dτ ′

x(r ′). (14)

Here, IK
Q,0 = I0(r0,�, x)δK0δQ0 are the intensity components

at the lower boundary. The quantities SK
Q,C = SC(r, x)δK0δQ0

denote the continuum source vector components. We assume
that SC(r, x) = Bν(r). The ratio of the line opacity to the total
opacity is given by

px = κl(r)φ(x)/κtot(r, x). (15)

The monochromatic optical depth scale is defined as

τx(x, y, z) =
∫ s

s0

κtot(r − s ′′,�, x) ds ′′, (16)

where τx is measured along a given ray determined by the direc-
tion �. In Equation (14) τx,max is the maximum monochromatic
optical depth at frequency x, when measured along the ray.

3.1. The Irreducible Transfer Equation in Multi-D Geometry
for the Hanle Scattering Problem

Let SK
Q = pxS

K
Q,l + (1 − px)SK

Q,C . IK
Q and SK

Q as well as the
phase matrix elements P K

Q,II(j,�
′, B) and P K

Q,III(j,�
′, B) are

all complex quantities. Following the method of transformation
from complex to the real quantities given in HF07, we define
the real irreducible Stokes vector I = (I 0

0 , I 2
0 , I

2,x
1 , I

2,y
1 , I

2,x
2 ,

I
2,y
2 )T and the real irreducible source vector S = (S0

0 , S2
0 , S

2,x
1 ,

S
2,y
1 , S

2,x
2 , S

2,y
2 )T . It can be shown that the I and S satisfy a

transfer equation of the form

− 1

κtot(r, x)
� · ∇I(r,�, x) = [I(r,�, x) − S(r, x)],

(17)

where S(r, x) = pxS l(r, x) + (1 − px)SC(r, x) with

S l(r, x) = ε Bν(r)

+
1

φ(x)

∫ +∞

−∞
dx ′

∮
d�′

4π
Ŵ

{
M̂

(i)
II (B)rII(x, x ′)

+ M̂
(i)
III (B)rIII(x, x ′)

}
Ψ̂(�′)I(r,�′, x ′), (18)

and SC(r, x) = (SC(r, x), 0, 0, 0, 0, 0)T . Ŵ is a diagonal matrix
given by

Ŵ = diag{W0,W2,W2,W2,W2,W2}. (19)

The matrix Ψ̂ represents the phase matrix for the Rayleigh
scattering to be used in multi-D geometries. Its elements are
listed in Appendix D. The matrices M̂

(i)
II,III(B) in different

domains are given in Appendix C. The formal solution now
takes the form

I(r,�, x) = I(r0,�, x)e−τx,max

+
∫ τx,max

0
e−τ ′

x (r ′)S(r ′, x) dτ ′
x(r ′). (20)

Here, I(r0,�, x) is the boundary condition imposed at r0.

4. A 3D FORMAL SOLVER BASED ON THE SHORT
CHARACTERISTICS APPROACH

This section is devoted to a discussion of 3D short character-
istics formal solver. Here we generalize to the 3D case, the 2D
short characteristics formal solver that we had used in Paper II.
A short characteristic stencil MOP of a ray passing through
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M

P

O

Figure 4. Elemental cube, showing the transfer along a section of the ray path,
called a short characteristic (MOP). The quantities S, κtot at M and P, and IM at
M are computed using parabolic interpolation formulae as M and P are non-grid
points.

the point O, in a 3D cube is shown in Figure 4. The point O
represents a grid point along the ray path. The point M (or P)
represents an intersection of the ray with one of the boundary
planes of a 3D cell. The plane of intersection is determined
by the direction cosines of the ray. The length Δs of the line
segment MO (or OP) is given by

Δs = Δz/μ, if the ray hits the XY plane,

Δs = Δy/γ, if the ray hits the XZ plane,

Δs = Δx/η, if the ray hits the YZ plane. (21)

Here, Δx, Δy, and Δz are incremental lengths (positive or
negative) between two successive grid points on the X-, Y-, and
Z-directions, respectively. In the short characteristics method,
the irreducible Stokes vector I at O is given by

IO(r,�, x) = IM(r,�, x) exp[−ΔτM]

+ ψM(r,�, x)SM(r, x)

+ ψO(r,�, x)SO(r, x)

+ ψP(r,�, x)SP(r, x), (22)

where SM,O,P are the irreducible source vectors at M, O, and
P. The quantity IM is the upwind irreducible Stokes vector for
the point O. If M and P are non-grid points, then SM,P and IM
are computed using a 2D parabolic interpolation formula. While
computing them, one has to ensure the monotonicity of all the
six components of these vectors, through appropriate logical
tests (see Auer & Paletou 1994). The coefficients ψ depend on
the optical depth increments in X-, Y-, and Z-directions. For a 2D
geometry, these coefficients are given in Auer & Paletou (1994).
Here we have used a generalized version of these coefficients
that are applicable to a 3D geometry.

5. NUMERICAL METHOD OF SOLUTION

In this paper, we generalize the pre-BiCG-STAB method
described in Paper II to the case of a 3D geometry. The present
work represents also an extension of this technique to the case
of polarized RT in the presence of an oriented magnetic field.
The essential difference between the 2D and 3D algorithms
is in terms of the lengths of the vectors. In a 2D geometry
it is np × nX × nY × nZ , whereas in a 3D geometry it is
np × nx × nX × nY × nZ , where nX,Y,Z are the number of

grid points in the X-, Y-, and Z-directions, and nx refers to the
number of frequency points. np is the number of polarization
components of the irreducible vectors. In the presence of a
magnetic field, np = 6 in both 2D and 3D geometries. In
non-magnetic problems, np = 4, 6 for 2D and 3D geometries,
respectively.

