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Abstract: We present the details of predicting atmospheric turbulence by mining Zernike moment data obtained from simulations as 
well as experiments. Temporally correlated optical wave-fronts were simulated such that they followed Kolmogorov phase statistics. 
The wave-fronts reconstructed either by modal or zonal methods can be represented in terms of Zernike moments. The servo lag error 
in adaptive optics is minimized by predicting Zernike moments in the near future by using the data from the immediate past. It is shown 
statistically that the prediction accuracy depends on the number of past phase screens used for prediction and servo lag time scales. The 
algorithm is optimized in terms of these parameters for real time and efficient operation of the adaptive optics system. On an average, 
we report more than 3% improvement in the wave-front compensation after prediction. This analysis helps in optimizing the design 
parameters for sensing and correction in closed loop adaptive optics systems. 
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1. Introduction  

Adaptive Optics (AO) is an imaging technology that 

improves the vision quality by adaptively correcting 

the distortions in the optical path of the source [1]. AO 

has shown significant improvement in the image 

quality with large telescopes like the Keck and Gemini 

telescopes [2, 3]. An AO system comprises of three 

major components: 

• Wave-front sensing instrument that determines 

the shape of the incoming wave-front, 

• Wave-front corrector, generally a deformable 

mirror that compensates the optical distortions by 

imposing a conjugate wavefront over the distorted one, 

• Control algorithm calculates the command values 

to be addressed to the deformable mirror from sensor 

measurements. 
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The residual wave-front error in AO systems 

includes the wave-front reconstructor errors, servo lag 

errors, and errors due to CCD noise. The main reason 

for servo lag errors in adaptive optics is the low light 

level of astronomical objects which forces the 

astronomers to have large exposure time scales. Hence 

the sensed wave-front is a cumulative effect over the 

exposure timescales and in addition gets corrected only 

after the exposure time. In other words, the wave-front 

that is sensed is not corrected immediately, but after a 

delay equal to the servo lag error. Within this time the 

wavefront undergoes changes due to turbulence 

dynamics. 

It is possible to minimize the errors in wavefront 

compensation due to servo lag errors by predicting the 

structure of atmospherically distorted wavefronts that 

are arriving at a future instance [4]. Predictive optimal 

estimators have been developed earlier to incorporate 

the spatio-temporal statistics of atmospheric turbulence 



Extrapolating Zernike moments to predict future optical wavefronts in adaptive optics using real time 
data mining 

  

70 

[5]. Linear prediction algorithms have been 

implemented in the case of zonal as well as modal 

wave-front reconstruction algorithms [6, 7]. Artificial 

Neural networks proved to be an effective tool in the 

prediction of atmospheric turbulence based on frozen 

in turbulence approximation [8-10]. Some algorithms 

were also tested experimentally [11]. The prediction of 

high and low spatial frequency aberrations was made 

possible by using multigrid methods [12]. Fourier 

prediction methods were adopted for faster 

implementation [13]. The frozen in turbulence 

approximation was validated by long duration temporal 

wave-front correlation experiments [14, 15]. The 

algorithms have been optimized for arbitrary closed 

loop delays [16].  

Data mining is a knowledge recovery technology 

from large and real-time data sets [17]. Since the 

temporally evolving turbulence is a time series data, 

prediction of the future can be made by applying 

suitable mining on the data parameters. Modally as 

well as zonally reconstructed wave-fronts can be 

represented in terms of the Zernike polynomial basis 

set by computing the complex Zernike moments. 

Zernike moments are computed for all the wave-fronts 

in the time series as suggested by Hosny [18]. Using 

the Zernike moments of the immediate past, Zernike 

moments of the future are predicted by extrapolating 

through regression analysis. The real and imaginary 

parts of the image moments are predicted 

independently. The dynamic behavior of turbulence 

has a direct effect on the servo lag. It is also important 

to optimize the number of data points required to 

predict the future.   

The servo lag errors in adaptive optics may arise 

either due to the bandwidth constraints set by 

individual components of the AO system or some other 

external factors like the finite exposure time. This is 

even more critical in astronomical case where incident 

light intensity is low. With the development of large 

telescopes AO and Multi Conjugate AO (MCAO) 

technologies also saw a dramatic leap [19]. For 

sensing, either a natural guide star or an artificially 

placed laser guide star is a requirement. Even at good 

sites the minimum exposure time required is ~5 ms and 

1 ms for a natural and laser guide stars respectively. 

