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Quantum phases of ultracold bosonic atoms in a one-dimensional optical superlattice
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We analyze various quantum phases of ultracold bosonic atoms in a periodic one-dimensional optical
superlattice. Our studies have been performed using the finite-size density-matrix renormalization group method
in the framework of the Bose-Hubbard model. Calculations have been carried out for a wide range of densities
and the energy shifts due to the superlattice potential. At commensurate fillings, we find the Mott insulator and
the superfluid phases as well as Mott insulators induced by the superlattice. At a particular incommensurate
density, the system is found to be in the superfluid phase coexisting with density oscillations for a certain range
of parameters of the system.
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I. INTRODUCTION

In a seminal paper in 1998, Jaksch et al. [1] extended the
work of Fisher et al. [2] and predicted the superfluid–Mott
insulator transition in ultracold bosonic atoms in an optical
lattice. The observation of this transition in an optical lattice
marked the beginning of the experimental studies of quantum
phase transitions in ultracold atoms arising from strong
correlations [3]. It also highlighted the possibility for detailed
investigations of various kinds of strongly correlated quantum
systems in optical lattices where the different parameters of
these systems can be exquisitely controlled [4–7].

In this paper, we analyze the various quantum phases
exhibited by ultracold bosonic atoms in a periodic one-
dimensional optical superlattice using the finite-size density-
matrix renormalization group (FSDMRG) method for certain
parameters of the system. Previously, it has been shown using
the exact diagonalization, quantum Monte Carlo, and the
mean-field decoupling approximation methods that ultracold
bosonic atoms in optical superlattices exhibit different phases,
with various charge-density-wave orders apart from the usual
superfluid (SF) and Mott insulator (MI) phases [8–10]. In
the presence of a disordered and quasiperiodic potential, it
has been shown that the system exhibits, in addition to SF
and MI phases, the quasi-Bose glass and the incommensurate
charge-density-wave phases [11,12]. In our present work, we
vary the densities of the bosonic atoms from commensurate
to incommensurate values for a relatively large value of the
on-site interaction. The purpose of this investigation is to

*arya@iiap.res.in
†tapan@physics.georgetown.edu
‡rvpai@unigoa.ac.in
§das@iiap.res.in

predict quantum phases that arise due to the influence of the
superlattice in the parameter space that we have considered.

The paper is arranged in the following manner. The
remainder of this section describes the model for bosonic
atoms in the one-dimensional optical superlattice that we have
chosen for our work. In Sec. II, the FSDMRG method and
the quantities that we have calculated are briefly discussed.
The results are presented in Sec. III, and our conclusions are
summarized in Sec. IV.

An optical superlattice is formed by the superposition of
two optical lattices of different frequencies (Fig. 1). Ultracold
atoms in an optical superlattice can be described by a
modified Bose-Hubbard model where the superlattice potential
is explicitly included.

H = −t
∑

〈i,j 〉
(â†

i âj + H.c.) + U

2

∑

i

n̂i(n̂i − 1) +
∑

i

λi n̂i .

(1)

In the above equation, λi denotes the shift in the energy
levels for each site due to the superlattice potential. For
our work, we have considered an optical superlattice with
the frequency of one optical lattice being double that of the
other. Hence, the unit cell comprises two adjacent lattice
sites as depicted in Fig. 1. As a result, λi = λ; ∀ i = odd
integers, and λi = 0; ∀ i = even integers. In the first term of
Eq. (1), 〈i,j 〉 denotes a pair of nearest-neighbor sites i and j , t
denotes the hopping amplitude between them, and â

†
i (âi) is the

creation (annihilation) operator, which creates (destroys) an
atom at site i. In the second term of Eq. (1), U represents the
on-site interatomic interaction, and n̂i = â

†
i âi is the number

operator. The Hamiltonian is rescaled in units of hopping
amplitude t by setting t = 1 so that all the quantities becomes
dimensionless.

053621-11050-2947/2011/83(5)/053621(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.053621


ARYA DHAR, TAPAN MISHRA, RAMESH V. PAI, AND B. P. DAS PHYSICAL REVIEW A 83, 053621 (2011)

FIG. 1. (Color online) A superlattice [curve (c)] is formed by
the superposition of two optical lattices [curves (a) and (b)], with the
frequency of one being the double of the other. This results in an
energy shift of λ for alternate sites.

