KODAIKÁNAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1903

CONTENTS.
I.-Kodaikánal Observatory. Page

II.-Madras Observatory.

1. Staff 17
2. Time service 17
3. Meteorological observations 17
4. Buildings 18
5. Instruments 18

Appendix I.-Seismometer records, Kodaikánal 19
II. Extreme
kanal
and mean monthly
and annual meteorological results, Kodai-
III.-Mean hourly wind velocity, Kodaikánal 24
IV.-Meau hourly bright sunshine, Kodaikánal 25
V.-Visibility of Nilgiris for clearness of atmosphere 26
VI.-Extreme and mean monthly and annual meteorological results, Periýa-
VII.—Abstract of the mean meteorological condition of Madras 28
VIII.-Number of hours of wind from each point, Madras 29
IX.-Number of miles of wind from each point, Madras 30
X.-Number of inches of rain from each point, Madras 31
XI.-Wind, cloud, bright sunshine and evaporation, Madras 32
XII.-Extreme and mean monthly and annual meteorological results, Madras. . 33
XIII.-A bnormals from the monthly means, Madras 34

I -ANNUAL REPORT OF THE KODAIKÁNAL OBSERVATORY FOK THE YEAR 1903.

1. Staff-The personal establishment of the observatory was as follows:-

Title.		Name.
Acting Director	-• .-	Charles P. Butler, A.r.c.so. (London) ; F.r.p.n.
First Assistant	. . .	'K. V. Siverama Aiyar, m.a.
Secund	.- \quad.	S. Sitarama Aivar, b.A.
Third	G, Nagaraja Alyar.
Acting Fourth Assistant	. . .	S. Balasundarum Aiyar.
Writer	- \cdot -	I. N. Krishnaswami Aiyar.
Magnetic Obsorver	. ${ }^{\text {. }}$	C. Theodore, b.a.

The fourth assistant, Mr. M. G. Subramanya Aiyar, left the observatory on March 3 in order to take up the first assistantship at the Madras Observatory. His place has been temporarily filled by Mr. S. Balasundarum Aiyar. The writer was transferred permanently to the Solar Physies Observatory on October 9. For the continuance of the meteorological observations at Periyakulam a new observer has been engaged from Madras, Mr. K. Padmanabha Mudaliar.

Mr. Theodore, the Magnetic Observer, was granted three months' sick leare on April 3, his place being taken temporarily by Mr. E. M. Meyer from the Survey of India. On Mr. Theodore's return on July 3, Mr. Meyer returned to Dehra Dun. On November 23, Mr. Theodore resigned owing to illness, and a new observer, Mr. H. N. Gupta, m.A., was appointed after a short experience with the magnetic installation atDehra Dun. Mr. Gupta's health, however, appears to be so precarious that another change will probably be necessary.

A first-class book-binder from the Government Press, Madras, is attached to the establishment.

The subordinate staff consists of a mechanic, a book-binder's boy,' five peons and' two lasears.
2. Buildings and grounds-(a) Main observatory.-Nothing furtherhas been. done to mitigate the dampness inside the various rooms, but estinates have been sent in by the Public Works Department for providing an extra porch, and a verandah on the side most exposed to the south-west monsoon rain.
(b) New observatory for Spectroheliograph.--A new building is being erecteđ for the accommodation of the instruments for obtaining photographs of the sun in monochromatic light by means of a spectroheliograph on the Hale plan. The building is in two parts, the northern one to house 18 inch siderostat and object lens for enlarged images has a sliding roof moving back northwards. The south building has a fixed roof with pillars to carry the spectroheliograph and a duplicate pillar for obtaining a direct image on slit.
(c) Phatoheliograph.-This is a corrugated iron structure brought from Madras. The sliding semi-circular roof is very heavy and moreover the level of the slide is below the telescope so that great care has to be exercised when opening the roof or the instrument would be overturned. A small section of the end of the root has been cut out and hinged to allow the roof to pass the telescope so that the instrument may be got partly into working order pending the construction of a more suitable cover which is under consideration. As this, however, could not be provided this year, the hinged portion was improved, and the various places through which rain leaked were boarded up. Although still unsatisfactory, tliese minor alterations have enabled the instrument to be employed for solar photography.
(d) Transit.-The transit building is now finished, but there is as yet no provision for keeping the place and instruments dry in wet weather.
(e) Mugnetic obseroatory.-There has been considerable inconvenience and trouble connected with the leakage of the underground room. Throughout the year it has been necessary to place pans of calcined calcium chloride on the floor twice daily, and blankets have been suspended all round the room close to the walls to assist in absorbing the moisture.

In May a large new drain was made on the southern side, but this appears to have been ineffective, as no water has ever been seen running from it.

The eastern side of the hill has been tiled, as the two corners on this side were apparently the chief localities of the leakages and this alteration appears to have had good effect.

It seems probable that the foundations of the pillars in the absolute room above have also been affected, as they are both unsteady.

The ventilation in the underground chamber is unsatisfactory and a suggested method of improving it is under consideration.
(f) Anemometer tower.-The anemometer tower is in good condition throughout. A second room below has been constructed to contain the Dine's pressure tube anemometer (recording form), and that instrument will be installed in the new room.

There are at present no quarters provided for the fourth assistant. Up to the beginning of October the writer's quarters had been utilized for this purpose, but as the writer has now been permanently stationed here, it is advisable that quarters should be provided for the fourth assistant in the compound as carly as possible and the Public Works department have been requested to furnish an estimate.

New quarters for the accommodation of the book-binder, mechanic, one peon and two lascars have been completed during the year. These are now occupied. For these new families it has been necessary to sink a new well to provide sufficient watersupply. The whole of the water for the observatory has had to be carried by hand from some distance, and as the number of photographic operations increases, this difficulty is more noticeable, and it would be a great converience if the automatic supply by pump and windmill, which has been under construction for some time, were completed as soon as possible.
3. Instruments.-The following instruments are available for use in the observatory:-

Instrument.	Employed fur
$6^{\prime \prime}$ Cooke Refractor. 7^{\prime} focus, Equatorially mounted.	Spectroscopic examination of sun and other colestial objects.
$6{ }^{*}$ Lerebour and Secretan Refractor 8^{\prime} focus. Equatorially mounted. Remodelled by Grubb.	Visual examination of sunspots.
$5^{\prime \prime}$ Grubb portrait lens, $36^{\prime \prime}$ focus. Mounted on Lerebour Equatorial.	Photographs of comets, metcors, variable or new stars, ete., for magnitude determination.
11" polar siderostat in conjunction with $6^{\prime \prime}$ Grubb lens, 40^{\prime} focus.	Feeds the concave grating spectrograph, and can also he used for direct p botographe of the sun.
Altazimuth	Dismounted at present.
$4^{\prime \prime}$ Kowland concave grating, 10^{\prime} focus. 14,438 lines to the inch.	Spectra of sun, chromosphere, etc., and laboratory investigation.
Revolviag plate-holder with clockwork.	Compensating rotation of field of siderostat.
$6^{\prime \prime}$ Transit instrument from G.T. Survey of India.	For determination of standard time and general rating of chronometer.
Bairrel chronograph by Hardy, Paris	For transit observations.
Prism Spectroscope. Siz prisms with automatic deviation. (With photographic attachment and two dark slides).	For eye observations of solar and terrestrial spectra.
Small grating speotrcsiope .. .*	Examination of sunspot and chromo spherio spectra with the Lerebour equatorial.

