KODAIKÁNAL AND MADRAS OBSERYATORIES.

REPORT FOR THE YEAR 1910.

CONTENTS

KODAIKANAL AND MADRAS OBSERVATORIES.

I.-REPORT OF THE KODAIKÁNAL OBSERVATORT FOR THE YEAR 1910.

Staff.-The staff of the Observatory on the 31st December 1910 was as follows :-

The Assistant Director was on privilege leave from May 20 to August 19. The appointment of a temporary extra assistant was sanctioned for four months from April 23, and Mr. T. K. Raghunatha Rao, b.A., was appointed to the post. His services were retained as acting third assistant from August 19 to December 23 during the successive absences on privilege leave of the first, second, and third assistants. The writer and the photographic assistant were on privilege leave from July 27 to December 28.

The subordinate staff consists of a book-binder, a book-binder's boy, a mechanic, five peons, a boy peon for the dark room, and two lascars.
2. Distribution of work.-The distribution of work amongst the staff was the same as last year.
3. Buildings and grounds.-Plans and estimates have been prepared and forwarded to the Government of India, for sanction, for the construction of a house for the photographic assistant who has at present to live atia distance of three miles from the Observatory.

There has been much delay in connection with the electric installation for the Observatory, but a revised estimate has renently been sanctioned by the Government of India and it is hoped that the work will be begun early in 1911.

About 1,000 young seedlings, chiefly pines, were planted during the year. Those formerly planted have made remarkably good progress and if fire can be kept out they will soon form a most valuable sereen. The old fire lines have been broadened and new ones cut. During the year fires from the outside have been successfully warded off, but one fire lighted inside-evidently maliciously-destroyed 50 young trees before it could be extinguished.
4. Instruments.-The following are the principal instruments belonging to the Observatory, or in use, at the present time :-

Six-inoh Cooke equatorial.
Six-inoh Lerebour and Secretan equatorial remounted by Grubb with a five-inoh Grubb portrait lens of 36 inches foous attached.
Spectrograph I-consisting of slit, collimator lenses of 4 and 7 feet foous, 2 -inoh parabolic grating, and camera tube without lens. Used in connection with an 11-inch polar siderostat and 6 -inch Grubb lens of 40 feet focus.
A rhomb with ends eut at 45° mounted on a graduated circle can be placed in front of the slit so as to enable any part of the limb to be brought on to the slit.

Speetrograph II.-Spectrograph II. has been dismantled, the grating is used in spectrograph III.
Spectrograph III.-consisting of slit provided with vertical and horizontal millimetre scales for measuring position angles, and a reflecting device for rotating the sun's image, collimator lens of $210 \mathrm{c} . \mathrm{m}$. focus, 6 -inch Miohelson grating, and camera lens
of about 4 metres focus. The spectrograph is used with the 18 -inoh concave mirror.
Spectroheliograph - with 18 -inch siderostat and 12 -inch Coote photo-risual lens of 20 feet focus, by the Cambridge Scientific Instrument Company.
An auxiliary spectroheliograph attached to the above, made in the Observatory workahop.
Six-inch transit instrument and barrel ohronograph, formerly the property of the Survey of India.
Six-prism table spectrosoope-Hilger.
Photoheliograph Dallmeyer No. 4.
Theodolite, six-inch-Cooke.

Sextant.

Evershed spectroscope with three prisms for prominence and sunspot work, by Hilger.
Mean time clock, Kullberg 6326.
Do. Shelton.
Mean time Chronometer, Kallberg 6299
Sidereal ohronometer, Kullberg 6134.
Tape ohronograph, Fuess.
Micrometer for measuring spectrum photographs, Hilger.
Dividing engine, Cambridge Scientific Instrument Company, Limited.
Two Balfowr Stewart actinometers.
Buchanan's solar calorimeter.
Induction coil with necessary adjuncts.
Small polar siderostat.
Universal instrument.
Complete set of meteorological instroments, inelading Riohard barograph and thermograph, and wind recorders.
A high class sarew outting turning lathe by Messrs. Cooke \& Sons.
Àngström Pyrheliometer.
An 18-inch eoncave mirror by Henry of Paris belonging to the Assistant Director has been moanted in the spectroheliograph room for general spectrum work and for large scale photographs of sunspots.
Sanction having been obtained for sending home the 18 -inch mirror of the spectroheliograph to be refigured, an application was made to the Joint Eclipse Committee for the loan of a mirror. This was kindly granted and one of the eclipse colostats with a 16 -inch mirror was sent out. This was used while the 18 -inch mirror was away, except for a short time when the colostat was fitted up for taking photographs of Halley's comet. During this time the 11-inch mirror belonging to the 40 -foot spectrograph was used. The 18 -inch mirror was returned on September 27 greatly improved.

OBSERVATIONS.

(a) Solar Physics.
5. The following table shows for each day the solar observations that were made:-
Table A.