5.1. The Preconditioner Matrix

A description of the preconditioner matrix that appears in the
pre-BiCG-STAB method is already given in Paper II. Here we
give its functional form applicable to the problems considered
in this paper. In Paper II, a single preconditioner matrix was
sufficient to handle the non-magnetic line transfer problem with
PRD. The presence of magnetic field requires the use of domain-
based PRD matrices, for a better description of the PRD in line
scattering. The method requires preconditioner matrices to be
defined, that are suitable for each of the frequency domains. We
denote the preconditioner matrices by M̂(i).

M̂(i) = Î − px

× 1

φ(x)

{
Λ� (i)

x ′,IIrII(x, x ′) + Λ� (i)
x ′,IIIrIII(x, x ′)

}
, (23)

where

Λ� (i)
x ′,II =

∮
d�′

4π
ŴM̂

(i)
II (B)Ψ̂(�′)I(r,�′, x ′), (24)

and

Λ� (i)
x ′,III =

∮
d�′

4π
ŴM̂

(i)
III (B)Ψ̂(�′)I(r,�′, x ′). (25)

Here, I(r,�′, x ′) is computed using a delta source vector as
input. The expressions for the matrices M̂

(i)
II and M̂

(i)
III in different

domains are given in Appendix C. The matrices M̂(i) are block
diagonal. Each block is a full matrix with respect to x and x ′.
The matrices M̂(i) are diagonal with respect to other variables.

5.2. Computational Details

To calculate the integral in Equation (18) and the formal
solution in Equation (22), we need to define quadratures for
angles, frequencies, and depths.

For all the computations presented in this paper, Carlsson
type B angular quadrature with an order n = 8 is used. All
the results are presented in this paper for damping parameter
a = 10−3. The number of frequency points required for a given
problem depends on the value of a and the optical thickness
in the X-, Y-, and Z-directions (denoted by TX , TY , and TZ). A
frequency bandwidth satisfying the conditions φ(xmax)TX � 1,
φ(xmax)TY � 1, and φ(xmax)TZ � 1 at the largest frequency
point denoted by xmax has been used. We have used a logarithmic
frequency grid with a fine spacing in the line core region and
the near wings where the PRD effects are important. We use
a logarithmic spacing in the X-, Y-, and Z-directions, with a
fine griding near the boundaries. We find that with the modern
solution methods used in the calculations give sufficiently
accurate solutions for five spatial points per decade.

Computing time depends on the number of angle, frequency,
and depth points considered in the calculations and also on the
machine used for computations. We use the Intel(R) Core(TM)
i5 CPU 760 at 2.8 GHz processor running an un-parallelized
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Figure 5. Emergent, spatially averaged irreducible Stokes vector components formed in a non-magnetic 2D medium. Different curves represent different values of the
radiation azimuth ϕ. The value of μ = 0.11. The other model parameters are given in Section 6.1. The inset panels show the far wing behavior of I . The x grid for
these inset panels is 0 � x � 600.

(A color version of this figure is available in the online journal.)

code. For the difficult test case of a semi-infinite 3D atmosphere
the computing time is approximately an hour for one iteration.
Even for this difficult test case the Pre-BiCG-STAB method
needs just 18 iterations to reach a convergence criteria of 10−8.

6. RESULTS AND DISCUSSIONS

In this section, we present the results of computations to
illustrate broader aspects of the polarized transfer in 1D, 2D,
and 3D media. We present simple test cases (which can be
treated as benchmarks) to show the nature of these solutions. In
all the calculations we assume the atmosphere to be isothermal.

We organize our discussions in terms of two effects. One is
macroscopic in nature—namely the effect of RT on the Stokes
profiles formed in 2D and 3D media. Another is microscopic in
nature—namely the effect of an oriented weak magnetic field on
line scattering (Hanle effect). We discuss how these two effects
act together on the polarized line formation.

6.1. The Stokes Profiles Formed Due to Resonance Scattering
in 2D and 3D Media

A discussion on the behavior of Stokes profiles formed in 1D
media with PRD scattering can be found in Faurobert (1988)
and Nagendra et al. (1999). In Paper II, the nature of profiles
in a 2D semi-infinite medium is compared with those formed
in 1D semi-infinite medium for CRD and PRD scattering (see
Figures 8 and 9 of Paper II). Here we discuss the emergent,
spatially averaged I and (I,Q/I,U/I ) in 2D and 3D media for
PRD scattering.

Figures 5 and 6 show the frequency dependence of the
components of emergent, spatially averaged I in 2D and 3D
media, respectively. The model parameters are TX = TY =
TZ = T = 2 × 109, a = 10−3, ΓE/ΓR = 10−4, ΓI /ΓR = 10−4,
κc/κl = 10−7, and μ = 0.11. Our choice of collisional
parameters represent a situation in which rII type scattering
dominates. Different curves in each panel represent different
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Figure 6. Same as Figure 5 but for a 3D medium.

(A color version of this figure is available in the online journal.)

radiation azimuths ϕi(i = 1, 12) = 60◦, 45◦, 30◦, 300◦, 315◦,
330◦, 120◦, 135◦, 150◦, 240◦, 225◦, 210◦.

I 0
0 is the largest of all the components. For the chosen model

parameters, all the other non-zero components are of the same
order of magnitude. The components I

2,x
1 and I

2,y

2 are zero in
a 2D geometry due to symmetry reasons (see Appendix B of
Paper II for a proof).