Instrument.
Photoheliograph by Dallmeyer, No. 4.

Mean time clock. Kullberg No. 6326.
Mean time chronometer. Kullberg No. 6299.
Sidereal time chronometer. Kullberg No. 6134.
Chronograph (old)
Sidereal clock. Shelton
Chronograph, new, by Fuess
Stage micrometer. Hilger .. .
Theodolite, $6^{\prime \prime}$; Cooke..

Unifilar magnetometer. Elliott No. 16.
Dip Circle. Barrow No. 46
Declination and horizontal force magnetograph. Watson No. 2.
2 Phototheodolites. Steinheil.. ..
Sextant
Seismometer. Milne's horizontal pendulum.
2 Actinometers. Balfour Stewart ..
Solar calorimeter. Buchanan .. .
Induction coil giving $4^{\prime \prime}$ sparls with 2 quart Leyden jars and vacuum tubes.
Small polar heliostat
Complete set of meteorological instruments.
18 -inch siderostat, by Cooke, with electrical slow motions.
2 Achromatic lenses, aperture 2 inches, 8 feet focus.
Dividing engine, Cambridge Scientific Instrument Company.
Double reflecting prism mounted on divided position circle, by Hilger.

Eurployed for.

Arranged to give $8^{\prime \prime}$ photographs of sun similar to others at Dehra, Mauritius and Greenwich.

$$
\cdots
$$

With electrical seconds contacts for chronographic registration.
General reoording purposes.
For use with transit and magnetic work.
For measurement of photographio spectra.
General adjustment of instruments, positions of special objects and laying out new buildings.
For absolute comparisons of magnetic elements.
Automatic recording of magnetic elements.
Cloud photography.
Time determination.
Continuous photographic registration of seismic disturbances.
$\}$ For series of comparisons of value of sun's heat.
For comparison with spectra obtained from celestial sources.
Adjustment of spectroscopes. Hixperimental work.

To be used for supplring light for the new spectroheliograph, now on order.
Part of additional apparatus for the spectrograph, for use with plane grating.
Not yet in use.
Not yet in use.

All the above are now in good order.
The difficulty formerly experienced owing to the deposition of moisture on the 6 -inch spectrograph lens has been largely removed by a modification of the method of mounting the lens at the end of the tube.

OBSERVATIONAL WORK OF THE OBSERYATORY.

The programme of investigations to be undertaken at the observatory was as follows:-

Solar physics-

(a) Observations of the six most widened lines in sunspot spectra between F and b , and other six between b and D .
(b) Observations of other widened lines in sunspot spectra.
(c) Visual observations of prominences and chromosphere.
(d) Pbotographs of solar dise in monochromatic light.
(e) Photographs of sunspot spectra.

Meteorological observations-

(f) As at present.

Other observations -

(g) Actinotieetry.
(h) Earthqual⿺e records.
(i) Cloud observivations.

In addition to the above there are of necessity the astronomical observations for time, either by altitudes of the sun by means of the Sextant, or by Mcridional observation with the Transit instrument.

Solar Physics.

4. Observations of sunspot spectra. - Instructions were communicated to the Acting Director that the routine work in solar physics was to be developed as rapidly as possible. In accordance with this, immediately on his arrival at the observatory in January, he made careful observations with all the three speciroscopes then available, viz., (a) a small grating spectroscope with collimator and telescope of about $4 \frac{1}{2}$ inches focal length; (b) a large six-prism spectroscope with collimator and telescope of 17 inches focus; (c) the four-inch concave grating spectrograph.

Of these the first was quite inadequate on account of its low power; the second was considerably better but still far from sufficient; with regard to the third, although it is possible to observe sunspot spectra by means of the concave grating by eliminating the astigmatism, the dispersion of the first and second orders was insufficient (the grating being of only 10 feet radius of curvatare) ; the employment of higher orders was impracticable for routine visual observation, owing to the necessity for using colour screens to separate the overlapping orders. Moreover, the arrangement by which the light is fed from the siderostat, through a thick massive drain pipe, 40 feet long, made the constant attention which was necessary take an amount of time quite impossible for the establishment of this as routine duty, or in cases where only a few minutes clear sunshine were available.

This being so, it was decided to build up a spectroscope more suited to the work, and the two long focus lenses of the prism spectroscope were roughly mounted in conjunction with the grating of the small diffraction instrument. Excepting that the grating is too small to atilise the full aperture of the lenses, this gave an excellent combination, and observations were commenced on January 13 with this instrument mounted very roughly on the Lerebour and Secretan equatorial of 6 inches aperture. For some time no spots of sufficient magnitude for critical purposes were available, but on the 29th of January, a group appeared on the southern hemisphere, and the spectrum of the largest member of the group was very satisfactorily observed by Sir John Eliot, who was here on inspection at the time.

From this time onwards the sunspot spectra have been observed on every available occasion. As the assistants had had little experience in this spectroscopic work, it was necessary for the Acting Director to be responsible for the final observations until the assistants were sufficiently practised to distinguish between the objective widening due to selective absorption in the spot, and the more easily noticed subjective widening which is so often mistaken by beginners with this work.

Also the first temporary wooden mounting, which gave considerable flexure, had to be replaced by a more permanent one of metal. This was by the help of the mechanic, completed by June, and the completed instrument was thereafter erected on the 6 -inch equatorial Cooke refractor, on account of this instrument being provided with a good position circle, which is necessary for the determination of the positions of prominences.

Since then the observations have been carried on very efficiently by the first and second assistants.

General result of observations.-From the examination of the observations. made throughout the jear, it is evident that the spectrum of the spots has been identical in every respect with that' seen during the last four or five years, the twelve most widened lines being the same as those recorded visually at South Kensington and. photographically at Yerkes. These lines are the following :-

F-b.	b-D.
$5143 \cdot 901$	$5727 \cdot 873$
$5147 \cdot 652$	$5731 \cdot 437$
5150.363	$5671 \cdot 071$
$5138 \cdot 518$	$5737 \cdot 288$
$5045 \cdot 582$	$5743: 645$
5136.270	$5426 \cdot 474$

These are due to Vanadium, Scandium, Titanium and some unknown element or elements.
5. Observations of other widened lines.-In the more complete examination of the sunspot spectra, the advantage of a greater dispersion than has previously been at my disposal has permitted the observation of lines which have either not been seen before or have been doubtful. It is extremely interesting to find on the subsequent reduction of these lines that the elements to which they are due agree in their general nature with those of the twelve most widened lines, i.e., they are chiefly due to Vanadium, Titanium, Scandium and some unknown elements. One line of Chromium and one of Mn . or Ni . are the only representatives of the more common metallic elements.