$A=$ Apots obsorred.				$\mathrm{B}=$ Spot mpootra.		Solar Observations in 1910.				$\mathrm{E}=$ Sppotroheliograms.		
Dato.	Janaery.	Fobrary.	Maroh.	April.	May.	June.	July.	August.	September.	ber.	November.	ceomber.
			A-ODE	-0								
${ }_{2}^{2}: 3$							A-ODE				${ }_{\text {a }}^{\text {A- }}$	${ }_{\text {che }}^{\text {A-CDE }}$
${ }_{5}^{4}$	${ }_{\text {A }}{ }^{\text {a }}$					A-GDE	A-			A= ${ }^{\text {A }}$	A--D	$\stackrel{\text { A-CDE }}{ }$
	${ }^{\text {A B }} \bar{\sigma} \overline{D E}$	$\stackrel{\text { Alc }}{ }$	${ }^{\text {A }}{ }^{\text {A B O D D }}$	${ }^{\text {A }}$	${ }_{\text {A }}{ }_{\text {A }}$	${ }_{\text {A- }}$				ABCODE	b.	- ${ }^{\text {code }}$
	${ }^{\text {A }}$	$\xrightarrow{\text { A-G }}$	${ }^{\text {A }}$						${ }^{\text {a }}$		A- $-\mathrm{D}-$	A- ${ }^{\text {a }}$
		${ }^{\text {A }}$	${ }^{\text {AL }}$	${ }^{\text {a }}$	A-UDE	$\xrightarrow{\text { A- }}$		${ }^{\text {A }}$				A-CDE
	A-ODE				A-CDE		${ }_{\text {a }}^{\text {A-ODE }}$				${ }_{\text {a }}^{\text {A-ODE }}$	$\xrightarrow{\text { A-C DE }}$
	${ }_{\text {a }}^{\text {A }}$	A-ODE	${ }^{\text {a }}$					($\stackrel{\text { A }}{ }$	
	${ }^{\text {A }}$		A-OD ${ }^{\text {a }}$	${ }_{\text {A-CDE }}$							俍	A-ODE $A=C D E$
		${ }^{\text {A B B B DE }}$	A= ${ }^{\text {a }}$,		${ }^{\text {A }}$			A-ODE	${ }_{\text {a }}^{\text {A-CD }}$			A-ODE
	${ }_{\text {a }}^{\text {Abobr }}$	${ }_{\text {A }}{ }^{\text {A B O D E }}$			(
$19 .:$	${ }_{\text {a }}$			${ }^{\text {A }}$			${ }^{\text {A }} \mathrm{A}-\mathrm{ODE}$	$\stackrel{\text { A }}{ }$	$\stackrel{\text { a }}{ }$	$\stackrel{A}{1}$	$\stackrel{\text { A }}{ }$	\triangle
${ }_{21}^{20} .:$			A- ${ }_{\text {A }}$	A-CDE				A二-DE	${ }_{\text {a }}^{\text {A-CDE }}$		$\underset{A-C D E}{A-C D E}$	
	${ }^{\text {A }}$	${ }_{\text {A }}$	${ }^{\text {A }}$	${ }^{\text {a }}$	ABCDE	$\stackrel{A}{A}$	${ }_{\text {a }}^{\text {A-GDE }}$					A-CDE
	${ }^{\text {A }}$	${ }^{\text {A B O D D }}$		$\stackrel{\text { a }}{\text { A }}$	${ }_{\text {A }}$		A-C D	A= 0 DE	A-		$\stackrel{A}{A-C D E}$	
${ }_{26}^{26}$	${ }^{\text {A }}$	${ }^{\text {A B B O DE }}$	A-CDE		A-ODE	$A-O D \mathrm{DE}$		${ }_{\text {A }}^{\text {A-CD }}$	$\stackrel{A}{A}-\bar{d}-\frac{1}{\text { a }}$	${ }_{\text {che }}^{\text {A-CD }}$	A-CDEE	
27	${ }^{\text {ABODE }}$	${ }^{\text {A B O }}$	${ }^{\text {a }}$	${ }^{\text {A-ODE }}$	A-GDE	A-ODE			${ }_{\text {A }}$	$\mathrm{A}-0 \mathrm{DE}$	A-CDE	$\mathrm{A}-\mathrm{CDE}$
	${ }_{\text {A }}{ }^{\text {a }}$ - $\mathrm{D}^{\text {E }}$				$\xrightarrow{\text { A-ODE }}$	A-ODE			${ }_{\text {cke }}$	A--D-	$\stackrel{\text { A-CDE }}{ }$	${ }_{\text {A }}^{\text {A }}$
31			A-CDE	A-ODE		A-ODE		($\mathrm{AB} O \mathrm{DE}$	$\stackrel{A}{A-\cdots-D}$	$\triangle-C D E$	A-CDE

Solar Observationa－Abstract．

－	1910.												
				$\frac{\text { 咢 }}{4}$	\％	$\stackrel{\text { d }}{\square}$	容	䓵		管	莒	宮	Total．
a	31	28	31	30	31	28	28	30	29	30	29	30	355
B	9	9	4	．．	5	．	1	3	1	3	．．	．	35
c	28	26	31	30	30	20	20	25	26	25	22	30	313
D	30	28	31	30	31	24	27	28	29	29	28	30	345
E	29	28	31	30	31	24	27	26	28	27	24	30	335

Though the year was one of heavy rainfall during the summer months it was not unfavourable for solar observations in the morning hours，and there were only ten days on which no observations were possible．

6．Photographs of the sun with the Dallmeyer photoheliograph were taken on 345 days as against 332 in 1909．Even in June，when the defect was greatest，they were lost on only 6 days．Double exposures are taken twice a month for determining the error of orientation of the photographs．The Greenwich Observatory asked for only 2 solar negatives to complete its series and of these only one could be supplied．

7．Observations of sunspots．－The sun is examined for spots and faculae every morning when the weather permits．The sun＇s image is projected on an 8 －inch dise and the positions of spots and faculae are marked on it．The dises are prepared by the cyanotype process from the large scale drawings of Father R．de Beaurepaire，as mentioned in last report．

8．Sunspot spectra，－（a）Visual．－－This work is done in accordance with the suggestinns issued by the committee of the International Union for Solar Research．It includes the comparison of the spot spectrum with a standard map for the region 5210 to F ．，a detailed study of C and D_{3} ，and observations of varia－ tions in intensity of the following iron lines：－ $5383 \cdot 58,5397 \cdot 34,5404 \cdot 36,5405 \cdot 99$ ， $5424 \cdot 29,5429 \cdot 91,5445 \cdot 26,5447 \cdot 13,4924 \cdot 11,5234 \cdot 79,5816 \cdot 79$ and $5535 \cdot 06$ ．This work was possible on only 35 days owing to the small number of large spots visible during the year．
（b）Photographic．－Studies in connection with the radial movement of the gases over sunspots have been continued and a large number of photographs of spot spectra have been obtained．Particular attention has been paid to the behaviour of the C line of hydrogen and this line has been found to be almost always inclined over spots，the inclination being towards the violet on the side of the spot nearest the limb and towards the red on the side nearest the centre of the disc．This shows that the hydrogen in the higher regions of the chromosphere is drawn inwards towards the umbrae of spots，sharing in the movement which had already been detected in the case of calcium vapour，and opposed to the movement of the low level gases of the reversing layer．

Measures of the displacements of the lines H_{8} and K_{3} have been made showing the inward movement to be of the same order of magnitude as the outward motion of the low level gases．

The relatively slow rotational movement in spots，evidence of which was men－ tioned in the last report．has been confirmed by measures of the displacements of the lines in three northern and three southern spots；and the direction of rotation in these instances has been found to be opposite in the two hemispheres．

The rotational or spiral movement has not so far been found to affect the inflowing gases of the higher chromosphere，but owing to the width of the hydroger and calcium lines such motion would be very difficult to detect．

A general discussion of the radial and rotational movements in spots has been published in the monthly notices of the Royal Astronomical Society, Vol. LXX.

A long series of photograrhs has been obtained of the H and K region of the spectrum for the purpose of detecting movements in a vertical direction of calcium vapour in and near spots. Measurements of these plates are in progress.