In the absence of the superlattice potential, the model given
in Eq. (1) reduces to the well-studied Bose-Hubbard model,
which exhibits a transition from the gapless, compressible
SF phase to the gapped, incompressible MI phase at integer
densities [2]. However, for noninteger densities, the system
remains in the superfluid phase.

The effect of the superlattice potential is to break the
translational symmetry of the system. This leads to a change
in the local (on site) chemical potential. In the present case, the
local chemical potential changes at alternate sites in a periodic
manner. The SF-MI transition has been predicted for such a
system at integer fillings [10]. Apart from the SF phase, MI
phases with various fillings at integer and half-integer densities
have been predicted, depending on the relative values of the
different parameters of the system [10,11]. The MI phase is
characterized by a fixed number of atoms in a particular site
or, more specifically, in a unit cell, and it occurs due to the
strong on-site interaction between the atoms. In the two-period
superlattice that we have considered, it is possible to have a
new class of insulators in which alternate lattice sites occupy
a fixed number of atoms. However unlike the MI phase, which
is due to strong interatomic interactions, these insulators arise
because of the superlattice potential. We therefore refer to these
insulators as superlattice-induced Mott insulators (SLMI). If
odd sites are occupied by one atom and there are none in the
even ones, then we call it the SLMI-I phase; if odd sites are
occupied by two atoms with none in the even sites, then it is
called the SLMI-II phase.

II. METHOD OF CALCULATION

To obtain the ground-state wave function and the energy
eigenvalues corresponding to model (1) for a system of N

bosons in a lattice of length L, with on-site interactions
and tunneling as well as the energy shift in alternate lattice
sites due to the superlattice potential, we use the FSDMRG
method with open boundary conditions [13,14]. This method
is best suited for one-dimensional problems and has been
successfully used to study the Bose-Hubbard model [14–18].
In our computations, we have considered four bosonic states
per lattice site, and the weights of the states neglected in the
density matrix formed from the left or the right blocks are

less than 10−6 [16]. In order to improve the convergence, at
the end of each DMRG step, we use the finite-size sweeping
procedure given in [13,16]. To obtain the ground-state wave
function |�LN 〉 and the corresponding energy EL(N ) for
densities ranging from 0.24 to 1.25, we start with four sites
and four atoms in the FSDMRG and increase both of them
by two at each iteration until we have 24 atoms. Then we
do not increase the number of atoms but increase the number
of lattice sites to 100 by adding two sites in each DMRG
iteration. After each step of the iteration, sweeping is done
from left to right and also right to left across the entire lattice.
This process is continued until the energy converges. The
superlattice potential breaks the symmetry between the system
and the environment. Therefore, it is necessary to perform
the calculations on the system and the environment blocks
separately at each DMRG iteration. Once the length L = 100 is
reached, we keep it fixed and then increase the number of atoms
by adding one at a time and perform a complete DMRG sweep
for the convergence of the energy. This iterative procedure is
continued until the number of bosons is equal to 125. By this
process we obtain the wave functions and the corresponding
energies of model (1) for densities ranging from 0.24 to 1.25.
We have carried out the calculations for a range of values of λ

from 0 to 15, with t and U fixed at 1.0 and 10.0, respectively.
Using the ground-state wave function |�LN 〉 and the

corresponding energy EL(N ), the following quantities are
calculated to identify the various phases exhibited by the
system. First, the chemical potential of a system for the density
ρ = N/L is defined as follows:

µ = δEL(N )

δN
. (2)

The gapped and gapless phases are distinguished from the
behavior of ρ as a function of µ [19]. To get information about
the on-site density distribution in various phases exhibited by
the system, we calculate the on-site density 〈ni〉, which is
defined as

〈ni〉 = 〈�LN |n̂i |�LN 〉. (3)

The momentum distribution n(k) and the structure function
S(k) are defined as the Fourier transform of the single-particle
density matrix 〈â†

pâq〉 = 〈�LN |â†
pâq |�LN 〉 and the density-

density correlation function 〈n̂pn̂q〉 = 〈�LN |n̂pn̂q |�LN 〉, re-
spectively:

n(k) = 1

L

∑

p,q

eik(p−q)〈â†
pâq〉, (4)

S(k) = 1

L

∑

p,q

eik(p−q)〈n̂pn̂q〉. (5)

The momentum distribution, n(k) will indicate the presence
of a SF phase in the system. The structure function will give
information about the presence of any density-wave order in
the system and also the effect of superlattice potential on the
Brillouin zone boundaries.

