KODAIKANAL AND MADRAS OBSERVATORIBS.

REPORT FOR THE YEAR 1908.

CONTENTS.

KODAIKANAL AND MADRAS OBSERVATORIES.

I.-REPORT OF THE KODAIKÁNAL OBSERVATORY FOR
 THE YEAR 1908.

1. Staff.-The staff of the Observatory on the 31st December 1908 was as follows:-

Director		C
Assistant Director		J. Evershed.
First Assistant		K. V. Sivarama Aiyar, m.a. (on leave).
Second Assistant (Aoting Assistant).	g First $\}$	S. Sitarama Aiyar, b.A.
Third Assistant (Acting Assistant)	Second $\}$	G. Nagaraja Aiyar.
Acting Third Assistant		A. Y. Subrahmanya Aiyar, b.A.
Fourth Assistant		S. Balasundaram Aiyar.
Writer	.	L. N. Krishnaswami Aiyar.
Photographic Assistant		R. Krishna Aiyar.

The Director returned from furlough and took charge on January 2. The first assistant went, on July 20, on combined privilege leave and leave on medical certificate for 6 months and 23 days. The second and third assistants are acting as first and second assistants respectively, while the post of third assistant has been filled by A. Y. Subrahmanya Aiyar, в.s. The acting first assistant was on privilege leave for 41 days from September 21 and the acting second assistant is on two months' privilege leave from November 11.

The subordinate staff consists of a book-binder, a book-binder's boy, a mechanic, five peons, a boy peon for the dark room, and two lasears.
2. Distribution of work.-The Director is in charge of the 40 -foot speetrograph and the pyrheliometer; the Assistant Director is in charge of the spectroheliograph \cdot and associated instruments. The first, second, and third assistants are in charge of the work with the Cooke equatorial (spectroseopic), the Lerebour and Secretan equatorial (visual), the photoheliograph, the transit instrument, and the seismometer They have also to do the astronomical computing and the preparation of the observations for the press. The fourth assistant has charge of the clock comparisons and, with the help of the writer, is responsible for the whole of the meteorological work. The writer is responsible for the accounts, correspondence, and all office records. The photographic assistant has charge of most of the photographic developing, printing, etc.
3. Buildings and grounds-(a) Spectroheliograph building.-The roof of this building has given some trouble from leaking and it has been resolved to cover it with ruberoid. Part of the work had been done by the close of the year. The moring roof has now been fitted up with winches by which it is easily opened and closed by one man.
(b) The aeromotor having been repaired was re-erected in August and has worked well.
(c) The new flagstaff referred to in the last report was erected in April.
(d) The grounds have been maintained in fair order during the year but some damage was done to them by a grass fire in February. The fire came from outeide, driven by a strong wind, and though the fire lines were in good order and every
available man was employed in fighting it, it leaped the fire line and spread rapidly over some 50 aeres of the compound. Fortunately it was possible to save the greater part of the plantations so that the actual damage done was not great. This year the fire lines have been widened in parts and some new lines are being cut. The fire swept close past the spectroheliograph house on the east side leaving a large area of blackened soil close at hand. The effect of this on the steadiness of the solar image was very marked and the time of best seeing in the morning was greatly reduced. Some showers of rain fell a few days after the fire, and within three weeks the grass had sprung up thickly and normal conditions were nearly restored.
4. Instruments. -The following are the principal instruments belonging to the Observatory or in use at the present time :-

Six-inch Cooke equatorial.
Sir-inch Lerebour and Secretan equatorial remounted by Grubb with a five-inch Grubb portrait lens of 36 inches foous attached.
Spectrograph I-consisting of slit, collimator lens ois 4 or 7 feet foous, 2-inch parabolic grating, and camera tube without lens. Used in connection with an 11-inch polar siderostat and 6 -inch Grubb lens of 40 feet focus.
A rhomb with ends cut at 45° mounted on a graduated circle oan be placed in front of the slit so as to enable any part of the limb to be brought on to the slit.
Spectrograph II-consisting of slit, collimator lens of 3 feet focus, 3 -inch plane grating and camera lens of 7 feet focus. Used in connection with the 12 -inoh photo-visual lens of the spectroheliograph.
Speetroheliograph-with 18 -inch siderostat and 12 -inch Cooke photo-visual lens of 20 feet focus, by the Cambridge Scientific Instrument Company.
An auxiliary upectroheliograph attached to the above, made in the Observatory workshop.
Six-inch transit instrument and barrel chronograph, formerly the property of the Sarvey of India.
Six-prism table spectroscope-Hilger.
Photoheliograph Dallmeyer No. 4.
Theodolite, six-inch-Cooke.
Two phototheodolites by Steinheil, for cloud photography.
Sextant.
Erershed spectroscope with three prisms for prominence and sunspot work, by Hilger. Mean time clock, Kullberg 6326.

Do. Shelton.
Mean time Chronometer 6299.
Sidereal chronometer, Kallberg 6134.
Tape chronograph, Fuess.
Micrometor for measuring spectrım photographs, Hilger.
Dividing engine, Cambridge Scientific Instrument Company, Limited.
Two Balfour Stewart actinometers.
Buchanan's solar calorimeter.
Induction coil with necessary adjuncts.
Small polar siderostat.
Universal instrument.
Complete set of meteorological instruments, inoluding Richard barograph and thermograph, and wind recorders.
A high class sorew cutting turning lathe by Messrs. Cooke \& Sons.
Ångström Pyrholiometer.
An 18 -inch concave mirror by Henry of Paris belonging to the Assistant Director has been mounted in the spectroheliograph room for general spectrum work and for large seale photographs of sunspots.

OBSERVATIONS.

(a) Solar Physics.

5. The following table shows for each day the solar observations that were made. The number of days on which observations were possible under each head was nearly the same as in the previous year. The most striking divergence from normal was the exceptionally fine weather in November, when visual prominence oboervations were possible on 27 days. There were 20 days in the year on which no solar observations were possible.

Table A．

Solar Observations in 1908.