A few measures have been made of the Zeeman separations of a line in the red region which is doubled in sunspots; and some lines in the ultra violet which are normally single in spots have been recorded on one plate as doubled at a time when a great eruption of gases was in progress. This indicates that a greatly increased magnetic field may accompany such outbursts.
9. General spectroscopic work.-A series of photographs of the H and K lines in prominences and of the hydrogen line C have been obtained with spectrograph III. using the Rowland $3 \frac{1}{4}$ inch grating. These are being measured for the purpose of determining the angular speed of rotation of the prominences at various heights above the sun's limb. A comparison spectrum of the centre of the sun's dise is impressed on each side of the prominence spectrum on every plate, and determinations of the wave-length of the H and K absorption lines at the centre of the disc are also made. The results will be discussed when sufficient material has been obtained.

Photographs of the spectrum of Halley's comet were obtained on 22 mornings from April 18 to May 16 inclusive, using a prismatic camera of 1.7 inch aperture attached to the South dome equatorial. The best plates of the series bave been measured and the results published in Bulletin No. XX. and in the Monthly Notices of the Royal Astronomical Society, Vol. LXX.

Laboratory work.-The spectrum of glowing iodine vapour heated externally in a quartz tube has been photographed and the apparently anomalous nature of the emission spectrum has been proved to be a subjective phenomenon, the heated vapour giving a banded emission spectrum identical with the absorption spectrum photographed under the same conditions.
10. Prominences.-Prominences were recorded visually on 312 days as against 309 in 1909, but on 65 days the combined visual and photographic record was imperfect owing to unfavourable weather conditions. June and July were, as usual, the most defective months. In June complete prominence records were ohtained on only eight days. The record of the prominences is made round the disc on which spots and faculae have been projected and with the dises now in ase the apparent positions of prominences are easily read off directly. The visual record is compared with the spectroheliograms and all prominences shown in the photographs but not in the drawing, as well as conspicuous extensions of caloium prominences inside the dise of the sun, are added in blue pencil. Where there is much difference between the photograph and the drawing the differences are noted. In the case of eruptive or metallic prominences the spectra are examined, the most conspicaous bright lines are recorded, and all large displacements of the C line are also noted and their amounts estimated.
11. Work with the spectroheliograph.-Photographs of the sun's dise in K_{2} light were obtained on 335 days, and limb photographs showing the prominences on 289) days. A few plates were also obtained with the camera slit set at the cyanogen radiation at λ 3883. These show faculæ very clearly, the images resembling those taken in the stronger iron lines. On May 19 the dise was photographed in the cyanogen radiation in an attempt to show the head of Halley's comet in transit, but no trace of the comet can be seen on the plates.

The best disc plate of each day has been copied on an enlarged scale on bromide paper as heretofore, the prints so obtained being oriented and pasted in order on card sheets for convenience of reference. The best limb plates have been measured and the position angles and heights of all prominences recorded.

A few photographs of the sun's dise in Ha light have been obtained with the auxiliary spectroheliograph using the 6 -inch Michelson grating. The photographs, although underexposed, show the dark floceuli due to prominences in projection on the disc. Owing to the long exposures needed it has been decided to substitute prisms for the grating and two large prisms of 45° angle have been kindly lent for this purpose by Professor Naegamvala of the Poona Observatory. At the end of the year the prisms had been mounted and new slits made of the necessary curvature.

Prominence spectroheliograms for 52 days were received from the Solar Observatory, South Kensington, and floceuli plates for 335 days were sent in exchange.
12. Solar Radiation.-Observations with the Ångström pyrheliometer were made on only a few days. This was partly owing to the great pressure of other work and partly to the feeling that under present conditions time spent on this was largely wasted as there are no means a vailable of standardizing the instrument.

The method of estimating changes in the solar radiation by comparing the intensity of moonlight with first type stars has now become part of the routine work, and photographic comparisons are made whenever the atmospheric conditions permit. Owing to the rarity of perfectly uniform skies comparisons are now made not only near full moon, but also at any phase between half and full. A separate investigation is required to determine the exact relations between phase and intensity.

During the year comparisons were obtained in the January, March, A pril, and Derember lunations and the stars used were Alpherat, Rigel, Sirius, Procyon, and Regulus, all aseumed to be invariable in their light.

A special photometer is under construction for the measurement of the plates.

Summary of Results.

13. Sunspots.-The following table shows the monthly numbers of new groups observed, the mean daily numbers of spots visible, and the distribution between the northern and southern hemispheres:-

| | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The most notable feature of the year was the rapid decrease in spot activity as indicated by the following figures :-

The number of new groups in 1907 and 1908 were respectively 301 and 262 . The very abrupt decline in spot activity in 1910 is especially shown by the large proportion of days on which the sun's dise was free from spots at the time of observation.

The proportion of southern spots to northern, which has been increasing since 1906, was highest in 1910, i.e., 105 to 46 . The mean latitudes in the two hemispheres were $7^{\circ} .2$ north and 90.6 south-closer to the equator by about $10 \frac{1}{2}$ than in 1909. The highest latitudes were 18° in the northern hemisphere in March and 20° in the southern in February.

The following were the most important spot groups seen during the year :-

January- | 1804 |
| ---: |
| Nos. $\left\{\begin{array}{l}1806 \\ 181 \\ 1813\end{array}\right.$ |

Group No. 1819 occupied 10° in longitude and 7° in latitude and was made up of several large and numerous small spots.

March-

Nos. $\left\{\begin{array}{l}1825 \\
1829 \\
1830 \\
1832\end{array}\right.$

May-
No.

contained fairly large spots.
was a large and active group and underwent much change from day to day. The C line was frequently observed to be reversed and displaced. The greatest disturbance was obserred on the 17 th ; the maximum was displacement $2 \AA$ to red in F.

```
Nuly-
```

August-
No. 1891
September-
No. 1911
No. 1915

These contained fairly large spots.
was first seen at the cast limb as a group of two small spots, the leader soon'developed into a large spot of round and regular outline.
contained a large but quiescent spot.
was the second return of group No. 1891 observed early in August. During its two previous apparitions it contained spots of round and regular outline but now had developed into an extensive, broken group covering about 18° of longitude and $1 t^{\circ}$ of latitude. C was frequently observed reversed and D_{s} was dark in the spot region. Eruptive prominences were observed on the limb of the sun when the group was close to it.

October-
 October-

No. 1915
was first seen as a small spot and subsequently developed into a large spot of round and regular outline. After crossing the central meridian it broke up into an irregular group of fairly large but scattered umbral and penumbral patches. Disturbance was indicated in the spot region ou several days by the reversal of the C line and the darkening of D_{3}.
14. Prominences.-Notwithstanding the great reduction of spot activity compared with 1909 the prominences, as estimated by profile areas, show a diminution of only 1 per cent., while there was an actual increase in the average daily number.