Each of these lines will be examined critically with still higher dispersion, to allow of their better identification with the standard lines on R.owland's photographic map of the solar spectrum, and it is proposed to publish the results of the investigation in the first of a series of Kodaikanal Observatory Bulletins.

The following table gives the summary of the year's observations :-
Summary of observations of sunspot spectra during 1903.

Month.	Spectrum observed.	No spots.	Spots too small for observation.	Spots, but weather unfavourable.	Sun not visible.	Total.
1903.						
January	2	10	10	6	3	31
February ..	14	1	8	5	\cdots	28
March	14	12	4	1	.	31
April	13	2	11	4	\because	30
Mar	6	6	11	6	3	31
Jurie	5	6	9	6	4	30
July	12		2	14	3	31
August	1	1	16	9	4	31
September	7	7	7	7	2	30
October	20	.	1	10		31
November	8	.	8	19	1	30
December	12	\cdots	4	10	5	81
Total ..	114	45	91	90	25	365

6. Observations of prominences and chromosphere.-With the same instrument it has been possible to organise routine observations of the prominences and chromosphere. For this, on each day of observation, the zero error of the position circle is first determined, and then the circle readings of all prominences visible are recorded; the mean time of observation being noted. The corresponding position angles are afterwards reduced during the same day.

Complete records of sunspots, faculæ, prominences and magnetio disturbances for each month have been sent to the Director-General of Indian Observatories at Simla, and have been included in the Indian Monthly Weather Review for general information.

In the following list only those prominences have been included for which latitudes have been determined :-

Latitudes of Prominences observed at thie Solar Physics Observatory, Kodaikanal.

Latitudes of Prominences observed at the Solar Physics Observatory, Kodaikánal—cont.

Latitudes of Prominences observed at the Solar Physies Obserratory, Kodaikanal-cone.

7. 8-inch solar pictures.-The 4 -inch Dallmeyer photobeliograph No. 4 was rather dilapidated, most of the adjustment screws being rusty, and in consequence the instrument had to be dismounted for thorough overhauling and cleaning. It was then again erected and adjusted, and the resulting pietures are very satisfactory. There still requires some attention to the mounting, which is far from rigid, necessitating the frequent adjustment of the finder marks for fixing the position of the image ready for exposure.

The plates employed have been Mawson's Photomechanical and Cadett's Lantern, size 10×10 inches, the development of which with hydroquinone is found quite satisfactury.

The following list gives the dates of the photographs obtained since the instrument was finally focussed :-

Days on which photographs of the sun have been taken at Kodaikanal with the 4-inch
Dallmeyer Photokeliograph.

1903.

August 22, 25, 26, 27, 31.
September $1,3,13,14,15,17,19,25,26,27,28,29$.
October $4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,2{ }^{2}, 28,29$, 30, 31.
November 3. 4, 7, 9, 10, 12, 13, 14, 16. 28, 30.
December $2,3,7,8,9,10,11,13,14,15,16,17,21,22,23,24,25,31$.
8. Spectroheliograph for photographing the sun in monochromatic light.-An iustrument has been ordered from the Cambridge Scientific Instrument Company, England, for obtaining photographs of the sun in monochromatic light by the Hale method. The pillars for the foot-plates of this spectroheliograph are erected, and the positions of the levelling screws marked, in that as soon as the instrument arrives (it was promised in August) it can be set up and put to work.

18 -inch Siderostat.-Provision for supplying the above instrument with light has been made by the purchase of a new Foucault Siderostat, made by T. Cooke \& Sins, of York, England. It has an 18 -inch plane silver-on-glass mirror, with differential electrical motors for fine adjustments in right ascension and declination.

This has been erected in the new building provided for the work, and is in going order ready for observation whenever the spectroheliograph is received.
9. Photographs of sunspot spectra.-A few photographs of sun spot spectra have been obtained but the dispersion at our disposal was too small, and a - different arrangement is being got together; it is hoped that photographs of sum spot spectra will be started with large dispersion in a short time, the apparatus for which is now being assembled and got into adjustment.
10. Time observations.-During the greater part of the year the sky bas been partially or wholly clouded over at noon, and in consequence of this the determination.
of time has depended almost entirely on sextant observations made in the early morning.

The transit instrument has been got into working order, and a barrel chronograph. cleanedrup for use with it." When the weather has permitted, transits of the sun liave been obsetved for determinations of time, but their number has been very few.

Great inconvenience is experienced during a long spell of cloudy weather in getting, good time observations, and to mitigate this arrangements werc in force for the transmission of a series of signals from Madras at 4.0 p.ar. These were, however, rendered :entirely useless by their being retransmitted by hand at intermediatestations. Representations were made to the Telegraphic authorities, and they kindly provided a new relay and sounder, at the same time arranging for a through conneotion for the time signals. This arrangement gives every satisfaction, and there will be no further difficulty excepting in cases of break down due to storms, etc.
11. Meteorology.--The barograph, thermograph and anemograph have been in good working order throughout the year. Eye observations of temperature (with dry and wet. bulbs, dry maximum, dry minimum, wet minimum, grass minimum and sun maximum) pressure, direction and velocity of the wind, observations of cloud and rainfall have been made daily at $8 \mathrm{~h} ., 10 \mathrm{~h}$. , and 16 h ., local mean time, at both. Kodaikánal and Periyakulam, the meteorological station at the foot of the hills.

At Kodaikanal the hours of bright sunshine are recorded continuously with a Casella glass globe recorder.

All the instruments have been in working order throughout the year, and the. tabulated resaits are given in the appendices at the end of the report. All metecrological observations are at once reduced and tabulated.

Weather telegrams are sent daily at 8-30 A.m. to the Meteorological Reporters of India and Madras.
\therefore The mean temperature for the year was $56^{\circ} \cdot 5$, the normal temperature for the pretious three years being exactly the same value. The highest recorded temperature in shade was $74^{\circ} \cdot 5$ on March 23, and the lowest was $43^{\circ} \cdot 5$ on January $2 \overline{5}$. The highest mean daily temperature was $62^{\circ} \cdot 7$ on April 23 , and the lowest $50^{\circ} 2$ on January 24.

The greatest amount of wind during the south-west monsoon occurred during the last week of July, the highest daily velocity being 751 miles on July 26 . A storm of exceptional intensity occurred from the 4th to the 6th December, the total wind velocity on the 4 th being 971 miles, the greatest hitherto recorded at this station. The mean hourly wind velocity during the year was 14 miles per howr, the normal for the last two years being 13 miles. The maximum hourly wind velocity during the year was 51 miles, and this occurred between 5 h . and 6 h . on the morning of the 4th December.