		 00000000000000000000000000000 ｜	
复		 000000000000000000000000000 	
$\begin{aligned} & \overline{\mathbf{D}} \\ & \text { R } \\ & \vdots \\ & \vdots \\ & \end{aligned}$	$\begin{aligned} & \text { H. } \\ & \text { 융 } \\ & \text { io } \end{aligned}$	 000 $A O A$ $0 O$ 1 1 1 1 1 4 1 1	
朢		 00100000010000000000000000000 	
	$\begin{aligned} & \text { 荡 } \\ & \text { 品 } \\ & \frac{\square}{4} \end{aligned}$	 － 10 $10000000000000000000 こ 000$ 	
¢ ${ }_{\text {¢ }}^{\text {¢ }}$	穴	AAAAAAAAAA $\left\|\begin{array}{ll\|llll}0 & 0 & 0 & 0 & 0 \\ \text { R } & 1 & 1 & 1 & 1 & 1 \\ \hline\end{array}\right\|$ くずひくないくひひ 	
	品		
㐌	宊	AAAAAARAニAAAニAAAAAAAAAARAAAAAAG 0000000000000000000000000000000 	
$\begin{aligned} & \text { a } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{\infty} \\ & \\| \\ & \end{aligned}$:	のAAAARAAA ニ ニニAAAAARAAAARARニAニニA 000000000000000000000000000000 	
－	$\begin{aligned} & \text { rig } \\ & \text { 를 } \end{aligned}$	 $00000000000000000000=1010000000$ 	
		AAAAAAAAAAAAAAAAAAAAAAA 00000000000000000000000 	
		AAAAR AARAARAAA｜ARAAARAロAAAAAAA 010001000000000 0000000000ここ000 	
	$\stackrel{\&}{\Delta}$		

Solar Observations－Abstract．

	1908.												
－			$\begin{aligned} & \text { 号 } \\ & \text { 品 } \end{aligned}$	宽	晏	吕	官	寅		\％ ¢ \％ O	竒	发 曷 ¢	Total．
d	29	27	31	30	31	28	28	29	29	26	27	29	344
B	8	J	1	16	14	7	4	11	8	3	10	9	96
0	28	27	29	30	31	22	14	25	27	21	27	29	810
D	29	27	31	30	31	25	27	28	29	26	27	29	388
E	39	27	31	30	31	25	26	29	28	25	27	29	337

6．Photographs of the sun with the Dallmeyer photoheliograph were taken on 338 days，as against 339 in 1907．The worst month for this work was October， when six days were missed．Twelve solar negatives for 1908， 3 for 1907 and 30 îor 1906 were sent to Greenwich to fill in the gaps in the Greenwich and Dehra Dun series of daily photographs．Double exposures are now taken twice a month for determining the error of orientation of the solar photographs．Formerly this error was determined by actual measurements made on the ground glass and these deter－ minations were probably equally accurate，but there are certain advantages in the permanent record．The chief drawback is that the want of rigidity in the mounting of the instrument renders it somewhat difficult to obtain the two exposures without shaking the telescope．

Tests of the object glass of the photoheliograph show that it is not altogether suitably corrected，and during part of the year a new object glass，which was got for the spectrograph，was used．It is proposed to apply for a new instrument of more modern design．

A number of large－scale photographs of individual spots have been taken both with the 20 －foot lens and the 40 －foot lens．Some of these show great detail in the spot structure．

7．Observations of sunspots．－The sun is examined for spots and faculae every morning when the weather permits．The sun＇s image is projected on an 8 －inch disc and the positions of spots and faculae are marked on it．In previous years and up to April 30 of the year under report this dise was blank except for the north－south and east－west lines，but the discs in use since that date have lines of solar latitude and longitude printed on them．The discs are printed by the cyanotype process from negatives made from the large drawings prepared by Father R．de Beaurepaire． These were drawn for differences of half a degree in the latitude of the sun＇s centre and consequently the positions of spots can be obtained by inspection with consider－ able accuracy．

8．Sunspot spectra．－（a）Visual．－This work is done in aceordance with the suggestions issued by the Committee of the International Union for Solar Research． It indudes the comparison of the spot spectrum with Hale＇s provisional photographic map for the region $5210 \AA$ to F and the detailed study of the following lines ：－ $5383 \cdot 58,5397 \cdot 34,5404 \cdot 36,5405 \cdot 99,5424 \cdot 29,5429 \cdot 91,5445 \cdot 26,5447 \cdot 13,4924 \cdot 1$ ， 5234．79， 5816.79 and 5535.06.
（b）Photographic．－Good photographs of spot speotra have been obtained during the year in the regions C to D and G to K with spectrograph No．II． Spectrograph No．I has also been employed，chiefly in the region about D and from P to G ．

9．General spectroscopic work．－Spectrograph No．II has been employed by the Assistant Director on the following lines of investigation ：－
（1）Determinations of the rotation velocities of the higher gases of the chromosphere．
（2）Determinations of the rotation velocities of the quiet prominences at a considerable height above the sun＇s limb．
(3) Determinations of relative shifts of certain lines in spot and in limb spectra; the lines chosen being those subject to large pressure shifts.
(4) Determination of the amount and probable cause of the general shift towards the red of the lines at the sun's limb discovered by Halm.
(5) Discussion of the differences in the relative intensities of the lines in the spectra of the sun's limb and centre; and the relation of limb to spot spectra.

A large number of good plates have been obtained during the year and a considerable proportion of these have been measured and discussed. The relative pressure in the region of absorption in spots and in the photosphere has been determined and in the limb spectra certain iron lines most affected by pressure are found to be systematically displaced about $0.005 \AA$ towards the violet compared with the same lines at the sun's centre. The general shift of all the lines at the limb towards. the red is clearly brought out by the measures but the precise amount of this shift is not yet determined.
10. Prominences.-Prominences were recorded visually on 310 days against 305 in 1907. On 48 days the combined visual and photographic record was imperfect owing to unfarourable weather conditions. The record of the prominences is made round the disc on which spots and facule have been projected and with the new discs, referred to above, the apparent latitudes of prominences are easily read off directly. The visual record is compared with the photographs taken with the spectrobeliograph and all prominences shown in the photograph but not in the drawing are added in blue pencil. Where there is much difference between the photograph and the drawing the differences are noted. In the case of eruptive or metallic prominences the spectra are examined, the most conspicuous bright lines are recorded, and all large displacements of the C line are also noted and their amounts estimated.
11. Spectroheliograms.-The spectroheliograph was in use throughout the year and photographs of the disc in K_{2} light were obtained on 337 days.

A new camera slit, made in the observatory workshop, was fitted in March and this has considerably improved the general quality of the photographs. On 42 days the results were not altogether satisfactory owing to nnfavourable weather. Disc photographs have also been obtained with the camera slit set on the shading of the K line (K_{1}).