The ϕ dependence of the I comes from the ϕ dependence
of the scattering phase matrix (Ψ̂) elements. The spatial dis-
tribution of I on the top surface depends sensitively on the
monochromatic optical depths for the ray at these spatial points.
This is a transfer effect within the medium for the chosen ray
direction. In the line core frequencies (x � 3), the monochro-
matic optical depths are larger, resulting in a relatively uniform
spatial distribution of I on the top surface. The ϕ dependence
appears as either symmetric or anti-symmetric with respect to
the X-axis from which ϕ is measured. Thus, the spatial averaging
leads to a weak dependence of I on the azimuth angle ϕ. When

the averaging is performed over sign changing quantities like
the polarization components, it leads to cancellation, resulting
in vanishing of these components.

The ϕ dependence of I in the line wings can be understood
by considering the action of the first column elements of the Ψ̂
matrix on I 0

0 , which is the largest among all the components. The
elements of Ψ̂ matrix are listed in Appendix D. I 0

0 is independent
of ϕ because it is controlled by the element Ψ11 which takes a
constant value unity. Similarly I 2

0 is controlled by Ψ21 which is
also independent of ϕ. However, we see a weak ϕ dependence
of I 2

0 in the wings, which is due to the coupling of the last
four components to I 2

0 , which are of equal order of magnitude
as I 2

0 , and are sensitive to the values of ϕ. The ϕ dependence
of I

2,y

1 and I
2,x
2 elements in both 2D and 3D geometries is

controlled by sin ϕ and cos 2ϕ functions appearing in Ψ41 and
Ψ51 elements, respectively. The distribution of angle points ϕ
in Carlson B quadrature is such that among the 12 ϕ values
in the grid, sin ϕ takes only six distinct values, and cos 2ϕ
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Figure 7. Emergent, spatially averaged (I,Q/I,U/I ) in non-magnetic 1D, 2D, and 3D media. Different curves represent different values of the radiation azimuth ϕ.
The value of μ = 0.11. The other model parameters are given in Section 6.1.

Table 1
The 12-point Carlsson Type B Quadrature for the Azimuth Angle ϕ

ϕi sin ϕ cos ϕ sin 2ϕ cos 2ϕ

(deg)

30 0.5 0.866 0.866 0.5
45 0.707 0.707 1 0
60 0.866 0.5 0.866 −0.5
120 0.866 −0.5 −0.866 −0.5
135 0.707 −0.707 −1 0
150 0.5 −0.866 −0.866 0.5
210 −0.5 −0.866 0.866 0.5
225 −0.707 −0.707 1 0
240 −0.866 −0.5 0.866 −0.5
300 −0.866 0.5 −0.866 −0.5
315 −0.707 0.707 −1 0
330 −0.5 0.866 −0.866 0.5

Notes. The corresponding values of sin ϕ, cos ϕ, sin 2ϕ, and cos 2ϕ are given
for the purpose of discussion.

takes only three distinct values (see Table 1). The components
I

2,x
1 and I

2,y

2 are non-zero in 3D geometry unlike the 2D case.
Their magnitudes are comparable to those of I

2,y

1 and I
2,x
2 .

The ϕ dependence of these components are controlled by cos ϕ
and sin 2ϕ functions appearing in Ψ31 and Ψ61 elements. In
the far wings, all the components of I go to their continuum
values, as shown in the inset panels of Figures 5 and 6. In a 1D
geometry, I 0

0 reaches the value of Bλ (parameterized as 1 here)
in the far wings where the source function is dominated by Bλ.
This is because of the fact that the formal solution with Bλ as
source function along a given ray leads to terms of the form
Bλ[1 − exp(−τx,max)]. In 1D medium τx,max = T κtot/μ. This
implies that for semi-infinite 1D medium, exp(−τx,max) = 0 so
that I 0

0 = Bλ in the far wings. However, in semi-infinite 2D and
3D media the distances traveled by the rays in a given direction
at different spatial points on the top surface are not always the
same and therefore exp(−τx,max) is not always zero unlike the 1D

case. Further the radiation drops sharply near the edges due to
finiteness of the boundaries. Therefore when we perform spatial
averaging of emergent I 0

0 over such different spatial points on
the top surface of a 2D medium (which is actually a line), I 0

0 will
take a value smaller than Bλ. For a similar reason (averaging
over a plane) the value of I 0

0 in the far wings in a 3D medium
becomes even smaller than the value in a 2D medium. All other
components reach zero in the far wings because the radiation
is unpolarized in the far wings (because of an unpolarized
continuum).

The way in which the components of I depend on ϕ is
different in 2D and 3D geometries (compare Figures 5 and 6).
This is a direct effect of spatial averaging. In a 2D medium,
spatial averaging of the profiles is performed over the line
(Y,Zmax) marked in Figure 1, whereas in a 3D medium the
averaging is performed over the plane (X, Y,Zmax) marked in
Figure 1. The 2D spatial averaging actually samples only a part
of the plane considered for averaging in a 3D medium. Also, 2D
geometry has an implicit assumption of front–back symmetry
of the polarized radiation field with respect to the infinite X-axis
in the non-magnetic case, namely,

I (r, θ, ϕ, x) = I (r, θ, π − ϕ, x),

I (r, θ, π + ϕ, x) = I (r, θ, 2π − ϕ, x),

Q(r, θ, ϕ, x) = Q(r, θ, π − ϕ, x),

Q(r, θ, π + ϕ, x) = Q(r, θ, 2π − ϕ, x),

U (r, θ, ϕ, x) = −U (r, θ, π − ϕ, x),

U (r, θ, π + ϕ, x) = −U (r, θ, 2π − ϕ, x),

θ ∈ [0, π ], ϕ ∈ [0, π/2]. (26)

See Appendix B of Paper II for a proof of Equation (26).
However, no such assumptions are involved in 3D
geometry.