The instrumental time lag between sensing and 

correction, which includes the read out speed of the 

CCD; control algorithm delay; and delays in 

addressing the correcting element by the control unit, 

can be of the order of 1ms [9]. Hence, effectively there 

is a delay in compensation of the wave-front by 2-6 ms. 

This timescale is within the decorrelation time which is 

~17 ms for sites like Hanle (India) [20]. In other words, 

the wave-fronts recorded within 17 ms will be well 

correlated making the future prediction of turbulent 

wave-fronts a possibility. 

The second section details the theory behind the 

prediction process using Zernike moments of 

temporally evolving wave-fronts using data mining. 

The third section gives the computational results of the 

improvement in the performance of the AO system 

after the prediction process. In the last section, the 

conclusions are presented. 

2. Data mining using Zernike moments 

The projections of the three dimensional wave-fronts 

form two dimensional images called phase screens. 

Simulation of temporally evolving phase screens that 

satisfy Kolmogorov spatial statistics is described in the 

first subsection [21]. This subsection also contains a 

description of the experimental procedure to simulate 

the effect of a linearly evolving turbulence. The 

simulated phase screens are arranged in a time series 

and are represented in terms of Zernike polynomials. 

Zernike polynomials are a complete set of 

orthogonal polynomials that can be defined over a unit 

disk. Any two dimensional image function can be 

reconstructed using Zernike polynomials by 

calculating suitable coefficients that weigh each of the 

Zernike polynomials called Zernike moments of the 

image function. Each of the phase screens p(x, y) can 
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hence be represented in terms of Zernike polynomials, 

Z(x,y) 

å=
i

ii yxZayxp ),(),(            (1) 

Here, ai’s represent Zernike moments. The details of 

the computation of Zernike moments of two 

dimensional image functions as suggested by Hosny 

[18] are sketched in the second subsection.  

To extract useful information out of the calculated 

Zernike moments it is important to stack them together 

in the order of the time evolution of the phase screens. 

The third subsection details the formation of a large 

data matrix from the calculated Zernike moments.  

Piecewise linear representation is the most generally 

used approximation of a time series data, which 

involves two major steps, segmentation and linear 

fitting. The fourth subsection describes the 

segmentation methodology and fitting algorithms used. 

The last subsection gives the steps to be followed to 

predict the future phase screens from the Zernike 

moment data. 

 

2a. Simulation of temporally evolving phase 
screens 

We implemented two methods to simulate 

temporally evolving phase screens. The first method is 

based on mathematical modeling of atmospheric 

turbulence. The second method is experimental where 

an evolving spatial turbulence effect was simulated by 

placing a moving aberrator in front of a wave-front 

sensor. 

Noll established a relationship between the 

correlation matrix of Zernike moments and the spatial 

statistics of atmospheric turbulence following 

Kolmogorov statistics [22]. This Zernike 

representation of the Kolmogorov spectrum was used 

to compute Zernike moments, ai’s such that the spatial 

statistics of turbulence are satisfied [23]. To simulate 

temporally evolving atmospheric turbulence, a simple 

wind model suggested earlier was put to use [24]. This 

simple wind model assumes that the velocity 

contribution comes from wind translation and local 

convection. The simulated phase screens are arranged 

in a time series fashion {A1, A2, ..., AN}, where N is the 

number of simulated phase screens. The correlation of 

the jth phase screen with A1 reduces with increasing j, 

as shown in Fig. 1. Each point on the time series 

represents two dimensional image functions. Many 

data sets were formed by simulating many such time 

series.  

Fig. 1 The correlation drops with increasing time-simulated 

phase screens 

The experimental setup to obtain evolving 

turbulence is shown in Fig. 2. Laser light is spatially 

filtered using the five axis Newport spatial filter, S.F 

and then collimated using a 20 cm focal length lens L1. 

A compact disk case (CDC) was used as an aberrator in 

the path of the collimated beam that falls on the Spatial 

Light Modulator (SLM) based Shack Hartmann Sensor 

(SHS). A SHS is a wave-front sensing device that 

closely reconstructs the aberration introduced in the 

optical path from the measurement of the local 

gradients. The CDC closely follows Kolmogorov 

spatial statistics. The focal plane of the lenslet array 

was reimaged on the CCD using a lens, L2 of focal 

length 15cm.  