Prominence photographs in K_{2} light were obtained on 300 days; very satisfactory results being obtained whenever the weather was farourable. The minutest details of structure in the prominences are clearly recorded, the photographs surpassing in this respect any drawings that can be made from eye observations. Several notable eruptive prominences have been photographed and their rapid changes of form recorded.

Measures are made of the position angles and heights of the prominences on the best limb photograph of each day and an enlarged positive of the best disc photograph is made on bromide paper. All such positives obtained during a month are correctly oriented and pasted on a large card-sheet this being found most convenient for a general study of the markings.

Prominence spectroheliograms for 55 days were received from the Solar Observatory, South Kensington, and flocculi plates for 328 days were sent in exchange.
12. Solar radiation,-Observations with an Ågström Pyrheliometer were begun in February 1908 and are made on all days that are suitable. These will usually be numerous during the first four months of the year but rare in the other months.

A new scheme has been devised for determining the amount and period of variations in the solar radiation which will be independent of all other methods at present in use, and free from many of the uncertainties attending them.

0 wing to the accuracy with which the relative densities of photographic images may be determined with a suitable photometer, variations (if any) of the solar radiation not less than 1 per cent. ought to be determinable from photometric comparisons of images of the full moon and of certain selected stars known to be approximately constant in their light.

With this end in view apparatus has been prepared for obtaining out－of－focus images of bright stars on the same plate with similar images of the full moon．In order to reduce the moon＇s light to an amount comparable with that of a star and to employ the full aperture of the lens for both stars and moon，the latter is reflected at a known angle from a convex quartz plate．In this way the intensity can be reduced by any desired amount and the out－of－focus image formed from the integrated light of the whole disc of the moon becomes a circular disc of uniform density similar in all respects to that produced by the stars．The relative densities can then be easily measured．The moon and stars are photographed at altitudes not less than 60° and， for each plate，at as nearly as possible the same altitudes．

The only sources of uncertainty to which this method seems subject are want of uniformity in the transparency of the sky near the zenith and possible small variations in the magnitudes of the stars chosen for comparison．

A series of photographs taken during each lunation before and after full moon during good atmospheric conditions should eliminate the former uncertainty，whilst errors arising from the latter could be neutralised by taking a sufficient number of comparison stars．
d considerable amount of experimental work bas already been done and it is hoped that a systematic series of comparisons will shortly be commenced．

Summary of Results．

13．Sunspots．－The following table shows the monthly number of new groups observed，the mean daily number of spots visible，and the distribution between the northern and southern hemispheres：－

		苞		号	－	安	番	郘	苼			安		Year．
New groups＊＊	－	24	17	16	35	26	19	23	26	21	15	19	21	262
Daily number ．．	－•	$3 \cdot 5$	$3 \cdot 4$	$2 \cdot 7$	$5 \cdot 3$	± 4	8.8	$3 \cdot 5$	5.0	5.0	$2 \cdot 9$	$3 \cdot 6$	$3 \cdot 7$	$3 \cdot 4$
North ．．．		11	6	4	9	9	11	8	12	11	8	9	12	110
Sorth ．．．	．	13	11	12	28	17	8	15	14	10	7	10	9	152

During the whole of 1906 northern groups were far more abundant than southern ones and this state continued till March 1907．In April the southern groups pre－ ponderated and have continued to do so except in September and October 1907 and June，October，and December 1908．In April，groups were nearly three times as numerous in the south as in the north．

The mean latitude of the spots varied somewhat irregularly from month to month but the mean latitude for 1908 was less than for 1907．The change was from $10^{\circ} 9$ in the northern hemisphere and $12^{\circ \circ} 4$ in the southern in 1907 ，to $9^{\circ \circ} 9$ in the northern and $10^{\circ} 7^{\circ}$ in the southern in 1908．This change is normal for this epoch in the spot cycle．

There was a considerable fall in spot activity in the year under report，there having been only 262 new groups with a daily average of $3 \cdot 9$ ，against 301 and $4 \cdot 6$ in 1907．The maximum daily average in any one month was 5： 3 in April，as against $7 \cdot 1$ in February 1907 and $7 \cdot 2$ in July 1906.

On four days the sun＇s surface was quite free from spots at the time of observation． The lower spot activity is also indicated by the fact that there were fewer returns of old spots und only one returned for a second time；in the previous year there were many returns and one of them came round five times．

Some 60 large spots were seen during the year and the following notes refer to the most important of these：－
spot on January 29. On February 1 it was still a fairly large spot but with the umbra divided; on the 2nd the whole spot broke up into two nearly equal parts; the following spot, however, was reduced to a biggish dot on the 3rd and disappeared on the 5th.
Nos. $\left\{\begin{array}{l}1361 \\ 1469 \\ 1483\end{array}\right.$
Nos. $\left\{\begin{array}{l}1378 \\ 1379 \\ 1388 \\ 1406 \\ 1407 \\ 1408 \\ 1409 \\ 1433 \\ 1434 \\ 1437 \\ 1438 \\ 1477 \\ 1478 \\ 1479 \\ 1489 \\ 1496 \\ 1498 \\ 1533\end{array}\right.$

No. 1545

No. 1571

Nos. $\left\{\begin{array}{l}1578 \\ 1580\end{array}\right.$

These three belonged to the class of spot groups developing rapidly as they approached the west limb. No. 1361 formed on February 26 as a train of dots within 4 days march of the west limb and developed very large spots within the next two days. It must, however, have filled up rapidly; for it did not return. The growth of No. 1483 , which was first seen on Augast 13, was nearly as large and rapid.
All these groups contained fairly large spots and were most of them active as indicated either by changes in form from day to day or by disturbances in the C and D_{3} lines in their spectra. But the chief feature about them was that they were confined to one particular region of the surface with mean heliographic longitude about $170 .^{\circ}$ The first three were visible at one time, in the early part of April, the second four in May, and the third four in June. The spot activity in those months was not great outside that region. Two other fairly large groups, Nos. 1452 and 1453 , were seen about the end of June, and they too were very near this region.
These were found in another active part of the sun's surface. The region lying between latitudes $+15^{\circ}$ and -20° and longitudes 30° and 34° was on the visible hemisphere in the early part of August and contained the first four large and active griups. $\mathrm{C}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3} were bright over the umbrae of 1478 , on the 3rd and 5th. When this region came round the east limb again, about the end of the month, it still contained 6 groups, 3 of which, Nos. 1496, 1498, and 1503 were large; C was strongly reversed on one of the spots in 1496 on the 30th. But the region of greatest activity appeared to have drifted in a north-westerly direction, for its limits now were latitudes $+20^{\circ}$ and -15° and longitudes 45° and 355°. 7 as a few dots, but developed a large spot by the morning of the 8 th. It rapidly developed further till it became a train of large spots. Reversals and displacements of C and the darkening of D_{3} were frequently seen in this group.
was first seen as a few dots on December 18 about 15° to the east of the central meridian. On the $19^{\text {th }}$ it became a fairly large double spot group and did not change much after that date.
These were large spots that came round the east limb about the end of December. No. 1580 was a return of 1561 ; C was reversed on its umbra on January 4, 1909.
14. Prominences.-The year as a whole has been one of great activity. The mean profile area for the first six months reached $b \cdot 67$ square minutes per diem, this being considerably in excess of any previous estimates. During the second half of the year the mean area fell to 3.93 square minutes per diem.