The activity for the two hemispheres compared with 1909 is given in the following table:-

Nean daily profile Areas of Prominences.

The distribution in latitude has been practically the same as in 1909. There was a tendency during the first six months to form two zones of activity in each hemisphere separated by a less active zone between the parallels of 30° and 40°. Later, the distribution became more uniform from the equator to latitude 60° north and south. Beyond 60°, in the polar areas, small and very transient jets have been frequently recorded

Metallic prominences have been infrequent, only 33 having been observed during the year. The high latitudes recorded for some of these is an unusual feature and shows that these prominences are not invariably associated with spots. The mean and extreme latitudes observed are given in the following table :-

Metallic Prominences
$\left.\begin{array}{l|cccc|c|c|c|cc|}\hline & \ldots & & & \begin{array}{c}\text { Number } \\ \text { bbservod. }\end{array} & \text { Mean latitade. } & \begin{array}{c}\text { Extrene } \\ \text { latitude. }\end{array} \\ \hline \text { North } & \ldots & \ldots & \ldots & 10 & 28^{\circ \cdot 2} & 2^{\circ} & 76^{\circ} \\ \text { South } & \ldots & \ldots & \ldots & 23 & 17^{\circ} \cdot 7 & 2^{\circ} & 83^{\circ}\end{array}\right]$

The prominence activity in each month may be estimated from the following table:-

Numbers of Prominences.

The following were the more noteworthy prominences observed during the year:-

Jamuary.-The tallest prominence of the month was photographed at $+33^{\circ}$ west on the 15 th. It was a slanting streak $210^{\prime \prime}$ high whioh underwent some changes of form and soon disappeared. The spectrum of a prominence observed near the west limb on the 7th, associated with spot No. 1793, showed considerable motion in the line of sight, both towards and away from the observer, and the form of the prominence underwent great and rapid changes. The caloium photographs show a remarkable series of slender arobed filaments.

February. - The tallest prominence of the month was only $165^{\prime \prime}$ high but oovered 20° of the limb.

March.-A atrongly eruptive prominence was recorded at the west limb on the 1st. Its height varied from $15^{\prime \prime}$ at $8^{\mathrm{h}} 0^{\text {min }}$ to $70^{\prime \prime}, 345^{\prime \prime}, 295^{\prime \prime}, 165^{\prime \prime}$ and $60^{\prime \prime}$ at $8^{\mathrm{s}} 10^{\text {m }}$, $8^{\mathrm{h}} 48^{\mathrm{m}}, 9^{\mathrm{n}} 13^{\mathrm{m}}, 9^{\mathrm{h}} 49^{\mathrm{m}}$ and $10^{\mathrm{h}} 30^{\mathrm{m}}$ respectively; there were corresponding ohangens in the form also. The hydrogen lines at the base were displaced, corresponding to a velocity towards the observer of 75 miles a second. Large prominences continued to be visible at the same position angle for a week. From the 17 th to the 19 th the-
east limb was covered by a group which extended for more than 35°. This group was remarkable for its long life; the phtographic records show it on alternate limbs during three rotations of the sun, and it was also photographed as an absorption marking when near the central meridian during three successive apparitions.

April.-The tallest prominence of the month was only $135^{\prime \prime}$ high.
May.-On the 25 th a series of connected prominences was recorded extending from - 34° west to $+23^{\circ}$ west. They were changing both in shape and beight, the greatest height reached was $2100^{\prime \prime}$, which was the greatest also for the month.

June.-Une very high prominence was photographed on the 20 th at latitude $+36^{\circ}$ west. At $10^{\text {h }} 4^{\text {m }}$ it was a detached pillar $420^{\prime \prime}$ high with the base $240^{\prime \prime}$ abore the limk. By $10^{\mathrm{h}} 22^{\mathrm{m}}$ the whule prominence had risen bodily $30^{\prime \prime}$. Bad weather prevented further observations.

July.-The largest prominence observed in the month was an eruptive one which during its rapid changes attained a maximum height of $170^{\prime \prime}$. It was obserred on the 11th.

August.-No prominence recorded in the month exceeded $90^{\prime \prime}$ in height.
September.-The tallest prominence recorded was a slender streak $210^{\prime \prime}$ high on the 30 th.

October.-The tallest prominence recorded was only $200^{\prime \prime}$ high, but there was on the whole a marked inorease of prominence activity during the month.

November.-The tallest prominence of the month was only $165^{\prime \prime}$ high. On the 19th a metallic prominence was observed which showed some disturbance.

December.-The highest prominence of the month, recorded on the $\because 0$ th, was $225^{\prime \prime}$ high.

(b) Other Obsbrvations.

15. The daylight Comet, $1910 \dot{a}$, was picked up readily with the naked eye soon after the receipt of the telegram announcing its discovery. It was observed with the Lerebour and Secretan equatorial on January 17, 18, and 19 and meridian transits were obtained on the $18 t \mathrm{~h}$ and 19th. After it became an evening object the weather was very cloudy and no photographs could be ohtained. The results of the observations were communicated to the Astronomische Nachrichten (No. 4392).
16. Halley's Comet. - Halley's comet made a magnificent display as it approached the earth during the second and third weeks of May, and it was also a conspicuous object on and after April 18 when it was first seen as a morning star. Arrangements had been made to photograph it with the instruments available and the following series were secured:-
(1) Direct photographs taken with the Grubb lens; scale $1^{\text {mm }}=3^{\prime \cdot 96}$.
(2) Direct photographs taken with a Ross lens; scale $1^{\mathrm{mm}}=17^{\prime} \cdot 5$.
(3) Direct photographs taken with a reflector $9 \frac{1}{4}$ inches aperture, 74 inches focal length: scale $1^{m m}=110^{\prime \prime}$.
(4) Direct photographs on a small scale taken with two small cameras.
(5) Spectrum photographs with a prismatic camera with two 60° prisms, 1.7 inches effective aperture and lens of 11.5 inches focus.
(6) Visual and photographic observations during the transit across the sun's dise on May 19.
(7) Visual observations on the mornings of May 20 and 21.

The weather, though not by any means perfect, was quite as favourahle as could be expected at the season and from April 19 to May 16 there were only six days on which no photographs could be obtained.