Images of the focal plane of the SHS were captured 

by shifting the aberrator in steps of 10µm along the 

plane perpendicular to the propagation of the light. The 

phase screens were reconstructed from these images by 

estimating phase at discrete points from the average 

local slope measurements of SHS [25]. 
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Fig. 2 Experimental setup to obtain evolving turbulence 

 

The reconstructed phase screens were then arranged 

in a time series {A1, A2, ..., AN}. The correlation 

between the first phase screen with the later screens 

drops as shown in Fig 3. 

Fig. 3 Drop of correlation coefficient in the case of 

experimentally obtained data 

For simplicity N was fixed to be 350 in both cases. A 

sample set of evolving phase screens are shown in Fig. 

4. In both the cases, correlation drops below 25% after 

25 phase screens. Since any two randomly generated 

phase screens are correlated by 25%, we can safely 

assume that if the correlation drops below this value, 

the phase screens are decorrelated. Since 25th phase 

screen corresponds to the decorrelation time (17 ms), a 

time lag of 2-6 ms corresponds to the phase screens 

numbered 3-9. The phase screen that needs to be 

predicted hence is a direct function of the servo lag 

error and the decorrelation time.  

 
2b. Computation of Zernike moments 
Zernike moments are computed as suggested by Hosny 

[18]. Since Zernike moments are mathematically 

complex, many recursive relations were developed by 

many authors for easy computation of Zernike 

moments [26]. 

 

Fig. 4 Evolving Phase Screens 

These recursive methods lead to approximation 

errors. In the method adopted by Hosny, the 

approximation errors are removed by calculation of 

exact Zernike moments. The geometric errors are 

minimized by applying a proper image mapping. The 

computations are made faster by storing vectors and 

matrices that are constants and are repeatedly used. 

 
Fig. 5 (a) Sample Phase Screen (b) Phase Screen 

Reconstructed using Zernike moments 

A sample phase screen and the reconstructed phase 

screen using 40 orders of Zernike moments are shown 

in Fig. 5. The real and complex Zernike moments vary 

as shown in Fig. 6. The y-axis in the plot represents the 

Zernike moment value. 

The advantage of extrapolating the Zernike moments 

for prediction is that Zernike polynomials represent the 

primary optical aberrations closely.  

Zernike polynomials can be alternatively 

represented in terms of their radial and azimuthal 

indices [n, m]. Zernike polynomial [1, 1] represents tilt 

in one direction and [2, 2] represents astigmatism. The 

evolution of the real and complex parts of Zernike 
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moments corresponding to [1, 1] and [2, 2] is depicted 

in Fig. 7. 

 

Fig. 6 Real and Complex parts of Zernike moments of the 

phase screen shown in Fig. 5 (a) 

It can be observed that the moments are slowly 

evolving making the possibility of mining more 

efficient. The evolution of Zernike moments will be 

smoother and slow only if the atmospheric turbulence 

is slowly evolving. 

 
Fig. 7 Evolution of the Zernike moments (1,1) and (2,2) 

 
2c. Formation of Data Matrices 

For the phase screen Aj, the Zernike moments are 

given by aj
i where, index ‘i’ represents the moment 

number and index ‘j’ represents the phase screen 

number in the time series. aj
i can be written as a sum of 

real (rj
i) and imaginary quantity(cj

i), aj
i = rj

i + cj
i. Since 

‘r’ and ‘c’ are double indexed quantities, they can be 

represented using a single matrix of size N×M, where 

N number of phase screens are represented using M 

number of Zernike moments. In other words, the 

Zernike moments of the first phase screen are arranged 

in the first row of the data matrix as illustrated in Fig. 8. 

 
Fig. 8 Data matrix formation from the moment data 

The real and imaginary parts of the Zernike moments 

of the time series are written and stored in two matrices 

R, C. 

 
2d. Segmentation 

This linear approximation supports fast, nearly exact 

and concurrent mining. The problem is hence to 

segment the time series data into smaller pieces and 

then represent each of the segments by straight lines. 