The general activity of the two hemispheres compared with the previous year is given in the following table:-

Mean daily profile areas of Prominences.

The unsymmetrical distribution of the prominences in the two hemispheres. noticed in the last report has continued and the southern polar region has produced many large prominences, the activity of this region has however shown a marked decrease in the later months of the year.

Two zones of great activity are indicated in the northern hemisphere, in latitudes 10° to 1.5° and 31° to 35°, whilst south of the equator the greatest activity is. in the zone 15° to 20°, with a secondary maximum between 45° and 55°.

Metallic prominences were far more numerous in the southern hemisphere than in the northern and they extended over a greater range of latitude in the south than in the north.

The mean and extreme latitudes observed are given in the following table :-

				Number observed.	Mean latitude.	Extrerne latitudes.		
	North	\ldots	\ldots	\ldots	23	$14^{\circ} .6$	3°	34°
South	\ldots	\ldots	\ldots	58	$16^{\circ} .8$	2°	50°	

There were in addition to the above three metallic prominences recorded in high latitudes; one in the north in latitude $+69^{\circ}$ and two in the south in latitudes -58° and -78°.

The prominence activity in each month may be estimated from the following table:-

The usual apparent deficiency of metallic and tall prominences during the monsoon months is evident, but November having been exceptionally fine, as noted previously, does not show this deficiency.

The following were the more noteworthy prominences of the year:-
January. -The highest prominence of the month, at latitude- 48° west on the 12 th, was a changing, irregular streak $150^{\prime \prime}$ high at $9^{\mathrm{h}} 16^{\mathrm{m}}$ and $200^{\prime \prime}$ at $9^{\mathrm{h}} 48^{\mathrm{m}}$. It occurred in an active region in which fairly large prominences were observed almost every day from the 11 th to the 20th. An eruptive prominence at latitude- 18° west on the 19th underwent rapid changes of form, but unlike most prominences of the kind persisted until the next day.

February.- One of the largest prominences ever observed was recorded on the 18th. Between $8^{\text {b }}$ and $9^{\text {² }}$ it was a more or less connected group occupying 30° of the east limb and $75^{\prime \prime}$ high at the highest part. It was, however, changing both in form and height and was repeatedly photographed until snnset. The main feature indicated by the successive photographs was the vertical rise, with an accelerating speed, of the entire mass. The highest point recorded was 9 minutes from the limb, measured on the last photograph. It had disappeared by next morning.

Eruptive prominences reaching to considerable altitudes were also photographed on the 4 th and 17 th, both on the west limb and in latitude -60°.

The spentrum of a prominence at the east limb on the 7th showed about 30 lines, belonging mainly to $\mathrm{Na}, \mathrm{Mg}, \mathrm{Fe}, \mathrm{Ti}$, and He . The list also contained certain "unknown" lines.

March. - There were two prominences $2 \frac{1^{\prime}}{2}$ high in this month; one on the equator on the 7th, and one near the south pole on the 14 th.

May.-A persistent group of large prominences was visible alternately on the west and east limbs, which reached its maximum development on the 17 th of this month. It first appeared on March 28, was conspicuous in April, and vanished early in June.

July.-A prominence observed at latitude $+10^{\circ}$ east on the 31st underwent many minor changes as shown by successive Ca photographs, but the main part which had the form of a well defined ring or horse-shoe persisted with little or no change in all the photographs of that day and could also be traced in a photograph taken on the previous day. This prominence was associated with spot No. 147%, first seen at the east limb on the 31 st and which showed reversals of $\mathrm{C}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3} on the umbra as it advanced westwards.

August.-The highest prominence of the month was photographed in Ca , on the 13 th, at latitude -28° east. It was $210^{\prime \prime}$ high at $7^{\mathrm{h}} 59^{\mathrm{m}}$ but had totally disappeared by $8^{\mathrm{h}} 23^{\mathrm{m}}$. Close to it was a group of bright prominences showing displacement towards red of $2 \AA$ in F and about $1 \AA$ in D_{3}. It was photographed eight times between $7^{\mathrm{h}} 59^{\mathrm{m}}$ and $10^{\mathrm{h}} 43^{\mathrm{m}}$ and underwent great changes during this period.

On August 11 at latitude -16° west F was displaced about $4 \AA$ to red and 3 a to violet at $9^{\mathrm{h}} 9^{\mathrm{m}}$ but there was then no prominence in that position. At $9^{\mathrm{h}} 12^{\mathrm{m}}$ the displacement had almost gone and a prominence had appeared $20^{\prime \prime}$ high. The height had increased to $50^{\prime \prime}$ by $9^{\mathrm{h}} 14^{\mathrm{m}}$ and to $90^{\prime \prime}$ by $9^{\mathrm{h}} 18^{\mathrm{m}}$ but the top was then very faint. There was no displacement whatever at $9^{h} 16^{m}$.