The total rainfall for the year was 69.55 inches, the average for the previous three years being 66.24 inches. The greatest rain fell early in August, there being 8.17 inches in the week ending the 11th.
12. Actinometry.-At Kodaikánal observations of the sun's heat are made with a Balfour Stewart actinometer whenever the sky is quite free from haze. The year under review has been remarkably poor in such days, and the number of observations are in consequence very few.
13. Seismology.-The Milne seismograph has been in continuous action throughout the year. During the great storm at the beginning of December the seismograph room was flooded, and the water dropping on the end of the boom caused it to sag against the bottom of the case; when the water was removed the instrument kept in good action thenceforwards.

It is interesting to note that during this storm a fairly large seismic disturbance was in progress, the greater part of the record of which was secured before the instrument became swamped. A list of the principal shocks recorded during the year under report is given in Appendix I.
14. Cloud observations.-The pressure of work attending the initiation of the spectroscopic observations has prevented the starting of the photographic registration of the upper clouds.

15: Magnetic observations;-Kodaikánal bieing one of the base stations for the Magnetio Survey of India now proceeding, complete neeords) are taken (a) visually with the magnetometer and dip circle, (b) by continuous photographic registration with a Watson magnetagraph recording horizontal intensity and declination.

Deflection observations were taken every morning at 10 a.m., Madras mean time, for determination of the scale e ρ-eflicient of the horizontal force magnetograph traces. Six of these deflections are read visully. Once every week the deflection is photographically recorded on the sheet cartying the traces.

The recording cylinders are so arranged that two days' photographic traces are obtained on the same sheet of paper, one above the other. The sheets are developed every second day, and are written up and read.

Temperatures in the underground vault were recorded continuously by a thermograph until March 23rd. As the curve was by that time practically a straight line, the thermograph was stopped, and temperatures have since been taken three times daily at $10 \mathrm{~h} ., 13 \mathrm{~h}$., and 16 h. , local mean time, from which the tepperatures required for computation will be derived by interpolation.

Since the discontinuity caused by the illness of the magnetic observer in March, the checking of the reductions has been undertaken by the Magnetic Survey.

Captain H. A. D. Fraser, R.E., visited the station in January 1903 for comparison of the instruments for standardising purposes. On examination of the suspended systems of the magnetggraph it was found, owing doubtless to the very damp state of the underground vanlt, that the systemsi of magnets were interlaced with fine fungoid growths, these also passing from thei needles to the sides of the case, thus interfering considerably with the needles' freedom of motion. The various glass lenses were also covered with a thin film, causing considerable loss of light.

Both instruments were dismantled and thoroaghly cleaned. The glass-covering cases were provided with felt packing saturated with corrosive sublimate, and sealed to the pillars with paraffn wax.

Small vessels containing pumice stone saturated with strong sulphuric acid were kept in the cases; boxes containing dry calciinm chloride are placed on the floor near the dampest places, and dried blankets are suspended all round the walls of the vault. By the help of these additional precautions the instruments have been kept in good working order throughout the year.

Magnetic elements.-The mean value of the observed magnetic elements for the year 1903 are as follows :-

Mean westerly declination					$0^{\circ} 22^{\prime}$	
Mean inolination or dip						
Mean horizontal intensity					$0 \cdot 37369$	

Magnetic disturbances.-With the approaching return of the maximum epoch of sun-spot activity, the present year has been characterised with an increasing number of magnetic disturbances. The most notable were those of October 12th and 31 st, the latter being so violent that the light was deflected quite off the recording sheet. The curve shows so many variations that a table of the chief maxima and minima is given below :-

Time. Greenwich mean time.							Values of horizontal intensity.	
							Maxima.	Miniua.
H.	M.							
6	49			-•	-	-•	$\cdot 37543$	
7	46			-•		.	.	-37232
8	34			-•		- .	-37387	\cdots
10	24			.		.		-36961
10	54						$\cdot 37141$	
13	6							-36789
14	50							-36784
18	55	-	-	*	-	-•	. 37164	. .

The following list gives the times and durations of the chiel disturbances recorded during the year :-
1903.

Tannary.

Fehruary.

1903－cont．

MIarch．

1 st	．	．．	．．	\cdots	S		20		24	но⿱㇒⿴囗⿱一一⿱宀八工力。
2nd	．	．．	．．	．	．		\cdots		\cdots	．
3 rd	．	．	＊	．	．		\cdots		\because	．
4th	．	\cdots	－•	．	．					
5th	－		－	．．	S	\％	$2 \cdot 5$		$18 \cdot 25$	$13 \cdot 75$ and $3 \cdot 25$
	．	．	．	．．		\｛	20.75		24	\cdots
6th	．	－	．	．	S		0		2	2
7ib	．	．	．．	．．	S		11		13	2
8th	\cdots	．		．．	S	$\{$	10		19.25	9.25 and 1.5
							$22 \cdot 5$		24	
9th	\cdots	－	－	．	S		0		15	15
10th	－	－	－	\cdots	．		．		\cdots	\cdots
11th	\cdots	\cdots	．	．			\because			
12 th	．	．	．	．	M		10		24	14
13th	\cdots	．	．	．	M		0		23	23
14th	\cdots	．	．	．	．．		．		．	．．
15 hth	．	．	．	．	．		．		\cdots	．．
16 th	．	．	．	．．	．		．．			．．
17th	．	．	．	．	－．		．．		\cdots	．．
18th	\cdots	．	．	．	．．		．		．	．．
190th	\cdots	\cdots	\cdots	\cdots	\cdots		．		\cdots	．
20 th	\cdots	\cdots	\cdots	\cdots	\bullet		\because		\because	．
22 nd	＂．	\cdots	\cdots	\because	$\ddot{\mathrm{s}}$		is		$\ddot{24}$	6
23rd	\cdots	\cdots	．	－	s		0		6	6
24 th	．	．	．	．，	8		11		13	2
25th	．	．．	．	．	．．		．			
26 th	\cdots	\cdots	\cdots	．．	\cdots				．	
27 th	\cdots	\cdots	\cdots	\cdots	\cdots		\cdots		\cdots	\cdots
28 th	．	．．	．	．．			．			
29th	\cdots	\cdots	．	．	S	I	6		1．8．5	12.5
30th	．	\cdots	．	．	M		7		16	${ }_{12} 9$
31st	．	\cdots	－•	．	S		$0 \cdot 5$		13	12.5

April．

1903-cont.

Date.	Kind.	Time L.M.T.			Remarks.
		From	To	Duration.	

1903-cont.

Date.	Kind.	Time L.M.T.			

Tuly.

August.

1903--cont.

September,

October.

1903-cont.

Date.	Kind.	Time L.M.'T.			Remaris.
		From	To	Daration.	

