## ANNUAL REPORT

## OF THE

## DIRECTOR

# KODAIKANAL AND MADRAS <br> OBSERVATORIES 

FOR 1917

## KODAIKANAL AND MADRAS OBSERVATORIES.

REPORT FOR THE YEAR 1917.

CONTENTS.
I.-Kodaikanal Observatory.


## II.-Madras Obsertatory.



# KODAIKANAL AND MADRAS OBSERVATORIES. 

## I.-REPORT OF THE KODAIKANAL OBSERVATORY <br> FOR THE YEAR 1917.

Staff.-The staff of the Observatory on December 31, 1917, was as follows:-
$\left.\begin{array}{lllll}\text { Director } & \ldots & \ldots & \ldots & \ldots \\ \text { Assistant Director } & \ldots & \ldots & \ldots & \text { J. Evershed, F.R.S. (on privilege leave). } \\ \text { T. Royds, D.S. (on deputation). } \\ \text { S. Sitarama Ayyar, acting sub. pro ten. }\end{array}\right\}$

Magnetic Section.
Magnetic Observer ... ... ... S. S. Ramaswami Ayyangar, B.A.
Magnetic Recorder ... ... ... S. S. Ranga Acharya.
The Observatory has temporarily lost the services of Dr. Royds who volunteered for military service in November 1916 but continued his work as Assistant Director until October 1917 when he was appointed Assistant to the Director of Ordnance Factories. He left Kodaikanal on October 23 to take up this appointment at Calcutta. First Assistant S. Sitarama Ayyar has been appointed Assistant Director substantive pro tempore from October 24.

The subordinate stafi consists of a book-binder, an assistant bookbinder, a mechanic, six peons (including the peon of the Magnetic Observatory), a boy peon for the dark room and two lascars.
2. Instruments.-The instrumental equipment of the Observatory was the same as in the last report with the exception of some additions and reconstructions mentioned in paragraphs 16 to 19. The Kullberg sidereal cbronometer has been lent to the Nizamiah Observatory, Hyderabad.
3. Weather conditions.-The weather during the year has been generally unfavourable for all classes of work owing to diffusive skies and bad definition during the dry season, and heavy monsoon conditions from May to October and in November.

## Photographic and visual observations.

4. Photoheliograph.-Work with this instrument was resumed from February 11 and photographs on a scale of 8 inches to the sun's diameter were obtained on 294 days.
5. Spectroheliographs.-Notwithstanding the poor weather conditions there was very little reduction in the number of plates obtained, although the quality of these has suffered.

Monochromatic images of the disc in K light were obtained on 328 days, prominence plates on 262 days, and $\mathrm{H} a$ disc plates on 255 days.
6. Six-inch Cooke equatorial and spectroscope.-Work with this instrument has been continued on the same lines as formerly for visual observations of solar phenomena which cannot be readily photographed.
7. Grating spectrograph.-This instrument has been greatly improved for work requiring long exposures by surrounding and covering the grating chamber with closely packed sand bags, and by erecting a screen outside the west wall of the building as a protection from heating by the afternoon sun. A telescope with collimating lens has also been added for reading a sensitive thermometer, the bulb of which is inserted in the grating chamber. The diurnal range of temperature now seldom reaches $0^{\circ} .5$ Fahrenheit and a change exceeding $0^{\circ} 01$ Fahrenheit rarely occurs in a two hours exposure. The instrument has been used for researches connected with the general displacement of the lines of the solar spectrum with reference to the arc lines. Two series of photographs have been obtained of the spectrum of Venus with Fe arc comparison lines, and of control plates of sky light and Fe arc. During the monsoon months a large number of plates were obtained of the iron arc spectrum in order to test the stability of the Fe lines under various conditions, and for investigating the "pole effect" in different regions of the arc. The sensitiveness to pole effect has also been determined for all the lines used in the Venus plates.

The Venus spectra are for discovering whether the general shift towards red of the lines at all points on the visible disc of the sun affects also a hemisphere of the sun turned $90^{\circ}$ or more from the earth. If there is no difference of wave-length in the light reflected by Venus and ordinary sunlight then the displacements observed cannot be interpreted by motion of the solar gases, whilst if the Venus spectra show a smaller wave-length an earth effect is involved. If the hidden hemisphere of the sun should yield normal wave-lengths then it would follow that the sun's gravitational field is not concerned in the line shifts.