September.-On the 1st at $9^{\text {h }} \mathrm{F}$ was displaced to violet at latitude -90.5 east; at this position there was a small prominence which very rapidly increased in height from less than $10^{\prime \prime}$ at $9^{\mathrm{h}} 2^{\mathrm{m}}$ to $10^{\prime \prime}$ at $9^{\mathrm{h}} 8^{\mathrm{m}}$ and $120^{\prime \prime}$ at $9^{\mathrm{h}} 10^{\mathrm{m}}$. The amount of displacement and the area affected were changing rapidly. At $9^{h} 5^{m}$ it extended over a wide area and the maximum amount was $6 \AA$. It was only $3 \hat{A}$ and confined to one point at $y^{\mathrm{h}} 13^{\mathrm{m}}$ and it was still further reduced at $9^{\mathrm{h}} 25^{\mathrm{m}}$, but the direction was still towards violet. At $9^{h} 27^{\mathrm{m}}$, however, F was displaced 1.5 i to red from latitude -10° to -14°. The amount was $6.4 \AA$ to red in 0 at $9^{\mathrm{h}} 30^{\mathrm{m}}$. The form and height were changing in the meantime equally rapidly. The height had increased to $150^{\prime \prime}$ by $9^{\mathrm{h}} 15^{\mathrm{m}}$, but fell to $40^{\prime \prime}$ at $9^{\mathrm{h}} 33^{\mathrm{m}}, 25^{\prime \prime}$ at $9^{\mathrm{h}} 39^{\mathrm{m}}$ and $15^{\prime \prime}$ at $9^{\mathrm{h}} 49^{\mathrm{m}}$. In the Ca photographs the eruption was not recorded, probably on account of the large displacement of the spectrum lines which would throw the Ca line K off the camera slit of spectroheliograph.

October.-A group of very tall and faint disconnected streaks extending over 35° of the north-east limb was photographed at $8^{\mathrm{h}} 17^{\mathrm{m}}$ on the 12th. The tallest of them reached a height of $6 \frac{1}{4}{ }^{\prime}$. Later photographs showed the group to be rapidly fading and there was nothing left by $10^{\mathrm{h}} 11^{\mathrm{m}}$.

Another eruptive prominence was seen on the same day near the south pole; it was $150^{\prime \prime}$ high at $8^{\mathrm{h}} 17^{\mathrm{m}}$ and attached to the limb at one point only; by $8^{\mathrm{h}} 57^{\mathrm{m}}$ it was completely detached, the base being $60^{\prime \prime}$ above the limb and the top $150^{\prime \prime}$. It continued rising till $11^{h} 30^{m}$ when only a small cloud remained $360^{\prime \prime}$ above the limb and this had vanished at $14^{\mathrm{h}} 34^{\mathrm{m}}$.

November.--The tallest prominence of the month was observed on the west limb on the 13 th and was found to be rapidly changing. It was $270^{\prime \prime}$ high in O at 9^{h} 26^{m}, but the height was only $70^{\prime \prime}$ at $9^{\mathrm{h}} 54^{\mathrm{m}}$ and there was nothing left by $10^{\mathrm{h}} 22^{\mathrm{m}}$.

December.--A group of prominences on the north-east limb on the 14th was $90^{\prime \prime}$ high at $8^{\mathrm{h}} 58^{\mathrm{m}}$ but rose to $180^{\prime \prime}$ in about three hours. The maximum height was $240^{\prime \prime}$ at $13^{\mathrm{h}} 45^{\mathrm{m}}$. More striking than the increase in height were the rapid changes in form the prominences were undergoing throughout the period of observation.

Another remarkable prominence was observed at the east limb on the 27 th, apparently associated with the large spot No. 1578 then nearing the east limb. When first seen it was an ordinary, compact bank occupying about 16° of the limb and $50^{\prime \prime}$ in height. At $9^{\mathrm{h}} 22^{\mathrm{m}}$ it bad apparently burst asunder and at the northern extremity there appeared a floating cloud $140^{\prime \prime}$ above the limb which. in subsequent photographs was seen to grow larger, rise higher, and drift rapidly northwards. The maximum height measured was 5^{\prime} at $11^{\mathrm{h}} 12^{\mathrm{m}}$, when only a small bright cloudlet remained. At $9^{\mathrm{h}} 47^{\mathrm{m}}$ an enormous eruption burst out from a point 4° south of the original prominence and streamed northward arching over the remains of the earlier outburst. This also rose to a beight of 5^{\prime} and then quickly dissolved away.
(b) Other Obsertations.
15. Time. - The error of the standard clock is usually determined by reference to the $16^{\text {in }}$ signal sent from the Madras Observatory. This is rendered possible by the courtesy of the Telegraph department which permits the Madras wire to be joined through to this observatory. The signal is received with accuracy on most days and all failures are at once reported to the officer in charge of the Madura division who takes much interest in the accuracy of the time service. Time determinations are made with the transit instrument at frequent intervals as a check.

The mean-time standard clock and two chronometers were cleaned during the year.

The usual time signal to the station was given, by means of a flag, throughout the year.
16. Meteorology.-Meteorological observations were carried on as in former years. Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$ and 16^{h} local mean time. Temperatures and pressure are recorded by a Richard thermograph (wet and dry bulb) and barograph, and the mean temperatures and pressure are obtained from the traces corrected by reference to the eye observations. The wind direction and velocity are got from a Beckley anemograph.

Temperature. The mean temperature for the year was $56^{\circ} \cdot 2$ or $0^{\circ} \cdot 1$ below the average. In January the temperature was nearly a degree above the average; in March it was $1^{\circ} \cdot 1$ and in November $2^{\circ \cdot 3}$ below the average. The highest shade temperature was $75^{\circ} \cdot 2$ on April 25 and the lowest $38^{\circ} \cdot 0$ on December 10 . The highest temperature in the sun was $141^{\circ} 4$ on April 12, and the lowest temperature on the grass was $190^{\circ} \%$ on January 23.

Humidity. - The mean relative humidity for the year was the same as the normal. The largest departures from normal were in February when it was 7 per cent. below and March when it was 7 per cent. above normal.

Rain.-The rainfall for the year us a whole was nearly normal but the distribution was peculiar. The fall was largely in excess in February and October and largely in defect in May, November, and December. Rain fell on only 4 days in November and on 3 days in December against a ten years' average of 17 and 13 days. The heaviest fall on one day was $2 \cdot 38$ inches on February 24.

Wind.-On the average for the year winds were slightly weaker and 1 point more northerly than usual. The strength was largely below normal in January, June, July, and September and largely above normal 'in November. The largest amount of wind on any one day was 776 miles on December 24 , and the smallest amount was 92 miles on June 4.

Transparency of the atmasphere. -The transpareney of the lower atmosphere asjudged by the visibility of the Nilgiris-100 miles distant-was about normal.