To get an idea of the various gapped and gapless phases
in the system, we plot the density ρ versus the average
chemical potential µ. However to draw the phase diagram,
we need accurate values of the chemical potential, and hence,
we calculate the chemical potential (both µ+ and µ−) in the
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thermodynamic limit L → ∞. µ+
L is defined as the difference

in the energy of the system of length L if one atom is added to
the system, whereas µ−

L is the energy cost when one atom is
removed from the system, i.e., µ+

L = EL(N + 1) − EL(N ) and
µ−

L = EL(N ) − EL(N − 1). We plot these chemical potential
values versus the reciprocal of the length (1/L) and then
extrapolate to length tending to infinity (1/L → 0) to get the
values of the chemical potential in the thermodynamic limit.
We plot these chemical potential values for both density equal
to 0.5 and 1.0 for different superlattice potentials λ to get the
phase diagram.

III. RESULTS AND DISCUSSION

Before we discuss the details of our results, we first
summarize the main features of the phase diagram. It is well
established that bosons in a normal optical lattice, described
by the Bose-Hubbard model [2], exhibit the superfluid to Mott
insulator quantum phase transition at some critical value of U

for integer densities. (For example, for ρ = 1 this transition
occurs at the critical on-site interaction UC ∼ 3.4 [15,16] in
one dimension). For noninteger densities, only the superfluid
phase exists in the ground state. The Mott insulator phase
has a finite gap and is incompressible. On the other hand, the
superfluid phase is gapless and compressible. When we include
the superlattice potential, the energy levels at each site are
shifted by λi , and this leads to the additional incompressible,
gapped SLMI phase. In model (1), the SLMI phase occurs at
commensurate densities, i.e., when ρ is equal to an integer or
a half integer, because the superlattice that we have considered
in our calculations has a periodicity of two lattice sites. For
ρ = 1/2, we observe a SF to SLMI-I phase transition as the
strength of the superlattice potential is increased. However, for
ρ = 1 we get the MI and the SLMI-II phases along with a SF
phase sandwiched between them. Such a transition at ρ = 1.0
had already been predicted in an optical superlattice [8] using
a quantum Monte Carlo approach. However, this SF phase at
ρ = 1 is not the usual SF phase that arises due to a large value
of t/U . In fact, in our present case, the ratio is very small
(t/U ∼ 0.1). This SF phase is a result of the competition
between the superlattice potential λ and the on-site repulsive
interaction potential U . Moreover, because of the superlattice
potential, this SF phase will have finite density modulations.

We first discuss the results for commensurate densities and
then for incommensurate densities. In Fig. 2 we plot ρ versus
µ, defined by Eq. (2), for a fixed value of U = 10 but with λ

varying from 0 to 15. The gapped phases show up in this type
of plot as plateaus with the gap GL equal to the width of the
plateau, i.e., GL = µ+

L − µ−
L , where µ+

L and µ−
L are the values

of the chemical potential at the upper and lower knees of the
plateau, respectively.

In Fig. 2 we see for λ = 0 that there exists only one plateau
at ρ = 1.0, corresponding to the MI phase, which is expected
since the value of U is very large compared to t [16]. This
MI phase survives for small values of λ. As the strength of λ

increases, two interesting features appear in the plots: (i) a new
plateau appears at ρ = 1/2, and (ii) the width of the plateau
at ρ = 1 decreases. This can be clearly seen in the plots of ρ

versus µ for various λ values, as shown in Fig. 3. For λ = 0.2,
the gapped phase exists only at ρ = 1 (Fig. 3) and is gapless

FIG. 2. (Color online) Density ρ plotted against the chemical
potential for various values of λ at a fixed U = 10 and t = 1.

at ρ = 1/2. As λ is increased beyond 0.8, two gapped phases
appear, at ρ = 1/2 and ρ = 1. The gapped phase at ρ = 1/2
occurs due to the transition from the SF to the SLMI-I phase
with one atom per unit cell, occupying alternate sites.