Figures 7(a)–(c) show I,Q/I,U/I profiles in non-magnetic
1D, 2D, and 3D media. Intensity I decreases monotonically
from 1D to the 3D case, because of the leaking of radiation
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Figure 8. Same as Figure 5 but for a magnetic 1D medium. The vector magnetic field is represented by (Γ, θB, χB ) = (1◦, 90◦, 68◦). The thin solid lines show the
corresponding non-magnetic components.

through the finite boundaries in the lateral directions which is
specific to RT in 2D and 3D geometries. In panels (b) and (c),
different curves represent different ϕ values. Only one curve is
shown in panel (a), because of the axisymmetry of the radiation
field in the 1D medium. For the same reason, |U/I |1D = 0.
The ϕ dependence of |Q/I |2D,3D and |U/I |2D.3D directly follow
from those of the components of I shown in Figures 5 and 6,
and their combinations (see Appendix A in this paper where
we list the formulae used to construct the Stokes vector (I, Q,
U)T from the irreducible components of I). At the line center,
[U/I ]2D,3D ∼ 0. This is because U/I is zero in large parts of
the top surface and the positive and negative values of U/I
at x = 0 are nearly equally distributed in a narrow region
near the edges. A spatial averaging of such a distribution leads
to cancellation giving a net value of U/I approaching zero.
This is not the case in wing frequencies of the U/I profile
(see discussions in Section 6.3 for spatial distribution of Q/I
and U/I ).

6.2. The Stokes Profiles in 2D and 3D Media in the
Presence of a Magnetic Field

Figures 8–10 show all the six components of I in magnetized
1D, 2D, and 3D media, respectively. The vector magnetic
field B is represented by (Γ, θB, χB ) = (1◦, 90◦, 68◦). The
corresponding non-magnetic components are shown as thin
solid lines. Different line types in Figures 9 and 10 correspond
to different ϕ. The irreducible components in 1D geometry
are cylindrically symmetrical, even when there is an oriented
magnetic field. Therefore there is only one curve in each panel
in Figure 8. When B = 0 the four components I

2x,y

1,2 become
zero due to axisymmetry in 1D geometry (Figure 8). These
components take non-zero values in the line core when B 	= 0.
The magnitudes of I 0

0 and I 2
0 monotonically decrease from 1D to

3D. In the 2D case, the two components which were zero when
B = 0, take non-zero values in the line core, when B 	= 0.
Unlike 1D geometry in 2D and 3D geometries, a non-zero B
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Figure 9. Same as Figure 8 but for a 2D medium.

(A color version of this figure is available in the online journal.)

causes the last four components to become sensitive to ϕ. The
components I

2y

1 in 2D and I 2x
1 and I

2y

1 in 3D remain almost
unaffected by B. This behavior is particular to the present
choice of B. For a different choice of B, the behavior of the
six components may differ from what is shown in these figures.
In all the geometries, the components go to their non-magnetic
(Rayleigh scattering) values in the wings, because the Hanle
effect operates only in the line core region.

Figures 11(a)–(c) show spatially averaged I, Q/I , U/I in 1D,
2D, and 3D geometries, respectively. Due to the finiteness of the
boundaries in 2D and 3D media the value of spatially averaged
I decreases monotonically from 1D to 3D. The dependence
of Q/I and U/I on ϕ in 1D medium is purely due to the
ϕ dependence coming from the formulae used to convert I
to I, Q, and U (see Appendix A). In 2D and 3D media, the
ϕ dependence comes from both, the ϕ dependence of the
respective components of I , and also the above mentioned
conversion formulae. The magnitudes of Q/I and U/I decrease
in 2D and 3D geometries due to the spatial averaging process.

The wings of Q/I and U/I in 1D are insensitive to ϕ due to
the inherent axisymmetry. In 2D they become more sensitive
to ϕ values. Again they become weakly sensitive to ϕ in 3D
geometry. These differences in sensitivities of Q/I , U/I to the
azimuth angle ϕ in 2D and 3D geometries is due to the way
in which the spatial averaging is performed in these geometries
(see discussions above Equation (26)).

6.2.1. Polarization Diagrams in 1D and 2D Media

In Figure 12 we show polarization diagrams (see e.g., Stenflo
1994), which are plots of Q/I versus U/I for a given value
of frequency x, ray direction (μ, ϕ), and varying the field
parameters two out of three at a time. We take Γ = 1 and vary
θB and χB values. For the 2D case we show spatially averaged
quantities.

For x = 0, the shapes of closed curves (loops) in the
polarization diagrams are the same in both 1D and 2D cases.
When compared to the loops in 1D, the sizes of the loops in 2D
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Figure 10. Same as Figure 8 but for a 3D medium.

(A color version of this figure is available in the online journal.)

are smaller by about 1% in the magnitudes of Q/I and U/I ,
which is due to spatial averaging.

For x = 2.5, the shapes of the loops in 2D are quite different
from those for 1D. For example, the solid curve in panel (d)
is narrower than the one in panel (b) which corresponds to
θB = 30◦. On the other hand, the dash-triple-dotted curve in
panel (d) is broader than the one in panel (b), which corresponds
to θB = 120◦. The orientation of a given loop with respect to
the vertical line (Q/I = 0) is a measure of the sensitivity of
(Q/I,U/I ) to the field orientation θB . The size of a loop is a
measure of the sensitivity of (Q/I,U/I ) to the field azimuth
χB . The values of |Q/I |2D and |U/I |2D can be larger or smaller
than |Q/I |1D and |U/I |1D for x = 2.5. The sensitivity of the
line wing (x = 2.5) polarization to (θB, χB) is different in
1D and 2D geometries, when compared to the sensitivity of
line center (x = 0) polarization. This is because at x = 0 we
sample mainly the outermost layers of the semi-infinite media.
At x = 2.5 we actually sample internal inhomogeneities of
the radiation field in (Y,Z) directions in the 2D case, and only

those in the Z-direction, in the 1D case. We have noted that the
spatial distribution of Q/I,U/I at x = 0 is relatively more
homogeneous, than at x = 2.5 (see figures and discussions in
Section 6.3 for spatial distribution of Q/I and U/I ).