Cloud and sanshine. - The year was on the whole less cloudy than usual and the amount of bright sunshine was 184 hours above the average. There was an excess of bright sunshine in all months except July and October The excess was large in
April, November, and December.
17. Seismology.-The Milne horizontal pendulum worked well throughout the yeer and the results are given in appendix I. Earthquakes were very numerous and the number recorded here was 67 as against 24 in 1907 . The original records of the euthquakes are retained at the Observatory, but copies of the more important shooks are mant to the British Association Committee, the Strassburg International Baresa, and to other workers on the subject who ask for them.
18. Library.-The library catalogue was completed and has been kept up to date. One hundred and sixty-four books were bound during the year.
19. Publications.-Bulletins Nos. XII. and XIII., which complete Volume I., were issued during the year and No. XIV. was in type at the close of the year. They all deal with prominence observations. Part I. of the Memoirs of the Observatory is nearly ready for the press. It is devoted to a full discussion of the photographs of sunspot spectra taken in 1907. In addition to these the following papers were published during the year :--
"Solar Prominences in 1907, observed at the Kodaikánal Ubservatory" by John Evershed. (M.N., R.A.S. Vol. LXVIII., No. 7.)
"A Large Prominence" by John Evershed. (A.P.J. Vol. XXVIII., No. 1.)
"Note on the Wave-length of $\mathrm{H} \delta$ and H_{ϵ} in the solar spectrum" by John Evershed. (A.P.J. Vol. XXVIII., No. 2.)
20. General.-The Director-General of Observatories visited the Kodaikánal and Madras Observatories in Febraary. He was accompanied by Prof. and Mrs. Schuster.

The Director visited Madras in November and superintended the erection of the new dome for the 8 -inch equatorial and re-erected the telescope. He also re-wired the transit instrument and the collimators and readjusted them.

The sanction of Government has been obtained for an electric installation for the Observatory and it is hoped that the work will begin at an early date.

The staff of the Observatory worked well throughout the year and so made it possible to keep abreast of the ever-growing work.

Kodairánal,
3rd February 1909.
C. Miohir Smith,
Direetor, Kodaikdnal and Madras Observatories.

II--REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1908.

1. Staff.-Mr. M. Littlehailes was in charge of the Observatory till the 7th of September, when I returned from furlough and relieved him.

Both the computer and the second assistant were on privilege leave during the year. Mr. M. G. Subrahmanyam, the first assistant, left the Observatory on the 8th February to take up his work at the Bombay Meteorological office, and Mr. A. A. Narayana Aiyar was appointed in his place.
2. Time service.-No change was made during the year in the programme of astronomical observations, nor in the system of time signals distributed from the Observatory. In the meridian observations, which formed practically the whole of the work, all the transits were recorded on the chronograph, and the determinations have on the whole been very satisfactory. The time-gun at the Fort was fired correctly at noon and 8 p.m. on 705 occasions out of 732 , giving 96.3 as the percentage of successes agaiust $97 \cdot 1$ last year. Bad tubes, defects in the apparatus and line, have been the causes of the failures. As we have no measuring instrument here to test the current in the line and its insulation, it is not possible to differentiate quickly and with certainty between the two latter sources of trouble. Proposals relating to this matter will form the subject of a separate communication. The time ball at the Port office was dropped at 1 p.m. correctly on all occasions except l3. On eight of these it was dropped correctly at 2 p.M. None of these failures were due to faults at the Observatory.

Since the 11th a pril records of the 8 and 16 -hour roll of signals have been taken by the chronograph, the tape receiving at the same time seconds from the Riefler clock. These show that the hand-sent signals are extremely good and that any improvement in the sending effected by substituting an automatic arrangement would not be appreciated unless the methods of receiving the signals are very materially improved.
3. Meteorological observations.-Meteorological observations were made at the usual hours $8,10,16$, and 20 local mean time. The 10 -hour and 16 -hour observations were reduced and sent to the India Meteorological office on Form F. Observations on cloud movement were continued. Besides the ordinary weather messages, special storm observations were sent on one occasion to Simla and on 133 oceasions to Calcutta. The tabulations of the traces of the autographic meteorological instruments at Madras and of the Anemograph at Dodabetta are brought up to date.
4. Buildings.-Certain repairs to the buildings were effected during the year. In September the materials for the construction of a new dome over the 8 -inch equatoreal were received from England. The clock, the telescope and its mountings were safely taken down early in October, and the work of removing the old dome and preparations for erecting the new one taken in hand at once. All work was however stopped by the heavy rain at the end of October. In November the Director visited the Observatory and during the fine weather that set in after the first week, the work on the new dome was resumed under his superintendence, and I was relieved of responsibility in a matter in which I had no previous experience to guide me, and no time to acquire any by a tedious process of trial and error. The erection of the dome was completed and the telescope remounted early in December and nearly all work on the structure was finished before the end of the year.
5. Instruments.-The following is the list of instruments at the Madras Observatory on the 31st December 1908:-

> (a) Astronomical.

Eight-inch Equatorial Telescope-Troughton \& Simms.
Sidereal Clock-Hzaswall.

Mean Time Clook-J. Monk.
Mean Time Chronometer-V. Kullberg, 5394.
$" \quad$ Parkinson \& Frodsham, 2352.
Portable Transit Instrument-Dolland.
Portable Telescope with stand.
Tape Chronograph-R. Fuess.
Reley for use with the Chronograph-Siemens.
(b) Meteorological.

Richard's Barograph-No. 10, L. Casella.
Richard's Thermograph-No. 3618, L. Casella.
Beokley's Anemograph-Adie.
Sunshine Recorder-No. 149, L. Casella.
Anemoscope-P. Orr \& Sons.
Nephoscope-Mons. Jules Daboscq \& Ph. Pellin.
Barometer, Fortin's-1771, L. Casella.
" 725, L. Casella (spare).
1420, L. Casella (spare).
Dry Bulb Thermometer-No. 94221 , L. Cassella.
No. 38037, Negretti \& Zambra (spare).
Wet Bulb Thermometer-No. 94219, L. Casella.
No. 38037, Negretti \& Zambra (spare).
Dry Maximu" Thermometer-No. 8581, Negretti \& Zambra.
Dry Minimum Thermometer-No. 69047, L. Casella.
Wet Minimum Thermometer-No. 91753, Negretti \& Zambra.
Sun Maximum Thermometer-No. 10479, Negretti \& Zambra.
Grass Minimum Thermometer-No. 3377, Negretti \& Zambra.
Rain-gauge (8^{a} diameter)-No. 1042, Negretti \& Zambra.
Measure glass for above.
Rain-gauge ($5^{\prime \prime}$ diameter).
Measure glase for above.
The micrometer frame of the transit was rewired by the Director in November, and a new system of wires was put in the south collimator; the north collimatorwas also rewired. The instrument has been steady throughout the year. The Riefler keeps a steady rate for long periods. On September 11-12, however, it was subjected to some unknown disturbance and gained as much as 12 seconds in 18 hours. Its daily rate had been 0.15 second, gaining, previous to this and was very unsteady for some weeks after this. During the last two months of the year the rate has been remarkably steady.