For λ values between 0.8 and 9.6, the system exhibits
two gapped regions, one at ρ = 1/2 and the other at ρ = 1.
The gap at ρ = 1/2 increases steadily as λ increases and
remains finite. On the other hand, for values of λ > 0.0, the
gap at ρ = 1 decreases continuously and ultimately vanishes
at around λ = 9.6. This kind of behavior for ρ = 1 is due
to the competition between the superlattice potential λ and
on-site repulsive interaction U . The on-site interaction U tries
to impose the MI phase in the system, whereas λ tends to
introduce the SLMI-II phase. As long as U is greater than λ,
the MI phase is energetically favorable for ρ = 1 resulting in
a finite gap. As λ becomes comparable to the value of U (in
this calculation we have fixed U = 10), neither the MI phase,
with one boson at every site, nor the SLMI-II phase, with
two bosons at every alternate site, is energetically favorable.
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FIG. 3. The chemical potential µ plotted against density ρ for
various values of λ, with U = 10.
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FIG. 4. On-site number density plotted against lattice site index
at density ρ = 0.5.

This leads to the vanishing of the energy gap, and the system
becomes a SF.

When λ is larger than the value of U , the superlattice
potential dominates over the on-site interaction. As a result, the
gap at ρ = 1 opens up again, which can be seen clearly from
Figs. 2 and 3. This gap is due to the system being in the SLMI-II
phase. The regions other than commensurate densities, i.e.,
ρ = 1/2 and 1, remain in the gapless SF phase for all values
of λ.

To confirm the above findings concerning the existence
of the MI and the SLMI phases, we plot the on-site average
number density 〈n̂i〉 with respect to the site index i as shown
in Figs. 4 and 5 for ρ = 1/2 and 1, respectively. For values
of λ less than 0.8, there are no oscillations at density equal
to 0.5. However, as the value of λ is increased, the density
oscillations begin to set in the system, and at higher values
of λ, a clear {101010 · · ·} occupancy configuration can be
seen, confirming the presence of a SLMI-I phase (Fig. 4).
At ρ = 1, for low values of λ, Fig. 5 shows a constant
number density equal to 1.0, implying the MI phase. As λ is
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FIG. 5. On-site number density plotted against lattice site index
at density ρ = 1.0.
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FIG. 6. (Color online) Momentum distribution n(k = 0) plotted
against various values of λ for densities ρ = 0.5,0.7, and 1.0.

increased but is less than 9.6, the superlattice potential induces
some oscillations, but the system is still in the MI phase.
Even at λ = 10.0, the oscillations vary from 1.5 (maximum)
to 0.5 (minimum), significantly different from the SLMI-II
configuration of {202020 · · ·}. Once λ becomes much larger
than U , the SLMI-II configuration is observed. For example,
at values of λ = 14, the number occupancy in the sites looks
very similar to the SLMI-II configuration, as can be seen from
Fig. 5.

The momentum distribution is then calculated using Eq. (4).
The value of n(k) at k = 0 is plotted against λ for three different
values of ρ (0.5, 0.7, and 1.0). A finite value of n(k) at k = 0
is a signature of the SF phase in the system. These plots are
compared with the chemical potential versus ρ plots (Fig. 2)
to confirm the gapped and gapless phases. In Fig. 6, for ρ =
0.5, n(k = 0) has a very high value when λ is smaller than
0.8, which signifies the SF phase. As λ increases beyond 0.8,
n(k = 0) falls off to values very close to zero, implying certain
phase transition from the SF phase to an insulating phase. This
insulating phase is the SLMI-I, as confirmed from the 〈n̂i〉
plots (Fig. 4). For ρ = 1, n(k = 0) starts with values very
close to zero (Fig. 6). Due to the very high value of U , the
system resides in the MI state. As λ becomes comparable to U ,
n(k = 0) attains a finite peak value, thus implying the transition
from the MI to the SF phase. This result is in agreement with
the ones obtained from the chemical potential plots (Figs. 2
and 3). As λ is increased further, n(k = 0) again drops to values
very close to zero, implying another phase transition, but this
time the transition is from SF to SLMI-II. Hence, it can be said
that this SF is not the usual SF that comes due to t/U ratio but
is a consequence of the competition between the parameters
U and λ. At incommensurate densities, for example, ρ = 0.7
(Fig. 6), it is observed that n(k = 0) stays finite for all values
of λ, without any signs of it vanishing, showing the presence
of a SF phase throughout the values of λ considered in this
work.