6.3. The Spatial Variation of Emergent
(Q/I,U/I ) in a 3D Medium

In Figure 13, we show surface plots of Q/I and U/I formed
in a 3D media. The region chosen for showing the spatial
distribution is the top surface plane (X, Y,Zmax).

Figures 13(a) and (b) demonstrate purely the effects of multi-
D geometry on the (Q/I,U/I ) profiles. In Figure 13(a), Q/I
shows a homogeneous distribution at the interiors of the top
surface (away from the boundaries) approaching a constant
value (∼ − 3.6%). Large parts of the top surface contribute
to the negative values of Q/I and only a narrow region near
the edges contribute to positive values. The magnitudes of Q/I
sharply raise near the edges. This is due to the finite boundaries
of the 3D medium. Maximum value of |Q/I | in these figures is
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Figure 11. Comparison of emergent I, Q/I , and U/I profiles formed in a magnetized 1D media with the emergent, spatially averaged I, Q/I , and U/I formed in a
magnetized 2D and 3D media. The model parameters are same as in Figure 8.

∼6%. In Figure 13(b), U/I is nearly zero at the interiors of the
top surface. Near the edges, the values of U/I sharply raise and
|U/I | takes a maximum value of ∼20%.

Figures 13(c) and (d) demonstrate the effects of magnetic
field on the (Q/I,U/I ) profiles. The magnetic field vector is
represented by B = (Γ, θB, χB) = (1◦, 30◦, 68◦). The nature of
homogeneity at the interior and sharp raise near the edges of
the 3D surface in the values of Q/I and U/I remain similar in
both the magnetic and non-magnetic cases. An important effect
of B is to significantly change the values of Q/I and U/I with
respect to their non-magnetic values. |Q/I | values are slightly
reduced at the interior and Q/I now becomes −2.3%. Near the
edges |Q/I | is significantly enhanced and takes a maximum
value of 15%. The interior values of |U/I | continue to be nearly
zero. The |U/I | is reduced at different rates near different edges.
Now the maximum value of |U/I | is 17%. We note that in 1D
geometry, for μ = 0.11, any magnetic field configuration always
causes a decrease in |Q/I | and a generation of non-zero |U/I |
with respect to the non-magnetic values.

Figures 13(e) and (f) demonstrate the effects of PRD on the
(Q/I,U/I ) profiles. For this purpose we have chosen a wing
frequency x = 5. The spatial distribution of Q/I and U/I
is highly inhomogeneous at the wing frequencies. This effect
can be easily seen by comparing Figure 13(a) which exhibits
large spatial homogeneity for x = 0, with Figure 13(e) which
exhibits large spatial inhomogeneity for x = 5. For x = 0, the
optical depth of the medium is large and therefore the radiation
field in the line core becomes homogeneous over large volumes
of the cube. The spatial inhomogeneity of the Q/I at x = 5
is actually caused by the nature of PRD function used in our
computations (which is dominated by the rII function). Due
to the frequency coherent nature of rII, the photons scattered
in the wings get decoupled from the line core radiation field.
As the optical depth of the medium in the line wings is smaller
than in the line core, the wing radiation field becomes more
inhomogeneous and more polarized. Same arguments are valid

for the inhomogeneous distribution of U/I on the top surface of
the 3D cube. This can be seen by comparing Figure 13(b) with
Figure 13(f). We recall that under the assumption of CRD, the
values of Q/I and U/I are zero in the line wings (see Figure 9
of Paper II for a comparison of emergent, spatially averaged
Q/I , U/I profiles for CRD and PRD in a multi-D medium).
The sharp increase in magnitudes of Q/I and U/I near the
edges is larger for x = 5 when compared to those for x = 0.
Maximum value of |Q/I | is now 10% and that of |U/I | is
40%.

In Figure 14, we show spatial distribution of I, Q/I , and
U/I on the top surface of two different kinds of 3D media.
Here we have chosen B = 0 which is equivalent to the choice
of a vertical magnetic field parallel to the Z-axis (because, for
this field geometry the Hanle effect goes to its non-magnetic
Rayleigh scattering limit). In view of the possible applications,
we consider a cuboid with TX = TY = 2 × 106, TZ = 20
in the left panels (a–c) and a cuboid with TX = TY = 20,
TZ = 2 × 106 in the right panels (d– f). They represent,
respectively, a sheet and a rod-like structure. For the chosen
optical thickness configurations, the RT effects are mainly
restricted to the line core (x � 3) for the ray emerging from
the top surface. We show the results for x = 3 (in the left
panels) and x = 1 (in the right panels), the frequencies for
which the magnitudes of Q/I and U/I reach their maximum
values.

In Figures 14(a) and (d), the intensities reach saturation values
in the interiors of the top surface and drop to zero at two of the
visible boundaries (where a boundary condition of zero intensity
is imposed for our chosen ray emerging at the top surface).