November.

December.

$\begin{aligned} & \text { Lst } \\ & \text { 3nd } \\ & \text { 3rd } \end{aligned}$	\cdots	**	\because	\cdots	S. M. S.	10 11.5	14 14.5 14	4 3 7	Small crests bat big trougite. Small variation ustally depres sion.
4th	-	-	-	\cdots	M.	18	22.5	$4 \cdot 5$	Big crests, emall troughs.
5 th	-	S.	19	$19 \cdot 5$	$0 \cdot 5$	Sadden increase.
6 6h	.	.	-	\cdots	8.	1	$1 \cdot 6$	$0 \cdot 5$	Do.
7th	*	S.	10	12	2	Small variation without eudden
8th	-*	.	-	.	S.	$8 \cdot 5$	14.0	6	muxima. Do. do. ueually
9 9th	\cdots	.			.				
10th		.		.	.	\cdots	\cdots	\cdots	
11th	-	*	.	\cdots	-	\cdots	-	.	
12th	.	.	.			**	\cdots	\cdots	
13th	-	.	.	.	\ddot{G}	14	24	10	
14th	-	.	-.	.	G.	0	10	10	Gradual depression. Do. betwoen
15th	-	-	. .	-	M.	17	24	7	and 3 sutden rise. Do. do.
16th	-	\cdots	*		.				
17th	-	\cdots	.	
18th	*	*					\cdots	*	
19th	.	.	.	-	S-	7	12	\square	Small vaiations with sudden
20th	\cdots				M.	10			maxima.
21st	-	\cdots	.-		S.	8	19	14	Usually depression.
22nỉ	-	.	.				18	11	Do.
23rd	$\stackrel{\square}{\text { S }}$	$23 \cdot 75$	0	$\because \cdot 25$	
24 th	-	-.	-	\cdots	S.	0	0.25	0.25 0.25	\} Sudden inortase.
25 th	-	S.	7	24	17	Usually deration.
26th	\cdots	.	.		S. and M.	0 and 7	7 and 15.5	7 and 8.5	- Do.
27th	-	II. and S.	11 and 17	$12 \cdot 5$ and $22 \cdot 5$	1.6 and 5.5	Elevation.
28th	\cdots	.	.	-	8.	7	34	17	
30 th	\cdots	\cdots	\cdots	-	G. S.	6.75 0	$18-75$	10	
31 st	*-	\cdots	\cdots	..	G. and S.	6.75 and 18.75 2 and 10	18.75 un	12 and 3.75	Sudden minima and minima.
	-		**	*	M. and ${ }^{\text {a }}$	2 and 10	10 and 14	8 and 4	Depressiua.

16. Library,-All the large volumes of proceedings and transactions are bound up to date. One hundred and three books have been bound during the year. Five hundred and twenty-three books, periodicals and pamphlets have been received.

The general uncertain weather through the greater part of the year has made a. considerable demand on the members of the staff, it having only been possible to get the solar observations by attending an hour earlier every morning; for a long time all the actual observational work had to be done between 7 and $9-30$ a.m. In conclusion I wish to express my thanks to the whole establishment for the support afforded me throughout, the help of which has considerably lightened the labour which devolved on the organisation of a new series of duties.

Kodaik.anal,
8th January 1904.

CHARLES P. BUTLER,
Ag. Director, Kodaikanal and Madras Observatories.

II.-ANNOAL REPORT OF TIIE MADRAS OBSERVATORY FOR THE YEAR 1903.

1. Staff.—The first Assistant Mr. M. B. Subba Rao resigned his appointment in March, and Mr. M. G. Subrahmanyam from the Kodaikánal Observatory was appointed in his place.

Mr. Solomon Pillai, the computer, took one month's privilege leave from the 6th April.

At the end of the year the staff consisted of -
Mr. S. Solomon Pillai, Computer and Manager;
Mr. M. G. Subrahmanyam, b.A., First Assistant ;
Mr. E. Ramanujam Pillai, Second Assistant.
Astronomical observations made during the year were as usual solely directed to time determinations. These involved the observation of 428 clock stars, and 80 azimuth stars and in addition 93 determinations of level and collimation. These observations were made by Messrs. Solomon Pillai and Subrahmanyam.
2. Time service. - In last year's report it was mentioned that the question of transmitting time signals to Colornbo daily at 8 a.m. from the observatory had been raised. Arrangements for this were completed early in the year and since the 14th February a series of signals terminating at 8 a.m. similar to the 4 p.м. roll have been daily sent to Colombo. With this exception no change was made in the time signals controlled by the observatory.

The time gun at the Fort was fired correctly on 709 occasions out of 730 in the year, giving a percentage of successes of $97 \cdot 1$. Ont of 21 failures, eight occurred in September and October and were due, in part, to a defeet in the firing apparatus which was rectified on the 19th October. On two occasions the gun was fired by accident before the time and on seven days the gunner was absent.

The time ball at the Port office failed at 1 and 2 p.r. on two days; on one other occasion it failed at 1 P.m. and was dropped correctly at 2 p.M.

The following table shows all the failures and their causes:-

3. Meteorological observations.-Meteorological observations were carried on as in the former year and the registers of the 10 hours and 16 hours observations were reduced and sent to Calcutta together with the observations of clouds. In addition to the ordinary weather messages sent daily, special storm observations were. supplied to Simla four times and to Calcutta on the following dates:-
, May 19; August 28-30; September 15-17, 22; October 4-5, 27-29; November 5-6, 25-27; Deceriber 3-5, 29-30.

In addition to the ordinary work the tabulation of the hourly traces of the anemograph at Dodabetta has been carried out at this office since April.

Harmonic analysis of pressure observations at Bangalore and Madras and the analysis of ground temperatures at five different stations [Jaipur, Allahabad, Dehra Dun, Lahore, and Calcutta (Alipore)] were worked out with the help of the Computer and the First Assistant. These and the discussion of the results obtained have been submitted to the Meteorological Reporter to the Government of India and Director-General of Indian Observatories for publication in the Indian Meteorological Memoirs.
4. Buildings.-The buildings have been kept in good condition throughout the year and the press room for printing the weather charts was finished. The thermometer shed was renewed before the monsoon.

Instruments.-The sidereal clock by Haswall, the meantime clock by Shepherd, the transit clock by Dent, and the post-office clock were cleaned during the year. The rate of the transit clock was very variable for some time after it was cleaned but has now become fairly steady again. The 8 -inch equatorial and the transit instruments are in good order. An old one-prism spectroscope by Troughton and Simms is being modified, so as to enable a grating to be substituted for the prism. Thus modified it will be possible to use it on the 8 -inch equatorial to examine the sun for prominences, ete., on days when no obserrations are possible at Kodaikánal in their rainy season.

A new meantime ohronometer No. 6544 by Victor Kullberg was received during the year.