Figures 7–9 give the structure function as a function of k for
various values of density (ρ = 0.5, 1.0, and 0.7, respectively).
In the normal optical lattice, the periodicity is one lattice site.
So for a MI phase, the structure function peaks at k = ±2π
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FIG. 7. Structure function S(k) vs the momentum k for density
of 0.5.

[20]. However, in an optical superlattice, the periodicity is
doubled. As a result, the Brillouin zone is halved. Hence, in the
MI phase for an optical superlattice, we expect to observe the
peaks of S(k) at k = ±π . It can also be observed that for ρ = 1,
the peaks do not appear for lower values of λ (Fig. 8). The onset
of the peaks actually signify the effects of the superlattice
potential λ in the system [8], thus changing the Brillouin zone
boundaries. From Fig. 7, we see two well-defined peaks at
k = ±π for ρ = 0.5 at a very large value of λ, implying the
presence of a SLMI-I phase. At ρ = 0.7, we see two peaks at
k = ±π for λ more than ≈2.0. This is a consequence of some
density oscillations induced in the system by the superlattice
potential.

The value of the structure function at k = π is plotted in
Fig. 10 for some fixed densities against λ to see how the effect
of superlattice potential evolves in the system. For ρ = 0.5,
S(π ) starts from very close to zero, increases steadily, and then
becomes almost constant. For ρ = 1, initially, there is no peak
in the S(k) plot at k = π . As λ is increased, even in the MI
phase, we see a finite value of the structure function at k = π ,
indicating the onset of the effect of the superlattice potential.
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FIG. 8. Structure function S(k) vs the momentum k for density
of 1.0 for different values of λ.
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FIG. 9. Structure function S(k) vs the momentum k for density
of 0.7 for different values of λ.

Once λ overcomes U , the value of S(π ) increases rapidly,
showing the onset of the SLMI-II phase. It is also noted that, at
λ ≈ 10, S(k = π ) is finite, showing some density modulations
in the system. As seen earlier, at the above value of λ, the
system undergoes a transition from the MI to the SF phase.
Thus, the SF at ρ = 1.0 coexists with a finite density oscillation
in the system. For ρ = 0.7, S(π ) is very close to zero for low
values of λ and then increases as λ becomes greater than
some value and then goes on increasing, implying the setting
in of some density modulations in the system. Hence, finite
peaks of S(k) at k = π (Fig. 9) for ρ = 0.7 imply the effect
of superlattice potential in the system bringing about density
modulation, although the system is in a superfluid phase, as
indicated in the n(k = 0) plot (Fig. 6) for all values of λ. So we
see a coexistence of SF and some sort of density oscillations
in the system at the incommensurate density of 0.7.

The phase diagram in the µ-λ plane for U = 10 is presented
in Fig. 11. The phase diagram consists of SF, MI, SLMI-I, and
SLMI-II phases, depending on the density and the superlattice
potential.
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FIG. 10. (Color online) S(k = π ) vs λ for three different density
values, ρ = 0.5,0.7, and 1.0.
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FIG. 11. (Color online) Phase diagram for the system of an
optical superlattice.

IV. CONCLUSION

We have analyzed the various phases exhibited by a system
of bosons in an optical superlattice with a unit cell consisting

of two lattice sites using the FSDMRG method for a large
value of the on-site interaction U . We found that, at density
ρ = 1/2, the system is initially in the gapless superfluid phase.
But as the value of the superlattice potential λ is increased,
a finite gap arises, which corresponds to the SLMI-I phase
corresponding to the configuration [1 0 1 0· · ·]. At integer
density, ρ = 1, the system is initially in the gapped MI phase
because of the large value of U . But as the superlattice
potential value is increased, the gap keeps on decreasing
and ultimately shrinks to zero when λ ≈ U . This gapless SF
phase coexists with a finite S(k = π ) in the system, implying
density oscillations. As the value of λ is further increased,
the gap reopens, corresponding to the SLMI-II phase, with
a configuration [2 0 2 0· · ·]. At the incommensurate density,
ρ = 0.7, we find the simultaneous existence of the SF phase
along with density oscillations in the system.
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