In Figures 14(b) and (c), we see that Q/I and U/I take values
� 1% everywhere on the top surface. The magnitude of Q/I
and U/I for this case are relatively less than those for the semi-
infinite 3D atmospheres (compare with Figure 13). This can
be understood using the following arguments. We are showing
the results for a ray with (μ, ϕ) = (0.11, 60◦) emerging from
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Figure 12. Comparison of the polarization diagrams in 1D and 2D media for two different values of frequency x. In 2D, the spatially averaged quantities are shown.
The magnetic field parameters are given by Γ = 1, five values of θB in the range 30◦–150◦ in steps of 30◦, seventeen values of χB in the range 0◦–360◦ in steps of
22.◦5. Different line types correspond to different values of θB . Heavy square symbol represents χB = 0, and as we move in the counterclockwise direction, χB takes
increasingly larger values. The ray direction is specified by (μ, ϕ) = (0.11, 60◦). The line types represent different θB , namely, (solid, dotted, dashed, dot-dashed,
dash-triple-dotted) = (30◦, 60◦, 90◦, 120◦, 150◦).

the top surface. The top surface for this figure refers to τZ = 0,
where τZ is the optical depth measured inward in the Z-direction.
Using equations given in Appendix A we can write approximate
expressions for Q and U at the top surface as

Q(μ = 0.11, ϕ = 60◦, x) ≈ −3

2
√

2
I 2

0 (μ = 0.11, ϕ = 60◦, x),

(27)

U (μ = 0.11, ϕ = 60◦, x) ≈ 3

2
I

2,x
1 (μ = 0.11, ϕ = 60◦, x)

+

√
3

2
I

2,y
1 (μ = 0.11, ϕ = 60◦, x).

(28)

I 2
0 is controlled by the element Ψ21 = 3 cos2 θ − 1 (see

Appendix D) which appears in the scattering integral for S2
0 .

The factor Ψ21 = 3 cos2 θ − 1 represents the probability of

scattering of photons incident from the direction θ . For θ = 0◦
or θ = 180◦ (vertical incidence) Ψ21 is larger in magnitude
compared to the cases θ = 90◦ or θ = 270◦ (lateral incidence).
For TZ = 20 the medium is effectively optically thin (because
εTZ � 1) in the Z-direction, and therefore photons easily escape
in this direction. Thus, there are smaller number of photons
for incidence along the vertical direction when compared to
the effectively thick case. For TZ = 2×106 or TZ = 2×109 the
medium is effectively optically thick (because εTZ � 1) in the
Z-direction and therefore leaking of photons in this direction is
reduced when compared to the case of TZ = 20. In this way,
for large values of TZ the probability of photons to be incident
in the vertical direction is large. Therefore, as TZ increases the
values of I 2

0 and hence Q/I increase.
For the chosen line of sight, Stokes U is generated mainly

by I
2,x
1 and I

2,y
1 . They are controlled by Ψ31 and Ψ41 elements

(see Appendix D) both of which depend on the factor sin 2θ .
This implies that Ψ31 and Ψ41 are zero for both vertical and
lateral incidences of photons. These elements become larger
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Figure 13. Spatial distribution of (Q/I, U/I ) on the top surface of a 3D medium.
The Q/I and U/I are plotted as a function of the grid indices of τX and τY . The
ray direction is specified by (μ, ϕ) = (0.11, 60◦). Panels (a) and (b) demonstrate
purely the multi-D effects. Panels (c) and (d) demonstrate the magnetic field
effects. Panels (e) and (f) demonstrate the PRD effects. See Section 6.3 for
details.

when the incidence is predominant in the direction of θ = 45◦ or
θ = 135◦. Using similar arguments as above we can understand
the increase in the values of U/I with increasing values of
TZ .

The spatial distribution of Q/I and U/I is inhomogeneous
in both left and right panels for the chosen core frequencies,
in contrast to the homogeneous distribution observed for semi-
infinite 3D atmospheres. The extent of inhomogenity is larger
for the left panels which correspond to smaller TZ value than for
the right panels. The spatial inhomogenity could also occur due
to different optical thicknesses along the three spatial directions
leading to different number of scatterings in the three directions
(unlike the case of Figure 13 where TX = TY = TZ). In
other words, the inhomogeneities in Q/I and U/I can also
be caused by a differential leaking of radiation in the X-, Y-, and
Z-directions.

Figure 14. Spatial distribution of (Q/I, U/I ) on the top surface of a 3D media.
The Q/I and U/I are plotted as a function of the grid indices of τX and τY . The
ray (viewing) direction is specified by (μ, ϕ) = (0.11, 60◦). Left panels represent
a sheet structure and right panels represent a rod structure when viewed along
the ±Z-direction.

7. CONCLUSIONS

This paper is dedicated to certain extensions of our previous
works (Paper I and Paper II) on polarized RT in multi-D media
with PRD.

First, we present a generalization of the Stokes vector decom-
position technique developed in Paper I to include the magnetic
fields (Hanle effect).

Second, we generalize to the magnetic 3D RT, the efficient
iterative method called the Pre-BiCG-STAB developed in Paper
II for the non-magnetic 2D RT.

Third, we use the more efficient 2D and 3D short character-
istics formal solutions, with appropriate generalizations to the
present context. With the linear formal solver used in Paper I,
practically it is difficult to compute the solutions in semi-infinite
media. It is not the case with the short characteristics former so-
lution method. Indeed, the solutions presented in this paper for
the difficult case of semi-infinite media prove this fact.
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We present several benchmark solutions computed using the
code, with all the above mentioned generalizations. The main
results of these solutions are the following.