A new thermograph was brought into use in November; the traces of this instrument are very satisfactory.

The following is a summary of the meteorological and weather conditions at Madras during the year 1903 :--

Pressure was above normal in January, February, April and May and below normal during the rest of the year, the greatest excess being 0.046 inch in February and the greatest defect 0.051 in October. The lowest daily mean pressure was 29.547 on July 30th and the highest $30 \cdot 170$ on February 9th.

Temperature.-The mean temperature was normal in April and below the average in all the other months except January, February, Mareh and Oetober. The highest temperature recorded during the year was $103^{\circ} \cdot 1$ on June 27 th and the lowest $65^{\circ} \cdot 3$ on December 8th.

Humidity.-The percentage of humidity was above normal throughout the year. It was lowest on August 6th; when it was 38.

Rainfall.-Rainfall was below the average in March, April, July and October and above the average in the other months. The greatest deficiency was $2 \cdot 16$ inches in October and the greatest excess 14.35 inches in December.

Notwithstanding the late establishment of the north-east monsoon, the monsoon rainfall from October 15th to December 31st was 44.50 inches, being 18.50 inches above normal and the total fall for the year was 79.62 inches, being 30.60 inches above the average.

Winds.-The wind velocity was below normal during the year except in February when southerly winds were unasually strong and prevalent. ! he wind direction was nearly normal in all other months exeept September and October. In the former it was 3 points west from normal and in the latter 7 points south.

Sunshine.--The percentage of bright sunshine was below the averase during the whole year. There were $1,977 \cdot 5$ hours of sunshine, giving a percentage of $44 \cdot 5$ of the possible maximum.

Storms.-No storm crossed the Madras Coast. But a storm of moderate severity moved towards the Circars Coast on October 28th and auother suall storm crossed the coast near Cuddalore on December 30th. Exceptionally ineavy rain amounting to 13.32 inches fell at Madras and over the Carnatic between the 33 th and 31st December. Such heary and general rain so late in the seasou has no parallel as far as available records go.

Madras, 8th January 1904.
Kodamánal, 8th Jamuary 1904.

R. Li. JONES,
 Deputy Director.

CHARLES P. BUTLER, Ag. Director, Kodaikanal and Madras Observaiories.

Appendix I.

Kodaikánal Observatory seismological records.

Kodaikánal Observatory seismologioal records-cont.

Kodaikánal Observatory seismological records-cont.

No.	Date.	P.T. Commence- ment G.M.T.	$\begin{gathered} \text { L.W. } \\ \text { Comemes- } \\ \text { mant } \\ \text { G.M.T. } \end{gathered}$	Marima G.M.T.	$\begin{gathered} \text { End, } \\ \text { G.M.T. } \end{gathered}$	Maxima Amplitude.	Daration.	Hemarly.
	1903.	\%. M.	. m.	н. м.	H. M.	м.м. \quad,	H. \mathbf{x}.	
58	July 16 ..	.	-•	$13 \quad 20.9$	-.	-	.	Thiokening of line.
69	" $16 .$.	-*	-	$\begin{array}{lll}15 & 36.0\end{array}$	-	-•	\cdots	Do.
60	Ang. $11 .$.	-	-	450.7	.	$\begin{array}{ll}0.5 & 0.3\end{array}$.	
61	" $16 \ldots$	-•	-•	$9 \quad 05.4$	-	-•	-	Thickening of line.
62	" 17.	-•	-•	4 42.1	-	-•	-•	Slight ahook.
63	, 17 ..	-	-	$5 \quad 45.8$	-•	-•	.	Thickening of line.
64	'"', 17.	-•	-	$5 \quad 48.7$	-	-.	.	light shock.
65	" $21 .$.	-•	*	$2 \quad 59.0$	-•	-•	.-	Thickening of line.
68	" $21 .$.	-•	-•	488.2	-	-	.	Do.
67	\% 26 ..	*	-	623.0	-•	-	-•	Do.
68	" 30 ..	-	-	129.5	-	\cdots	.	Do.
69	Sept. $1 .$.	-•	-•	2 31-I	-•	-	-•	Do.
70	" 1 ..	-	*	$\begin{array}{ll}15 & 11.5\end{array}$	-•	-•	.	Thickening "o line.
71	" $7 .$.	736.0	$8 \quad 08.5$	$8 \quad 12.7$	$810 \cdot 7$	0.4 0.2	-•	Silohar.
72	\% 8 ..	-•	-	$5 \quad 47.8$.	.	.	Elongated thick. ening of line.
73	, 8 ..	-	-	5 51.4	-•	-•	-	Do.
74	" 13.	-	.	3 43.6	-	-	-•	Bukarest 10 A.y. Thiokening of line.
75	" $18 .$.	*	.	$12 \quad 42 \cdot 5$.	-•	-	Very elight shock?
76	, $25 .$.	-	-•	$212 \cdot 6$	-	-•	-	Thiokening of line.
77	" $26 .$.	-	-	534.4	-	\cdots	-	Do.
78	Oct. 21 ..	$\begin{array}{ll}10 & 14.1\end{array}$	$10 \quad 18.7$	$\begin{array}{ll}10 & 20.7\end{array}$	$11 \quad 5.4$	1.980 .6	$\begin{array}{lll}0 & 51 \cdot 3\end{array}$	Local shook.
79	", $29 .$.	$14.44 \cdot 1$	$\begin{array}{ll}15 & 14.6\end{array}$	$\begin{array}{ll}15 & 16.1\end{array}$	$\begin{array}{ll}15 & 49 \cdot 7\end{array}$	$\begin{array}{ll}0.6 & 0.2\end{array}$	$1 \quad 5.6$	Extended shook.
80	" 30 ..	4 44-1	452.2	455.8	$15 \quad 24.9$	$\begin{array}{ll}0.5 & 0.3\end{array}$	$0 \quad 40.8$	Do.
81	, $31 .$.	-	-	$3 \sim 52.7$	' ${ }^{\prime}$.	$\begin{array}{ll}0.3 & 0.2\end{array}$	-	Twoslightshookns
82	" $31 .$.	-	-	4 24.2	-	$\begin{array}{ll}0.3 & 0.2\end{array}$.	Do.
83	Nov. $11 .$.	-	-•	$\begin{array}{ll}3 & 08 \cdot 6\end{array}$	-	-•	\cdots	Thickening of line.
84	" 11 ..	-•	-	$455 \cdot 3$	-	-	-	Do.
85	, $12 .$.	-•	\cdots	$6 \quad 30 \cdot 7$	-•	-•	-•	Do.
86	, $13 .$.	-•	\cdots	218.4	-	-	-	Do.
87	, $13 .$.	.	.	$6 \quad 26 \cdot 8$	-	-	-	Do.
88	", $24 .$.	-•	.	$11 \quad 46.5$	-	\cdots	-	Do.
89	, $24 .$.	$14 \quad 64.4$	$\begin{array}{ll}15 & 01.6\end{array}$	$\begin{array}{ll}15 & 10.3\end{array}$	$15 \quad 25 \cdot 7$	1-75 1.1	$0 \quad 31.3$	$\begin{aligned} & \text { Well } \\ & \text { shocks. } \end{aligned}$
90	" $26 .$.	$12 \quad 15.9$	-	$12 \quad 21 \cdot 6$	$\begin{array}{cc}12 & 36 \cdot 4 \\ .\end{array}$	$0.38 \quad 0.2$	$0 \quad 20.5$	Prolonged maximam. Assam earthquake.
91	\| " 28.	-•	-	$3 \quad 55 \cdot 4$	-	-	-•	Thickening of $\ln \mathrm{n}$.