The Haswall clock which was taken down with the telescope had not been put up again at the end of the year.
6. Weather summary.-The following is a summary of the meteorological conditions at Madras during the year 1908 :-

Pressure.-Pressure was above normal in January, March, July; and December, below normal during the other months; in May it was normal. The greatest excess was 0.020 inch in January and the greatest defect was 0.041 inch in April. The highest pressure was $30 \cdot 176$ inches on January 8 and the lowest $29 \cdot 569$ on June 29.

Temperature.-The mean temperature was above the average in all months except September, November, and December. The maximum shade temperature was also above normal in all months except January, February, September, November, and December, the greatest excess being 3.9 in June and the defect being 2.4 in September. The minimum in the shade was above normal in January, February, April, May, June, and July and below normal in the remaining months; the minimum on grass was below normal in March, October, November, and December and abovenormal during the other months. The maximum in the sun was below the average in all the months of the year. The highest shade temperature recorded was $109^{\circ} 6$ on April 26 and May 30, and the lowest $60^{\circ} 8$ on January 20 ; the highest reading of the black bulb thermometer in vacuo was $154^{\circ} 0$ on May 11.

Humidity.-The percentage of humidity was normal in June and November, in slight defect in March and December and above normal in all the other months. The driest day was March 8 with 13 per cent. of humidity.

Wind.-The wind direction was normal or nearly normal in all montis except in October when it was 3 points more southerly. The amount of air movement was in defect throughout the year.

Cloud.-The percentage of cioud was in slightexcess in February, March, and July and in dofect in all the other months.

Sunshine.-The percentage of bright sunshine was below normal thronghout the year, the greatest defect being $21 \cdot 9$ in February. There were $2,145 \cdot 8$ hours of bright sunshine during the year.

Rainfall.-The rainfall was above the av erage in February, August, September, and October and below during the remaining months of the year. The greatest excess was 13.78 inches in October and the defect was 3.00 inches in December. The rainfall for the whole year was 55.97 inches on 88 days, being 6.95 inches above the normal. The monsoon rainfall from October 15 to the close of the year was $39 \cdot 07$ inches against an average of $26 \cdot 00$ inches. The greatest fall on any day was $7 \cdot 28$ inches on October 23.

Storms.-(1) On the 25th September, a storm crossed the coast near Cocanada, and caused a strong indraught from the Arabian sea across the Peninsula, followed by exceptionally heavy rain in the Deccan during the period 26th to 28 th.
(2) On the 29 th December a storm of some severity was formed in the south-west of the Bay and moved in a westerly direction giving moderate to heavy rain at Madras and over the south of the Presidency.

Madras Obserfyatory, 3rd February 1909.
R. Ll. Jongs,
Deputy Director.

Appendix I.

Kodaikinal Observatory Seismological Records in 1908.

Appendix II.

17

Appendix III.
Kodatrínal Mean Hourly Wind Volooity for the year 1908.

Appendix IV.

Kodatríajal Mean Hourly Bright Sunshine for the year 1908.

Appendix V.

Nemare of days in each month on which the Nilgiris were visible in 1908.

Month.	Very clear.	Visible.	Just visible.	Tops ouly	Total,
January	1	10	4	3	18
Fobramry	-•	8	1	3	12
Maroh	5	4	6	1	16
April	3	1	3	..	7
May	2	2	5	..	9
Jano	0	7	2	-•	18
Joly	3	4	3	-	10
August	3	8	5	-	16
Septemaber	13	4	5	1	28
Ootober	4	2	7.	-.	13
November	*	3	8	1	12
Decomber	9	7	2	3	21
Total	52	60	${ }^{5} 51$	12	175