The emergent (Q/I,U/I ) profiles in 1D media and the
emergent, spatially averaged (Q/I,U/I ) profiles in 2D and 3D
media differ significantly, both in non-magnetic and magnetic
cases. The differences are more pronounced in the wings of
the (Q/I,U/I ) profiles. The differences between the emergent,
spatially averaged (Q/I,U/I ) profiles in 2D and 3D media are
negligible in Q/I , but noticeable in U/I .

In the non-magnetic case, at line center, the spatial distribution
of Q/I and U/I is homogeneous in the interior of the top
surface, but sharply raises near the edges. This is purely a multi-
D geometric effect. The presence of a magnetic field modifies
this distribution by causing a depolarization (decrease in the
magnitude) or re-polarization (increase in the magnitude) of
Q/I and U/I . This is a natural consequence of the Hanle effect.

In the line wing frequencies, magnetic and non-magnetic spatial
distributions look the same, as Hanle effect is confined to the
line core. However, the spatial distribution in the line wing
frequency is more inhomogeneous, and the sharp raise of Q/I
and U/I near the edges is more enhanced, as compared to those
at the line center. This behavior at line wings is mainly due to
the PRD effects. These characteristics are not noticeable if the
CRD assumption is used in line formation studies.

We have developed efficient techniques to solve polarized RT
in multi-D media with PRD as the scattering mechanism. In
future, we try to apply these methods to understand the linear
polarization observed in the spatially resolved structures on the
Sun.

We thank Professor H. Frisch for useful suggestions which
helped to improve the manuscript. We thank Dr. Sampoorna for
useful discussions.

APPENDIX A

EXPANSION OF STOKES PARAMETERS INTO THE IRREDUCIBLE COMPONENTS

The Stokes parameters and the irreducible Stokes vector are related through the following expressions. They are already given in
Frisch (2007). However, we present these expressions here for an easy reference:

I (r,�, x) = I 0
0 +

1

2
√

2
(3 cos2 θ − 1)I 2

0 −
√

3 cos θ sin θ
(
I

2,x
1 cos ϕ − I

2,y
1 sin ϕ

)

+

√
3

2
(1 − cos2 θ )

(
I

2,x
2 cos 2ϕ − I

2,y
2 sin 2ϕ

)
, (A1)

Q(r,�, x) = − 3

2
√

2
(1 − cos2 θ )I 2

0 −
√

3 cos θ sin θ
(
I

2,x
1 cos ϕ − I

2,y
1 sin ϕ

)

−
√

3

2
(1 + cos2 θ )

(
I

2,x
2 cos 2ϕ − I

2,y
2 sin 2ϕ

)
, (A2)

U (r,�, x) =
√

3 sin θ
(
I

2,x
1 sin ϕ + I

2,y
1 cos ϕ

)
+

√
3 cos θ

(
I

2,x
2 sin 2ϕ + I

2,y
2 cos 2ϕ

)
. (A3)

The irreducible components in the above equations also depend on r , �, x, and B.

APPENDIX B

THE REDISTRIBUTION MATRICES IN THE IRREDUCIBLE TENSORIAL FORM

In this paper, we use the redistribution matrices defined under the approximation level III of Bommier (1997b). The expressions
listed below are already given in Bommier (1997b). We give them here for the sake of completeness. The branching ratios (see
Bommier 1997b) are given by

α = ΓR

ΓR + ΓE + ΓI

, (B1)

β(K) = ΓR

ΓR + D(K) + ΓI

, (B2)

with D(0) = 0 and D(2) = cΓE , where c is a constant, taken to be 0.379 (see Faurobert-Scholl 1992).
The Hanle ΓB coefficient (see Bommier 1997b) takes two different forms, namely,

ΓB = Γ′
K = β(K)Γ, ΓB = Γ′′ = αΓ, (B3)
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with

Γ = gJ

2πeB

2meΓR

, (B4)

where eB/2me is the Larmor frequency of the electron in the magnetic field (with e and me being the charge and mass of the electron).
Here, B is the magnetic field strength. The expressions for the redistribution matrices given in Bommier (1997b) involve a cutoff
frequency vc(a), which is given by the solution of the equation

1√
π

e−v2 = a

π

1

v2 + a2
, (B5)

and a constant z = 2
√

2 + 2 coming from the angle-averaging process.
If

zvc(a)|x ′| − (x2 + x ′2) < (z − 1)v2
c (a) and zvc(a)|x| − (x2 + x ′2) < (z − 1)v2

c (a) and

|x ′| <
√

2vc(a) and |x| <
√

2vc(a), (B6)

then domain 1:

P K
Q,III(j,�

′, B) =
∑
Q′

{
β(K)MK

QQ′ (B; Γ′
K ) − αMK

QQ′ (B; Γ′′)
}
(−1)Q

′T K
−Q′(j,�′),

=
∑
Q′

MK(1)
QQ′,III(B)

(
T K

Q′
)∗

(j,�′). (B7)

elseif

|x ′| < vc(a) or |x| < vc(a), (B8)

then domain 2:

P K
Q,III(j,�

′, B) = [β(K) − α]
∑
Q′

MK
QQ′ (B; Γ′

K )(−1)Q
′T K

−Q′(j,�′),

=
∑
Q′

MK(2)
QQ′,III(B)

(
T K

Q′
)∗

(j,�′). (B9)

else domain 3:

P K
Q,III(j,�

′, B) = [1 − α/β(K)]

{
[β(K) − α]

∑
Q′

MK
QQ′ (B; Γ′

K )(−1)Q
′T K

−Q′(j,�′) + α
∑
Q′

(−1)Q
′T K

−Q′(j,�′)
}
,

=
∑
Q′

MK(3)
QQ′,III(B)

(
T K

Q′
)∗

(j,�′). (B10)

endif. If

x(x + x ′) < 2v2
c (a) and x ′(x + x ′) < 2v2

c (a), (B11)

then domain 4:

P K
Q,II(j,�

′, B) = α
∑
Q′

MK
QQ′ (B; Γ′′)(−1)Q

′T K
−Q′ (j,�′).