Kodaikánal Observatory seismological records-aont.

Nu.	Date.	$\begin{gathered} \text { P.T. } \\ \text { Coramence- } \\ \text { ment } \\ \text { G.M.T. } \end{gathered}$	L.W. Commenes ment G.M,T.	$\begin{aligned} & \text { Manima } \\ & \text { G.M.T. } \end{aligned}$	$\begin{aligned} & \text { End, } \\ & \text { G.N.T. } \end{aligned}$	$\begin{aligned} & \text { Marima } \\ & \text { Amplitade. } \end{aligned}$	Duration.	Remarks.
92	1908.	H. \mathbf{M}.	H. \mathbf{X}.	H. \mathbf{x}.	[. \mathbf{M}.	M.x. \quad,	F. 3.	
	Nor. 28 :.	.	.	$48 \cdot 7$	-•	\cdots	*	Thiokening line.
98	" 30 ..	-	\cdots	438.0	,	-	-	Do.
94	Dec. $4 .$.	$\begin{array}{ll}15 & 20 \cdot 8\end{array}$	$16 \quad 45 \cdot 1$	$17 \quad 17 \cdot 1$		$\left[\begin{array}{ll}2.0 & 0.8\end{array}\right.$	-	.
	$\because 4$.	*	-	$17 \quad 21.2$	End of re- cord lost	$2.0 \quad 0.8$	-	-**
	" 4 ..	*	*	$17 \quad 26.3$	through swamp-	2.6101	-	-•••
	" $4 .$.	**	-	19 4.4	ing of	2.2510	-•	-***
	84	\cdots	*	$19 \quad 7 \cdot 5$	mant by	2-25-1.0	**	***
	1, $4 .$.	-	-	$19 \quad 56 \cdot 3$		$\begin{array}{ll}1.75 & 0.7\end{array}$	**	*日*
95	" 10	$17 \quad 8.6$	$\begin{array}{ll}17 & 12 \cdot 7\end{array}$	$17 \quad 20.4$	$18 \quad 7 \cdot 5$	6.0 3.2	$0 \quad 59.0$	Sudden ahook.
98	" 28.	128.0	-	138.0	-	$0.5 \quad 0.3$	*	\cdots
	\cdots	\cdots	-	$1 \begin{array}{ll}1 & 33 \cdot 4\end{array}$	134.2	0.40 .2	θ 6.2	*..*
97	De0. 28	3. $4 \cdot 6$	311.8	. $16 \cdot 4$	-	1.00 .5	-•	-***
	**	\cdots	-	3 88.2	, 342.1	0.80 .4	0 27.5,	-•**

Appendix II．
Mban monthly and amnual meteorological results at the Kodaikanal Observatory in 1903.
 Extreme monthly meteorological recorde at the Kodaikanal Observatory in 1903.

家		
		毕
寝	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { 旁 } \end{array}$	
		言
	$\begin{gathered} \text { 高 } \\ \stackrel{y}{3} \end{gathered}$	
$\begin{aligned} & \text { 咅 } \\ & \stackrel{\rightharpoonup}{\vec{b}} \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 耪 } \end{array}$	
	$\begin{gathered} \text { 高 } \\ \stackrel{y}{3} \end{gathered}$	
	$\begin{aligned} & \text { id } \\ & \text { dig } \end{aligned}$	
		豪
		：：：：：：：：：：

Appendix IV.
Kodatiénal.-Mean hourly bright sunshine for the year 1903.

Appendix V.

Kodarkánal. Obbervatory.-Number of days in each month on which the Nilgiris were visible.

Mouth.						Fery clear.	Visible.	Just vieible.	Tops only	Total	
January	\cdots	-•	.	.	.	4	7	7	4	22	${ }^{\prime}$
Fobruary	.	-	-	.	..	-	4	8	2	14	
March	-	.	\cdots	-•	\cdots	1	*	1	.	5	
$\mathrm{A}_{\mathrm{i}} \mathrm{ril}$.	*	\cdots	.	$\cdot \cdot$	-	-	-	3	3	
M ${ }_{6}$,	-	\cdots	j	4	3	..	12	
Juna ..	\cdots	-•	-.	8	2	3	2	15	
Joly ..	-	-•	.	\cdots	-	7	2	\cdots	2	11	
Aly ${ }^{\text {cos }}$	-	"	-	"	.	4	3	6	.	13	
Septenither	-	.	-		.	9	7	2	4	22	
Octoher	-	.	-	.	.	5	7	3	6	21	
Noveminur	10 [\|	2	4	4	-20	
Deernibr	\cdots	-	-	-		1	9	2	7	19	
				Total	..	54	50	39	34	177	

Appendix VI．

Mean monthly and annual meteorological results at the Poriyakulam Observatory in 1903.