The results were on the whole good and have been published in detail in Bulletin No. XX. of this observatory.
17. Time. - The error of the standard clock is usually determined by referenoe. to the 16^{h} signal from the Madras Observatory. This is rendered possible by the courtesy of the Telegraph Department which permits the Madras wire to be joined through to this observatory. The signal is received with accuracy on most days and all failures are at once reported to the officer in charge of the Trichinopoly division. Time determinations are made with the transit instrument, when necessary, as a check.
18. Meteorology.-Meteorologieal observations were carried on as in former years. Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$, and 16^{h} local mean time. Temperatures and pressures are recorded continuously by a Richard thermograph (wet and dry bulb) and barograpi, and the mean temperature and pressure are obtained from the traces, corrected by reference to the eye observations. The wind direction and velocity are obtained from a Beckley anemograph.

Pressure.-The mean pressure for the year was 0.020 in below normal. It was normal in December above normal in February and May and below in all other months. The highost mean daily pressure recorded was $22 \cdot 923$ on December 26 and the lowest $22 \cdot 614$ on June 24 .

Temperature.-The mean temperature of the year was $0^{\circ} \cdot 1$ above normal. The defect in February amounted to $1^{\circ} \cdot 1$ and the excess in December to $2^{\circ} \cdot 9$; in no other month did the difference from normal exceed $0^{\circ} .8$. The highest shade temperature recorded was $75^{\circ} 4$ on April 1 and the lowest $40^{\circ} 8$ on February 8th and December 17th. The lowest temperature shown by the grass minimum was $16^{\circ} \cdot 3$ on December 17th.

Humidity.-The mean humidity for the year was 3% below normal. It was. below normal from January to May and in November and December and above it for the rest of the year. The defect in December amounted to 29%.

Rain.-The rainfall for the year was largely above normal ($12 \cdot 25$ inches). The fall was considerably in defect for the first four months of the year and in September, and largely in defect in December. It was largely in excess in all theother months. The greatest fall on any one day was $3 \cdot 62$ inches on November 16.

Wind.-On the average for the year the wind was nearly normal in both. direction and strength. The strength was considerably in excess in February, April, September, and Decermber and considerably in defect in July, October, and November. The only months in which the direction differed largely from the normal were July when it was 5 points more northerly and October when it was 7 points more westerly than usual. The largest amount of wind on any one day was 800 miles on July 3, and the smallest amount 96 miles on November 14.

Transparency of the atmosphere.-The transparency of the lower atmosphere as judged by the visibility of the Nilgiris, about 100 miles distant, was again below average though somewhat better than in 1909.

Cloud and Sunshine.-The year as a whole was somewhat less cloudy than usual. There were 2,117 hours of bright sunshine against an average for the last 11 years of 2,028 .
19. Seismology.-The Milne horizontal pendulum worked well throughout the year and 81 eartiquakes, many of them large, were recorded.
20. Library.-One handred and sixty-eight volumes were bound during the year.
21. Publications.-Bulletins Nos. XIX. to XXII. were published during the Year and No. XXIII. was in type at the end of the year. Bulletins Nos. XIX. and XXI. deal with observations of prominences, No. XX. with the observations of Halley's comet, and No. XXII. With the magnetic field in the sunspot of September 1909. In addition to these the following papers were published :-
"Observations of Comet 1910a" by C. Miehie Smith. (Astronomisohe Nachrichten No. 4392).
"Radial Movement in Sunspots" (second paper) By J. Evershed (M.N.r R.A.S., LXX).
"Halley's comet and its Spectrum" (M.N., R.A.S., LXX.).
"Transit of Halley's comet" (M.N., R.A.S., LXX.).
"Observations of the Tail of Halley's comet before and after the day of transit" by J. Evershed (M.N., R.A.S., LXX).
22. General.-The Director-General of Observatories inspected the Madras and Kodaikanal Observatories in January. The Director inspected the Madras Observatory in November and rewired the transit instrument.

The staff of the observatory has worked well throughout the year. The First Assistant Mr. S. Sitarama Aiyar has shown his usual ability and zeal, and in the photographic work Mr. R. Krishna Aiyar has rendered most efficient service.

```
The Ubservatory, Kodaikánal,
    7th February 1911.
        J. Evershid,
    Director, Kolaikánal and Madras Observatories.
```


II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1910.

Staff.-I handed over charge of the Observatory on the afternoon of the 28th April to Professor E. B. Ross of the Madras Christian College and resumed charge again from him on July 9th. The first assistant was on privilege leave for one month and 13 days and the second assistant for two months.
2. Time Service.-Astronomical observations for determination of time were carried on as in previous years. No change was made in the signals distributed from the Observatory. The fort gun failed on 5 nccasions and in addition to these on every evening at 8 P.m. between the 6th March and 13 th April. It was fired correctly on 686 occasions out of a maximum of 730 : this gives a precentage of 94 of successes. The evening gun failed between the 6th March and 13th April because the Adjutant-General had issued orders to the Military authorities that it was to be abolished from March 6th. As I had received no orders from the Director of the Observatory to discontinue these signals, I had to enter them as failures. Orders to resume the firing of the gun at 8 p.m. were issued subsequently. and came into effect on 14 th April. Leaving out these failures the percentage of successes was $99 \cdot 3$. The time ball at the Port Office was dropped correctly at 1 p.m. on every day except 10 and on 9 out of ihese 10 it was dropped at 2 p.m.
3. Meteorological observations. - In addition to the ordinary meteorological observations, extra observations and telegrams were taken and sent to Simla on 4 occasions and on 99 occasions to Calcutta. The tabulation of the traces of the autographic instruments are up to date.
4. Buildings.-Certain repairs to the quarters of the Deputy Director were effected during the year. The Observatory building and the dome over the Equatorial were painted.
5. Instruments. -The following is a list of the instruments at the Madras Observatory on the 31st December 1910 :-
(a) Astronomical.

Eight-inch Equatorial Telescope-Troughton \& Simms.
Sidereal Clock-Haswall.
" Dent, No. 1408.
S. Reifler, No. 61.

Mean Time Clock with galvanometer-Shepherd \& Sons.
Meridian Cirole-Troughton \& Simms.
Mean Time Clock-J. Monk.
Mean Time Chronometer-V. Kullberg, No. 5394.
"
Parkinson and Frodsham, No. 2352.
Portable Transit Instrument-Dolland.
Portable Telescope with stand.
Tape Chronograph-R. Fuess.
Relay for use with the Chronograph-Siemens.
(b) Meteorological.