Latitude－$-0^{0} 9^{\prime} \mathrm{N}$ ．
Longitude－5h 10m 10 E ．

Longitude－5h 10 m 10 s E．																				
Month．	Barometer．		$\mathrm{D}_{\text {ry }}$ bulb thermometer．				Wet bulb．		Tension of vapour． Relative humidity By Blanford＇s tables．		$\begin{gathered} \text { Sun } \\ \text { Sana } \\ \text { ing aro. } \end{gathered}$	$\underset{\substack{\text { Min. } \\ \text { grase. }}}{\text { gras. }}$	Wind．			Rain．		${ }_{\substack{\text { chear } \\ \text { clear }}}^{\text {cher }}$	Remarks．	
	Redaced to 32° ．	$\begin{array}{\|l\|l} \text { Daily } \\ \text { range. } \end{array}$	Mean．	Max．	Min．	Kange．	Mean．	Min．			$\begin{aligned} & \text { peily } \\ & \text { velooity. } \end{aligned}$		Mean	direction．	Amount．	Days．				
	nverrs．	nimor	7			20.5	${ }_{6} 6$										¢，			
	－28880	－ 1.126	${ }_{76} 76.6$	${ }_{8}^{88.6}$	${ }^{66 \cdot 0}$	${ }_{24}^{20.6}$	${ }^{66 \cdot 9}$	${ }_{60 \cdot 9}^{60 \cdot 1}$	－ 5111	${ }^{61}$	（1420．		${ }_{4}^{40.2}$	${ }^{12} 8$	$\stackrel{\text { S．E．}}{\substack{\text { S．} \\ \text { E．}}}$	2．19	－	${ }_{68}^{44}$		
	$\stackrel{.973}{880}$	${ }_{-144}^{157}$	80.3 83.8	${ }_{96,6}^{92 \cdot 9}$		${ }_{22}^{24.7}$	${ }_{73}^{69.4}$	${ }^{64 \cdot 4} 8$	－ 6663	${ }_{5}^{54}$	$147 \cdot 0$ $150 \cdot 4$	$66 \cdot 6$ 68.8	${ }_{4}^{46 \cdot 6}$	${ }_{30}^{11}$	S．E．by E．	${ }_{\substack{5.19 \\ 3.65}}^{\text {a }}$	${ }_{8}^{6}$	${ }_{73}^{68}$		
${ }_{\text {May }}$	${ }^{\text {P }} 8.889$	． 117	$88 \cdot 7$ 81.6 8		${ }_{72}^{72.7}$	－ 23.6	$\xrightarrow{72 \cdot 5}$		－609	60 57 50	cins $\begin{gathered}155.1 \\ 150.3\end{gathered}$		59.1 89.9	${ }_{20}^{22}$		（	${ }_{2}^{5}$	${ }_{63}^{66}$		
${ }^{\text {Junly }}$	－864	． 117	${ }_{8}^{81.1}$	－${ }_{\text {92：}}^{98}$	${ }_{72}{ }^{2} 2$	$2{ }_{20} 2$	70：5	${ }_{67}{ }^{6} \cdot 2$	－668	${ }_{5}^{64}$	${ }^{150.3}$	${ }_{69} 6.0$	${ }_{83}^{89} 8$	${ }_{16}^{20}$	\％．	0.47	1	${ }_{89}^{83}$	Sun maximum	
${ }_{\text {Ster }}^{\text {Soptember }}$	${ }_{\text {：} 862} 88$	${ }_{-128}^{112}$	38.1 81.0	$\xrightarrow{959.8}$	${ }_{7}^{71 \cdot 4}$	${ }_{21}^{23.8}$	${ }_{7}^{70.1}$	${ }^{66 \cdot 6}$	． 5653	${ }_{62}^{53}$	${ }^{1650.6}$	66.7 67.3	${ }_{74}^{83 \cdot 2}$	${ }_{28}^{19}$	s．w．by s ．		$\frac{1}{5}$	${ }_{55}^{59}$		
Ootober	：9964	${ }^{-127}$	70．3．	${ }^{89.2}$	${ }_{\text {cher }}^{\text {71．4．}}$ 67．	17.8 19 19	$\underset{\substack{71.1 \\ 6 \% 8}}{ }$	${ }_{\substack{68.2 \\ 64.2}}$	－ 8.69	${ }_{69}$	cill 11.7	${ }_{6}^{68 \cdot 4}$	47.1 $32 \cdot 2$	16 15 15		8．80	${ }_{1}^{12}$	${ }_{88}^{51}$	${ }^{\text {on }}$（11）dayg	
Deoember	${ }^{29.002}$	${ }_{-182}$	${ }_{75 \cdot 8}$	${ }_{87}{ }_{87} 8.1$	64．4	${ }_{22}{ }_{22} \cdot 7$	${ }_{\text {ck }}^{67.8}$	${ }_{60 \cdot 8}^{66.8}$	－ 489	69	${ }_{134 \cdot 5}^{138 .}$	$58 \cdot 1$	${ }^{32} 4.7$	15	s．E．${ }^{\text {s．by }}$ B．	0.12	${ }_{0}$	76		
Annoal	${ }^{28} 909$	0.1	${ }^{79.8}$	91.7	69.8		$70 \cdot 3$	${ }_{65} 7$	0.579	57		${ }^{64.8}$	57．7	18	s．s．w．	${ }^{38} 48$	${ }^{43}$	59	－Mean of ${ }_{\text {conthe．}}$	

Extramr monthly Meteorological Records at the．Periyakulam Observatory in 1908.

寅	豈	
		离
号		
	$\begin{aligned} & \text { 高 } \\ & \text { 埌 } \end{aligned}$	
	亶	
		－
$\begin{aligned} & \text { 亳 } \\ & \text { 畐 } \end{aligned}$		
$\begin{aligned} & \text { 总 } \\ & \text { 苟 } \end{aligned}$		
		－
	$\begin{aligned} & \text { 藅 } \end{aligned}$	
		－\＃゙，－
	宮	
	嗀	
	$\begin{aligned} & \text { 要 } \\ & \text { 畜 } \end{aligned}$	
臬		：：：：：：：：：：

Appendix VIII.

Abstract of the mean meteorological condition of Madras in the year 1908 sompared with the average of past years.

Mean values of						1908.	Difference from	Average.
duceed strmospheric pressure ..	-	\cdots	-	*	-•	29.857	0.007 below.	29.86
mperatare of air	-	-	*	-	\cdots	81.5	0.4 above.	81.1
Do. of evaporation	-	-•	*	\cdots	.	75.7	$1 \cdot 2$	74.5
reentage of humidity ..	-	.	-	-	-•	75	3	72
'eatest solar heat in vacuo	.	-	-	-•	-•	134.0	5.7 below.	$139 \cdot 7$
sximum in shade ..	-	.	-	\cdots	-•	91.5	0.7 abore.	90.8
nimum in shade	-	.	\cdots	-•	-•	74-7	Same as	74.7
Do. on grass .	-	.	.	.	-•	$72 \cdot 5$	$0 \cdot 6$ above.	71.9
infall in inohes on 88 days ..	\cdots	\cdots	-	.	-	5.5 .97	6.95 "	49.02
neral direotion of wind ..	-	\cdots	-	\cdots	.	S.E.	Same as	S.E.
ily velocity in miles	\cdots	-	-		-•	180	41 below.	171
roentage of oloudy sky ..	\cdots	-	-	-	-•	44	"	49
Do. of bright suushine ..	*	-	.		-•	$48 \cdot 7$	97 "	58.4

Dubation and quantity of the wind from different points.

From	Hours.	Miles.	From	Hours.	Miles.	From	Hours.	Miles.	From	Hoars.	Miles.
rth	102	646	East ..	178	872	South ..	265	1,608	West	831	2,630
by E. ..	321	1,798	E. by 8. ..	286	1,128	S. by W...	282	1,370	W. by N...	150	1,114
N.E.	324	1,938	E.S.E. ..	326	1,368	S.S.W.	272	1,480	W.N.W.	117	819
E. by N...	464	3,320	S.E. by E.	264	1,377	S.W. by S .	173	698	N.W.by W.	54	367
	237	1,602	S.E.	556	3,342	S.W.	165	833	N.W. ..	53	340
E. by E.	285	1,582 ${ }^{\text {r }}$	S.E. by S.	610	4.528	S.W. by W.	176	862	N.W.by N.	60	297
N.E.	177	915	S.S.E.	453	3,020	W.S.W.	291	1,621	N.N.T. .	106	600
by N. ..	167	1,034	S. by E.	342	1,855	W.by S...	274	1,70:	N. by W...	187	998

There were 786 calm hours during the year. The resultant corresponding to the above umbers is represented by a S.E. wind, blowing with a uniform daily velocity of 27 miles.
Appendix IX.

nppochuix ar

Áppendix XI.

Appendix XII.

Madras Observatory.-Wind, cloud, and bright sunshine, 1908.

Appendix XIII.

Extreme monthly Meteorological Records at the Madras Observatory in 1908.