Month．		Barometer．		Dry bulb thermometer．				Wet bulb．		$\left[\begin{array}{c\|c}\begin{array}{c}\text { Tension } \\ \text { of vapour．}\end{array} & \begin{array}{l}\text { Relative } \\ \text { humidity．}\end{array} \\ \hline \text { By Blanford＇s tables．}\end{array}\right.$		$\begin{gathered} \text { Sun } \\ \text { Max. } \\ \text { in vac. } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { on } \\ \text { grases. } \end{gathered}$	Wind．			Rain．		Clear sky．	
		Reduced to $3{ }^{2}$ ．	$\begin{aligned} & \text { Daily } \\ & \text { range. } \end{aligned}$	Mean．	Max．	Min．	Rauge．	Mean．	Min．			$\left\lvert\, \begin{gathered} \text { Daily, } \\ \text { velocity. } \end{gathered}\right.$			ean ction．	Amount．	Days．			
		Inohes．	Inches．	。	。	。	。		。	Inches．	Conts．		。	。	Miles．	Points．	Points．	Inches．	No．	Cents．
January	．	29.044	0139	75.7	86.3	66.3	$20 \cdot 1$	${ }^{68 \cdot 8}$	64.0	0618	69	137.2	62.7	433	13	S．E．by S．				
Febraary		． 063 28.917	－163	78.7 82.3	${ }_{96}^{91.4}$	$67 \cdot 4$ 68.6	－ 24.0	69.2 69.7	$64 \cdot 2$ 64.6	－ 593	${ }_{61}^{60}$	$147 \cdot 2$ 152.1 10	57.3 61.4 6	$59 \cdot 3$ $49 \cdot 9$	10 13	s．E．S．L．L．${ }^{\text {bes }}$ S．	${ }^{1.15}$	$\stackrel{2}{2}$	${ }_{89}^{68}$	
April ．．	\because	${ }^{28.916}$	${ }_{-1+6}$	${ }_{81 \cdot 4}$	${ }_{98.1}$	${ }_{73.4}^{68.6}$	$28 \cdot 2$ 24.6	${ }_{72 \cdot 8}^{69 \cdot}$	${ }_{69} 6$	${ }_{\cdot 653}$	${ }_{55}^{61}$	${ }_{156}^{10.3}$		4． 59	12	S．S．E．${ }^{\text {by }}$ S．	${ }_{2} .18$		${ }_{66}$	
May ．．		$\cdot 865$	$\cdot 130$	83.1	$97 \cdot 0$	$73 \cdot 4$	$23 \cdot 7$	736	$70 \cdot 1$	703	62	157.9	694	$69 \cdot 4$	14	S．S．E．	$2 \cdot 85$	8	60	
Jane ．．．．	．	$\cdot 818$	－113	82.8	$95 \cdot 9$	$73 \cdot 2$	$22 \cdot 7$	72.8	$69 \cdot 3$	$\cdot 673$	60	$156 \cdot 6$	68.2	89.2	12	S．E	044	1	39	
July ．．		－811	－105	$8{ }^{81 \cdot 3}$	${ }^{92 \cdot 6}$	72.7	19.9	71.8	68.9	$\cdot 65{ }^{5}$	${ }^{61}$	$154 \cdot 6$	${ }^{68 \cdot 3}$	89.9	15	S．by E．	${ }^{0.31}$	1	${ }^{26}$	
Auguat		$\cdot 852$	$\cdot 112$	$8{ }^{80 \cdot 4}$	$92 \cdot 5$	71.6	$20 \cdot 9$	71.6	68.3	$\cdot 661$	${ }^{64}$	154.0	${ }^{67} 6$	$76 \cdot 3$	15	S．by E．	${ }^{1} 1.33$	$\stackrel{\square}{4}$	35	
September ．．	\cdots	． 868	－119	79.1	$90 \cdot 6$	$72 \cdot 3$	$18 \cdot 3$	72.9	69.8	．726	73	$1162 \cdot 5$	69．5							
Ootober November Nor	．	－986	${ }_{-122} \cdot 13$	$79 \cdot 2$ $76 \cdot 6$	89.9 85.6	$71 \cdot 1$ 69.5	$18 \cdot 8$ 16.2	72.6 71.1	$69 \cdot 4$ $67 \cdot 6$	． 7178	72 75	$146 \cdot 4$ $141-7$	68.1 66.6	－ $50 \cdot 4$	17 14	S．by W．	3.88 3 38	10 9	$\stackrel{44}{47}$	
December	．	－990	． 123	73．8	88．2	69.6 66.0	16.2 17.1	71.1 68.6	${ }_{64.6}^{67.6}$	${ }_{6} 684$	76	$133 \cdot 1$	${ }_{63} 60$	${ }_{35 \cdot 1}^{36}$	13	S．E．by S．	${ }^{3} 4.53$	7	50	
Annual	．．	$28 \cdot 918$	$0 \cdot 130$	79.8	91.7	70.5	$21 \cdot 2$	$71 \cdot 3$	67.5	0.657	65	449.1	$65 \cdot 9$	59．3	13	S E by S	2508	56	E．2	

Extreme monthly meteorological records at the Periyakulam Observatory in 1903.

Appendix VII.

Abrtact of the mean meteorologicel condition of Madras in 1903 compared with the arerage of past years.

Mean raluer of						1908.	Differente from	Atreage.
Reductil atmosphric jremure.	-•	-	.	\cdots	.	29.855	0.009 below.	29.864
Tempersture af air	\cdots	-	\cdots	-•	..	$81 \cdot 2$	0.1 above.	$81 \cdot 1$
Dr. of evupuration	\cdots	.	-	-		76.1	$1 \cdot 6$	74.5
Perventage of humidity	.	.	-	-	.	78	7 "	72
(ireatert whar haxt in menco	.	..	\cdots	-		132\%6	7.1 below.	139.7
Maximum in maitr .-		$89 \cdot 7$	$1 \cdot 1$	$90 \cdot 8$
Minimum in alade	.	.	\ldots	.	..	74.9	0.2 above.	74.7
Du. on grasa ..	,	..	.	-	.	73.0	1.1 "	71.9
Rainidl sinee Jamary 1 st on 1		.	-•	.	-•	79662	30-60 "	49.02
General direction of mind	..	-•	\cdots	-	.	S.E. by S.	1 point S .	S.E.
Daily velarity in milar ..	.	-•	-•	-	\cdots	143	28 below.	171
Porcentage of elear uty	-	.	54	3 above	51
Dr. of bright munkhine.	-•	-	\cdots	*	-•	44.8	13.6 below.	$58 \cdot 4$

Deratron and quantity of the wind from different points.

From	Hours.	Miles.	From	Hours.	Miles.	From	Hoars.	Miles.	From	Hoars.	Miles.
North	191	1,245	East	264	1,216	Soath .-	248	1,495	West. ..	257	1,848
10. by E.	268	1,567	E. by B. ..	480	2,285	S. by W...	201	1,343	W. by N...	198	1,423
N.N.E.	321	2,099	E.S.E. ..	128	1,574	S.S.W.	218	1,441	W.N.W.	97	64.6
M.E. by N...	327	2,023	S.E. by E.	368	1,621	S.W. by S.	245	1,490	N.W.by W.	106	504
N.E.	188	1,208	B.E.	279	1,684	S.W. ..	219	1,403	N.W.	48	267
S.E.by E .	188	1,081	S.E.by S.	708	4,70\%	S.W. by W.	330	2,055	N.W. by N.	85	402
[.N.E. -	141	924	8.EE. ..	753	5,195	W.S.W. ..	218	1,522	N.N.W. .	148	786
Eby N .	281	1,184	E. by E....	437	- 2,684	W. byS. ..	394	2,605	N. by W...	147	1,006

There were 184 calm houxs daring the year. The resultant corresponding to the above nombers is represented by a S.S.E. wind, blowing with a uniform daily velocity of 34 miles.
Appendix VIII.

Appendix IX.

Appendix X.

Appendix IX.

Madras Observatorx,-Wind, cloud, bright sunshine and evaporation.

Appendix XII.
MEAN monthly and annual meteorological results at the Madras Ohservatory in 1903.

Appendix XIII.