Richard's Barograph-No. 10, I. Casella.
Thermograph-No. 3618, L. Casella.
Beokley's Anemograph-Adie.
Sunshine Recorder-No. 149, L. Casella.
Anemoscope-P. Orr ir Sons.
Nephoscope-Mons Jules Daboseq \& Ph. Pellin.
Barometer, Fortin's-No. 1771, L. Oasella.
No. 725, L. Casella (spare).
N.
Thermeme $1420, ~ L . ~ C a s e l l a ~(s p a r e) . ~$
Dry Bulb Thermometer-No. $94221, \mathrm{I}$. Casella.
Wet Bulb Thermometer No. 38037, Negretti \& Zambra (spare).
No. 94219 , I. Casella.
No. 38037, Negretti \& Zambra (spare)
Dry Maximum Thermometer-No. 8581, Negretti \& Zambra.
Dry Minimum Thermometer-No. 69047, L. Casella.
Wet Minimum Thermometer-No. 91753, Negretti \& Zambra.
Sun Marinum Thermometer-No. 10479, Negretti \& Zambra.
Grase Minimum Thermometer-No. 3377, Negretti \& Zambra.

> Raingauge ($8^{\prime \prime}$ diameter)-No. 1042, Negretti it Zambra.
> Measure glass for above.
> Raingauge (5" diameter).
> Measure glass for above.

The wires of the Transit Instrument had to be renewed in May 1910. In November the Director inspected the Observatory and brought the dividing engine from Kodaikánal; the carrier was redivided, and new wires were pat in. These are much more satisfactory than the old ones. The Transit Instrument has undergone a very large change in level. This change commenced in Vecember 1909 and went steadily on in the same direction till the heavy rain in September, when it stopped and began to go back apain. There has been very little change in azimuth; but the level error had to be cleared on two occasions.

The rate of the Riefler clock has been on the whole very satisfactory; the Dent clock too has had a tairly steady rate. They were both adjusted to a small losing rate during the inspection of the Director.

The recording apparatus of the Beckley's Anemograph was overhauled and partly repaired during the year.
6. Weather summary.-The following is a summary of the meteorological conditions at Madras during the year 1910:-

Pressure. -Pressure was below normal in all months except May and December. The greatest excess was 0.025 inch in December and the greatest defect 0.059 inch in September. The highest pressure recorded was $30 \cdot 129$ inches on December 26 and the lowest 29.516 inches on June 24.

Temperature. -The mean temperature was above normal in all months except July, August, November, and December. The maximum temperature was below normal from June to September and in November, the greatest excess being $2^{\circ} \cdot 9 \mathrm{~F}$. in May and the greatest defect $2^{\circ} \cdot 5 \mathrm{~F}$. in August. The minimum was normal in September, below normal in January, March, July, November, and December and above in the remaining months. The minimum on grass was above normal in all months except March, Tuly, November, and December. The highest shade temperature was $112^{\circ} \cdot 9$ F. on May 20 and the lowest $62^{\circ} \cdot 3 \mathrm{~F}$. on December 18 .

Humidity.-The percentage of humidity was normal in February, below normal in May and December and above normal during the rest of the year.

Wind. - Wind direction was normal in February, June, and December and it differed most from normal in October when it was 7 points more southerly than usual, the average direction being east by north. The air movement recorded was lower than the average throughout the year.

Cloud.-The percentage of cloud was normal in September, above normal in June and below in the remaining months.

Sunshine.-The percentage of bright sunshine was below normal in all months except April, July, and December, the greatest defect being in June. The total number of hours of bright sunshine during the year was $2,243 \cdot 9$.

Rainfall. - The rainfall was above the average in July, dugust, and November and below during the other months, the greatest excess being $4 \cdot 21$ inches in July and the greatest defect $5 \cdot 23$ inches in December. The rainfall for the year was 44.47 inches on 85 days, being 4.55 inches below the averaye. The monsoon rainfall from October 15 to the end of the year was $25 \cdot 47$ inches against an average of 26.00 inches. The heaviest fall on any civil day was $5-47$ inches on November 5.

Storm.--A storm formed in the south-west of the Bay on July 22 and moved in a northerly direction towards Gopalpore, when Madras received $4 \frac{1}{4}$ inches. Another storm formed between Port Blair aud Negapatam on November 2 and moved on a north-westerly course and crossed the coast near Nellore on the bith. It gave very heavy rain at and around Madras, a little over 7 inches being recorded at Madras between 8 a.m. on the 5 th and 8 a.m. on the 6 th.

[^0]R. Lu. Jonss,
Depzety Director.

explanation of tables.

(1) Appendices II. to VI (Kodatiánal).

Barometer. - The readings are reduced to $32^{\circ} \mathrm{F}$. but are not corrected to latitude 45°. As the value of g at Kodaikénal is $977 \cdot 643$ this correction would be- 0.067 at 22 inches and- 0.070 at 23 inches.

The daily mean is obtained from the readings of the Richard Barograph corrected to the theree daily readings of the standard barometer.

Thermometers. - The daily mean temperatures of the wet and dry bulbs are obtained from the hourly readings of the Richard hygrometer corrected by reference to the readings of the standard wet and dry bulb thermometers.

Wind.-The mean direction given is the arithmetical mean of the hourly directions corrected by the addition or subtraction of a multiple of 32 points.

The Beckley anemograph is carried on a small tower well separated from the other buildings. The height of the cups above the top of the hill is 40 feet. So far no corrections have been applied to the readings.

Rain.-A "day of rain" is one on whioh $0 \cdot 10$ inch and upwards falls.
Clear sky is estimated at 8 A.m., 10 A.m., and 4 P.M. and the mean is taken.
The averages referred to are those given in appendix VI. to the present report.

(2) Appendices VII. to XIII. (Madras).

The methods employed and the averages used are given in full in "Results of the Meteorological Observations made at the Government Observatory, Madras, during the years 18611890 " and in "Madras Observatory Daily Meteorological Meaus."

The Barometer readings are not reduced to sea level or to grarity at latitude 45°. The corrections to be applied to reduce the readings to sea level and gravity at latitude 45° are as follows:-

Wind.-The caps of the Beckley anemograph are 44 feet above the ground and 18 feet above the parapet of the flat-roofed building. The readings are uncorreoted.

Rain.-A day of rain is one on which 0.01 inch and upwards falls.

Appendix 1.

Kodaikínal Observatory Seismological Records in 1910.

Kodaikánal Observatory Seismological Records in 1910-cont.

17

Mean monthly and annual Meteorological Resulte at the Kodaikánal Observatory in 1910.