=
∑
Q′

MK(4)
QQ′,II(B)

(
T K

Q′
)∗

(j,�′), (B12)

else domain 5:

P K
Q,II(j,�

′, B) = α
∑
Q′

(−1)Q
′T K

−Q′(j,�′),

=
∑
Q′

MK(5)
QQ′,II(B)

(
T K

Q′
)∗

(j,�′). (B13)

endif.
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The symbols MK(i)
QQ′,II,III(B), i = 1, 2, 3, 4, 5 have different expressions in different frequency domains. They implicitly contain

the respective branching ratios and the Hanle Γ parameter depending upon the domain.

APPENDIX C

THE REDISTRIBUTION MATRICES IN THE MATRIX FORM

We introduce the diagonal matrices
α̂ = αÊ, (C1)

with Ê the identity matrix,
β̂ = diag{β(0), β(2), β(2), β(2), β(2), β(2)}, (C2)

F̂ = diag

{
1 − α

β(0)
, 1 − α

β(2)
, 1 − α

β(2)
, 1 − α

β(2)
, 1 − α

β(2)
, 1 − α

β(2)

}
. (C3)

The real matrices M̂
(i)
II (B) and M̂

(i)
III (B) have following expressions in different domains.

In domain 1:

M̂
(1)
III (B) = {β̂M̂(B, Γ′

2) − α̂M̂(B, Γ′′)}. (C4)

In domain 2:

M̂
(2)
III (B) = {[β̂ − α̂]M̂(B, Γ′

K )}. (C5)

In domain 3:

M̂
(3)
III (B) = F̂{[β̂ − α̂]M̂(B, Γ′

2) + α̂}. (C6)

In domain 4:

M̂
(4)
II (B) = α̂M̂(B, Γ′′). (C7)

In domain 5:

M̂
(5)
II (B) = α̂. (C8)

APPENDIX D

THE SCATTERING PHASE MATRIX IN REAL FORM IN THE REDUCED BASIS

The elements of the matrix Ψ̂ are already given in Appendix A of Paper I. However, we have found that there were some
typographical errors there. We give here the elements again, correcting those typographical errors:

Ψ̂r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ16

Ψ12 Ψ22 Ψ23 Ψ24 Ψ25 Ψ26

1
2 Ψ13

1
2 Ψ23 Ψ33 Ψ34 Ψ35 Ψ36

1
2 Ψ14

1
2 Ψ24 Ψ34 Ψ44 Ψ45 Ψ46

1
2 Ψ15

1
2 Ψ25 Ψ35 Ψ45 Ψ55 Ψ56

1
2 Ψ16

1
2 Ψ26 Ψ36 Ψ46 Ψ56 Ψ66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D1)
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where the distinct matrix elements are

Ψ11 = 1; Ψ12 = 1

2
√

2
(3 cos2 θ − 1);

Ψ13 = −
√

3

2
sin 2θ cos ϕ; Ψ14 =

√
3

2
sin 2θ sin ϕ;

Ψ15 =
√

3

2
sin2 θ cos 2ϕ;

Ψ16 = −
√

3

2
sin2 θ sin 2ϕ; Ψ22 = 1

4
(9 cos4 θ − 12 cos2 θ + 5);

Ψ23 =
√

3

4
√

2
sin 2θ (1 − 3 cos 2θ ) cos ϕ;

Ψ24 = −
√

3

4
√

2
sin 2θ (1 − 3 cos 2θ ) sin ϕ;

Ψ25 =
√

3

2
√

2
sin2 θ (1 + 3 cos2 θ ) cos 2ϕ;

Ψ26 = −
√

3

2
√

2
sin2 θ (1 + 3 cos2 θ ) sin 2ϕ;

Ψ33 = 3

4
sin2 θ [(1 + 2 cos2 θ ) − (1 − 2 cos2 θ ) cos 2ϕ];

Ψ34 = 3

4
sin2 θ (1 − 2 cos2 θ ) sin 2ϕ;

Ψ35 = 3

16
sin 2θ [(3 + cos 2θ ) cos ϕ − (1 − cos 2θ ) cos 3ϕ];

Ψ36 = − 3

16
sin 2θ [(3 + cos 2θ ) sin ϕ − (1 − cos 2θ ) sin 3ϕ];

Ψ44 = 3

4
sin2 θ [(1 + 2 cos2 θ ) + (1 − 2 cos2 θ ) cos 2ϕ];

Ψ45 = 3

16
sin 2θ [(3 + cos 2θ ) sin ϕ + (1 − cos 2θ ) sin 3ϕ];

Ψ46 = 3

16
sin 2θ [(3 + cos 2θ ) cos ϕ + (1 − cos 2θ ) cos 3ϕ];

Ψ55 = 3

16
[(1 + 6 cos2 θ + sin4 θ + cos4 θ ) + (1 − 2 cos2 θ + cos4 θ + sin4 θ ) cos 4ϕ];

Ψ56 = − 3

16
[(1 − 2 cos2 θ + cos4 θ + sin4 θ ) sin 4ϕ];

Ψ66 = 3

16
[(1 + 6 cos2 θ + sin4 θ + cos4 θ ) − (1 − 2 cos2 θ + cos4 θ + sin4 θ ) cos 4ϕ]. (D2)

The elements of the matrix Ψ̂ satisfy certain symmetry properties with respect to the main diagonal. Hence the number of independent
elements are only 21.
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