There exist many segmentation algorithms in literature 

like top-down, bottom-up, sliding windows and other 

hybrid techniques. In this paper we implemented the 

simplest segmentation algorithm where only the last 

segment is selected with a known segment size or 

segment length. This segment was then used for 

prediction. The segment size is a constant in this case 

throughout the data linearization procedure, which 

need not be the case for above mentioned segmentation 

algorithms. 

The segmentation parameters are the segment size 

and the fitting algorithm. The optimum segment size 

depends on the data distribution. The fitting algorithm 

can be either linear interpolation or linear regression. 

Another parameter external to mining and internal to 

adaptive optics system is the servo lag delay, which 

decides the phase screen that is to be predicted. 

 
2c. Mining Zernike moments 
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In the process of predicting the future wave-fronts, it 

should be possible to predict the Zernike moments of 

the future phase screens by extrapolating the data of the 

Zernike moments of the phase screens in the immediate 

past. The mining and prediction of Zernike moments 

involves the following steps: 

• As and when the wave-front is sensed, it must be 

decomposed into its corresponding Zernike moments. 

• The computed Zernike moments should be placed 

in the last row of the data matrix showed in Fig. 8. 

• Form a subset matrix from the large data matrix 

by selecting a number of future phase screens equal to 

the optimum segment size. 

• Extrapolate each of the columns to predict future 

Zernike moments corresponding to a phase screen that 

is ahead by a time equal to the servo lag timescales. 

• Compute the future phase screen by using the 

extrapolated Zernike moment values. 

The correlation of the actual (future) wave-front 

with the predicted one was then calculated and 

compared with the correlation between the actual 

(future) wave-front with the wave-front behind in time 

equal to the servo lag. 

 

3. Computational Results 
 

Monte Carlo simulations were performed to test the 

prediction algorithm. Small portions of the data matrix 

are read and prediction is performed. For example, if 

the segment size is fixed at 5, then we pick up the first 5 

rows and M columns of the matrices R and C to form 

sub matrices R1 and C1. If the servo lag timescale 

corresponds to a phase screen number of 4, then R1 and 

C1 are extrapolated to compute the new Zernike 

moments at that instance. The future phase screen is 

then calculated by reconstruction using Zernike 

moments. The phase screen predicted in this fashion is 

then compared with actual (future) phase screen 

corresponding to the 9th row of the data matrix. This 

process is repeated by shifting the position of the first 

phase screen in the segment formed from the data 

matrix.  

Two important parameters were optimized in this 

study, the segment size and the servo time lag. 

Studying the servo time lag will help us to optimize the 

exposure time, which is an important part in the servo 

lag error. 

 

3a. Segment Size 
The segment size was varied from 2 to 10. The phase 

screen number to be predicted was fixed at 5 

corresponding to a time delay of less than 3ms. The 

effect of varying segment size for different data sets is 

plotted in Fig. 9. 

From the graph, the optimum segment size is 3. As 

the segment size is increased, the average improvement 

in the correlation after prediction reduces. This is 

consistently true for many data sets including the 

experimentally obtained data. 

Fig. 9 Effect of changing segment size on improvement in 

prediction 

 

3a. Prediction at different time lags 
The phase screen number to be predicted was 

changed from 1 to 10 which correspond to a time lag 

from 0.7-7 ms. The effect on the prediction accuracy 

with changing time lag is shown in Fig. 10. The 

percentage improvement in the extent of correlation 

after prediction is above 85% for time lags less than 2.5 

ms. Improvement goes below 70% for phase screen 

number greater than 9 (6.1 ms). 
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Fig. 10 Percentage improvement at different time lags 

 

4. Conclusions and Discussion 
 

An attempt has been made to predict Zernike 

moments corresponding to the incoming wave-fronts 

distorted due to atmospheric turbulence using data 

mining. The proposed modal estimation algorithm was 

implemented on the experimental and simulated data 

sets. It is shown with simulations as well as experiment 

that the errors induced by the servo lag delays in 

adaptive optics imaging systems can be minimized by 

using this technique. Nearly 3% improvement is 

observed on an average. The simulation parameters, 

the segment size and the servo lag timescales were 

optimized. Segmentation size of 3 was found to be 

optimum. Large segment size leads to poor prediction. 

Prediction becomes difficult and inaccurate if the servo 

lag becomes greater than 6 ms. Higher order 

polynomial interpolation led to worse prediction. 
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