Month.		Barometer.		Dry bulb thermometer.				Wet bulb.		Tension of vapour. Relative humidity. By Blanford's tables.		$\begin{gathered} \text { Sun } \\ \text { Max. } \\ \text { in vac. } \end{gathered}$	$\begin{gathered} \text { Min. } \\ \text { Mrass. } \\ \text { gras. } \end{gathered}$	Wind.			Rain.		$\left\lvert\, \begin{aligned} & \text { Oloarr } \\ & \text { sky. } \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \text { Hours of } \\ \text { bright } \\ \text { sun- } \\ \text { shine. } \end{gathered}\right.$	
		Reduced to 32°.	$\begin{aligned} & \text { Daily } \\ & \text { range } \end{aligned}$	Mean.	Max.	Min.	Range.	Mean.	Min.			$\begin{array}{\|c\|} \hline \text { Daily } \\ \text { velooity. } \end{array}$		Mean	direotion.	Amount.	Days.				
		incriss.	inchre.	-	-	-	-			incres.	osnts.			-	milizs.	ponsts.	points.	inchrs.	No.	OENTS.	
January ..	\because	$\begin{array}{r}22.889 \\ \hline 812\end{array}$	0.078	53.2 58.9	${ }_{6}^{62 \cdot 9}$	46.3	16.6	45.83	$38 \cdot 2$ 40.7	$0 \cdot 227$	${ }^{56}$	112.0	$34 \cdot 9$ 38.0	316		N.E. by E.	1.77 1.30	4	${ }_{68}^{65}$		
Maroh ..	\because	.812	.068	63.9		47.0 60.8	16.6	${ }^{46.4}$	40	${ }_{-238}^{\cdot 248}$	69 48	117.9 125.2	38.0 38.9	320 328	2		1.30 0.01	.4	68 85 8	230.7 2798	
April		-821	.068	${ }_{60.4}$	${ }_{69.5}$	$54 \cdot 6$	14.9	51.5	${ }_{45 \cdot 9}$	${ }_{2296}^{232}$	${ }_{57}$	${ }_{127.5}^{12.5}$	${ }_{46.1}$	${ }_{358}$	8	E. by E N.	$4 \cdot 10$	${ }_{5}$	${ }_{62}^{85}$	$279 \cdot 8$ 9	
May ..		$\cdot 827$	-068	$60 \cdot 4$	69.0	$54 \cdot 9$	14.1	54.8	50.4	. 875	72	127.6	$46 \cdot 4$	225	5	N.E. by E.	6.29	13	52	${ }_{203.9}$	
June ..		$\cdot 743$. 060	57.2	$63 \cdot 2$	53.6	9.6	$54 \cdot 2$	50.5	. 391	${ }_{83}$	$113 \cdot 1$	$49 \cdot 1$	358	25	W. by N .	$8 \cdot 57$	14	23	104.0	
July	$\cdot 749$. 058	$55 \cdot 9$	$62 \cdot 2$	$52 \cdot 2$	10.0	53.7	50.3	-394	88	115.9	48.0	353	31	N. by W.	10.94	21	22	110.9	
Auguat	-749	. 064	55.8	${ }^{61.8}$	52.6	$9 \cdot 2$	54.2	$50 \cdot 8$	405	90	${ }^{118 \cdot 3}$	$50 \cdot 7$	332	26	W.N.W.	$10 \cdot 23$	21	21	95.0	
September	..	$\cdot 743$. 067	$55 \cdot 6$	62.0	51.6	$10 \cdot 4$	58.1	48.9	$\cdot 382$	86	117.5	48.1	390	26	W.N.W.	4.32	8	28	$137 \cdot 4$	
Ootoher	.	-793	$\cdot 077$	55.8	$62 \cdot 3$	51.7	10.6	$54 \cdot 4$	$49 \cdot 9$	-411	92	$117 \cdot 7$	46.9	232	24	w.	12.86	19	23	$89 \cdot 2$	
November		$\cdot 803$.089	$54 \cdot 4$	81.1	$49 \cdot 9$	11.2	51.2	$46 \cdot 1$	$\cdot 350$	88	$110 \cdot 1$	$44 \cdot 8$	233		N.	$11 \cdot 41$	13	36	$118 \cdot 3$	
Deoember	..	$\cdot 839$	-066	58.2	87.6	$48 \cdot 2$	19.4	44.7	38.9	-178	39	116.1	38.0	381	8	E.			84	$267 \cdot 4$	
Annual	.	22.793	0.067	56.4	$64 \cdot 5$	51.1	$13 \cdot 4$	$50 \cdot 9$	45.8	324	71	118.2	$4 \cdot 2$	314	1	N. by E.	71.80	122	47	2,117.1	

Extreme monthly Meteorologioal Records at the Kodaikanal Observatory in 1910.

Appendix III.
Kodaikánal mean hourly wind velocity for the year 1910.

Appendix IV,

Kodaisfnal Mean Hourly Bright Sunahine for the year 1910.

Month.		Hoars.												Remarke.
		6-7	7-8	8-9	8-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	
Jenuary ..	.	0.11	0.61	0.83	0.87	0.85	0.87	0.85	0.78	0.75	0.75	0.62	0.11	
February	\cdots	$\cdot 13$	-68	-85	$\cdot 85$	$\cdot 86$. 88	. 84	$\cdot 78$	$\cdot 78$	$\cdot 73$	$\cdot 66$	-22	
March	.	. 05	-87	$1 \cdot 00$	-99	$\cdot 95$	-91	$\cdot 85$	-82	$\cdot 77$	$\cdot 78$	$\cdot 74$	29	
April ..	.	$\cdot 18$. 82	. 90	. 90	91	$\cdot 81$	$\cdot 76$	$\cdot 76$	$\cdot 61$	- 3	$\cdot 45$	-14	
May	-•	$\cdot 89$	-85	-91	. 95	- 86	$\cdot 80$	-61	-44	-86	-23	$\cdot 14$	-08	
June.	..	-08	$\cdot 33$	$\cdot 52$	$\cdot 55$	-62	$\cdot 47$	$\cdot 35$	$\cdot 22$	-18	-14	$\cdot 08$	-05	
July	-19	$\cdot 43$	$\cdot 55$	- 54	$\cdot 49$	-45	-33	24	-14	$\cdot 12$	-08	-02	
Aagast	.	-06	-28	$\cdot 44$	-56	- 50	$\cdot 35$	-28	$\cdot 25$	-14	$\cdot 12$. 05	. 02	
September	.	. 02	$\cdot 46$	$\cdot 71$	-69	-80	-57	$\cdot 48$	$\cdot 37$	-22	- 21	-18	. 07	
Ootober ..	.	-00	-29	- 53	-55	-49	- 34	$\cdot 24$	$\cdot 14$	$\cdot 16$	-06	-06	- 01	
No vember	..	-00	$\cdot 13$	$\cdot 45$. 54	-51	- 52	45	-34	36	-33	-27	. 03	
Decomber	..	. 04	- 54	78	. 95	-94	$\cdot 94$. 93	$\cdot 91$. 90	. 84	$\cdot 76$	-09	
Mean	.	$0 \cdot 10$	0.52	0.71	0.74	0.71	0.66	0.58	0.50	0.44	0.40	0.34	0.09	

Appendix \mathbf{V}.

Nomber of days in each month on which the Nilgiris were visible during 1910.

Month.	Very clear.	Visible.	Just visible.	Tope only visible.	Total.
Jamuary	7	6	5	1	19
Felbraary	3	4	3	-	10
March	1	1	-•	2	4
April -	-	1	*	1	2
May	8	5	4	*	12
June	7	6	-•	1	14
July	6	2	.	-	7
Angust	6	3	-•	.	9
September	7	9	3	1	20
Ootober	6	8	1	-	15
November	4	10	-	1	15
Deoember	2	18	1	8	29
Total ..	51	73	17	15	156

Appendix VI.

	Baromoter.		Dry Bulb.				Wot Bulb.		$\underset{\substack{\text { Vapaur } \\ \text { Tencion. }}}{\text { a }}$	Humidity.	$\underset{\text { maximum. }}{\text { Sun }}$	${ }_{\text {minimum }}^{\text {Grase }}$	Wind.		Rain		$\begin{aligned} & \text { Ulear } \\ & \text { Cuyt } \\ & \text { Bexp } \end{aligned}$	Brightsunghine
	Roduced to	Rango.	Mean.	Maximam.	Minimum.	Range.	Meon.	Minimuw.					Volooity.	Dirootion.				
Jannary	inobebe 222846	$\begin{gathered} \text { inoh. } \\ 0.071 \end{gathered}$	584,	69:0	$47 \cdot 0$	$15 \cdot 9$	47.0	${ }_{40 \cdot 6}^{\circ}$	$\underset{\substack{\text { man. } \\ 0.268}}{ }$	$\begin{gathered} \text { oenta. } \\ { }_{n 4}, \end{gathered}$	$\stackrel{\circ}{117 \cdot 4}$	${ }^{37}$	$\begin{gathered} \text { mileg. } \\ 300 \end{gathered}$	$\underset{4}{\text { pointe }}$		days.	64	${ }_{\text {hanara }}^{\text {hap. }}$
Febraary	888	. 070	65.0	85-8	48.0	17.6	48.0	41.5	267	${ }^{61}$	${ }^{124 \cdot 7}$	38.4	287	1	1.74	2.5	64	$222 \cdot 6$
Naroh	.868	.069	67.8	${ }^{68 \cdot 7}$	$50 \cdot 8$	17.8	$49 \cdot 1$	$42 \cdot 5$	265	${ }^{65}$	$130 \cdot 3$	$41 \cdot 2$	310	6	$2 \cdot 14$	3.4	70	252.6
April ..	838	. 070	58.7	69.	63.7	$16 \cdot 6$	88.3	47	346	${ }^{68}$	$138 \cdot 3$	$45 \cdot 4$	278	6	4.28	7.6	54	211.4
May ..	818	. 089	80.3	68.8	54.8	14.0	55.0	$60 \cdot 2$	382	${ }^{73}$	${ }^{132 \cdot 6}$	$48 \cdot 4$	253	2	$5 \cdot 48$	11.8	46	$200 \cdot 5$
June ..	. 768	059	57.9	${ }^{85 \cdot 1}$	${ }^{58 \cdot 6}$	11.4	55.9	49.8	377	98	126.8	48.8	${ }^{37}$	${ }^{25}$	3.22	$10 \cdot 6$	28	$110 \cdot 8$
Jaly ..	756	. 067	56.3	$62 \cdot 9$	$52 \cdot 5$	$10 \cdot 3$	68:8	$49 \cdot$	$\cdot 379$	84	${ }^{122 \cdot 0}$	48.7	427	26	4.19	11.8	23	$103 \cdot 6$
Angust	771	.065	56.5	83.2	$52 \cdot 5$	10.8	538	$49 \cdot 8$	-880	85	124*0	$48 \cdot 3$	318	28	7.24	13.2	27	$114 \cdot 3$
Soptember	-788	.072	56.4	${ }^{33} 3$	52.2	11.1	53.5	$40 \cdot 4$	$\cdot 985$	84	125.8	48.0	297	${ }^{27}$	6.78	$13 \cdot 3$	32	$120 \cdot 5$
Ootober	. 800	. 077	65.5	62:3	61:3	11.0	53.0	48	$\cdot 381$	${ }^{86}$	121	$48 \cdot 6$	262	${ }^{31}$	10.80	17.0	32	126.5
Norember	${ }^{829}$	071	68.6	${ }^{61} \cdot 0$	$48 \cdot 9$	$12 \cdot 2$	51.0	$46 \cdot 2$	362	84	${ }^{116 \cdot 1}$	$44 \cdot 1$	271	31	6.05	11.6	38	138.8
Deoomber	. 882	070	68.8	62.0	$47 \cdot 5$	14.6	47.8	$41^{1} 6$.279	68	114	40.2	289	4	$4 \cdot 47$	$6 \cdot 2$	52	196.0
Annaal	22:818	0.068	68.3	64.8	$51 \cdot 1$	13.5	51.6	465	0.389	74	124:0	$44 \cdot 7$	303	0 (N)	59.65	113	44	2028.2
Period of means.	1900 Jannary to1910 Dooember.		$\xrightarrow{1899}{ }_{1010}^{\text {Apray to }}$				1900 Jannary to1910 Docember.				$\begin{gathered} \substack{1899 \text { May } \\ \text { topril } \\ \text { April }} \end{gathered}$	$\left\lvert\, \begin{gathered} 19000 \\ \text { Janaury } \\ \text { to o } 1910 \\ \text { Deoember. } \end{gathered}\right.$	$\begin{gathered} 1899 \\ \text { May to } \\ 1 \begin{array}{c} 1910 \\ \text { April } \end{array} \end{gathered}$		1899 may to 1910April.			

Appendix VII.
Madras Observatory.-Abnormals from monthly means for the year 1910.

Appendix VIII.

Abstract of the mean meteorological condition of Madras in the year 1910 compared with the average of past years.

Ifuration and quantity of the wind from different points.

There were 157 calm hours during the year. The resultant corresponding to the above aumbers is represented by a South wind, blowing with a uniform daily velocity of 291 miles.
Appendix IX.

24
Appendix X.

Appendix XI.
Madras Obbervatory.-Number of inohes of rain from each point in the year 1910.

Appendix XII.

Madras Observatory.-Wind, cloud, and bright sunshine, 1910.

27

[^0]: Madhas Observatohy,
 5 th Januaru 1911.