## General results of the spectrographic work.

8. The Venus spectra.-Measures of the first series of Venus and sky spectra photographed when the planet was a morning star indicate distinctly smaller wave-lengths of the Fe lines in the integrated solar spectra reflected by Venus compared with sky light, when the angle Venus-Sun-Earth was about $140^{\circ}$. The difference of wave-length Sun - Venus for the mean of 12 lines is +0.007 A . This result is possibly vitiated by imperfect control of the pole effect, the arc used had nickel for positive pole and iron for negative, and the integrated light from the entire arc formed the spectrum. It has since been found that under these conditions the Fe lines are slightly unstable in wave-length, and even those which are apparently unaffected at the negative pole are liable to be displaced.

The second series of spectra with the planet an evening star was secured with the iron arc under more carefully controlled conditions and without nickel. Unfortunately during the most favourable presentation of the planet in July, August and September, the evening sky was continuously overcast, and not a single exposure could be obtained until October, when the angle Venus-Sun-Earth had become reduced to about $62^{\circ}$. Five spectra were obtained during October under more or less cloudy conditions, and the measures of these, and of the similar sky spectra, show a small but apparently trustworthy difference, the mean wave-length of 18 Fe lines in Venus being 0.0034 A smaller than in the sky spectra. The evidence so far obtained may therefore be said to favour the motion interpretation of the solar displacements involving an Earth effect.

A third series of photographs will be attempted after April 1918 with the planet again a morning star and coming into favourable positions in June and July.

The Venus plates have also been used to determine the relative velocity of Venus and the Earth in the line of sight. With the planet near elongation and a dispersion of $1 \mathrm{~mm}=1 \cdot 4 \mathrm{~A}$ the linear displacement is about 0.14 mm , and the dispersion could probably be doubled if an
uninterrupted exposure of two hours' duration could be given. It is hoped that in the clearer morning skies this may be possible. It has been found from the October plates that the probable error of a displacement determination averages 1 part in 400 for each plate, measuring 40 lines by the positive on negative method. By combining the results from both east and west elongations the uncertainty due to a possible difference of wave-length in the reflected and direct light is eliminated, and the measures can be used to find a correction to the adopted solar parallax. A preliminary result derived from the first and second series of plates indicates an extremely small correction, but since the quantity measured is several times smaller than the parallax displacement in astrographic plates of Eros this result can only be considered as a guarantee of the reliability of the plates.
9. Pole effect.-The investigations relating to pole effect have shown that all the Fe lines suitable for measurement between 4337 and 4494 are subject to slight displacements towards red near the negative pole, even those classified $a 3, b 1$ and $b 3$ which are supposed to be symmetrical lines. The positive on negative method has been found to be extremely useful in detecting small displacements of 0.002 A or over, without the labour of measurement, and with spectra representing longitudinal sections of the arc from pole to pole this method at once detects and locates the position in the arc of any displacements. In this way it has been discovered that when iron forms the negative pole and nickel or some other metals the positive there is a tendency for the displacement at the negative pole to extend across the arc to the central region. Also it is found that in the central region of a 6 -ampere are of 6 to 8 mm . length most of the lines in the region studied show a tendency to shift towards red with increasing exposure time, showing that under ordinary arc conditions they are unsymmetrically widened towards red to a very slight degree. In lines which easily reverse. such as 4383 and 4404 , the reversal is found to have the minimum wave-length, and agrees in position with the emission line when the density of the bright line image is small. This dependence of wave-length on exposure time accounts for many inconsistencies in determinations of Sun - arc displacements.
10. Sun and arc comparison spectra.-A considerable number of sun and arc plates have been obtained and measured during the year : these include 2nd, 3rd and 4th order spectra of the region photographed in Venus. These plates show the influence of density of the arc images on the measured shifts of the solar lines, and the effect of using nickel as positive pole, thus confirming the results already described. In addition a series of high dispersion spectra of Fe arc and general sunlight were obtained which appear to give sun - arc shifts practically the same as when the centre of the sun's disc is used, but further measures are needed to settle this point.

Some plates obtained by Dr. Royds of the centre of the disc and Fe arc in the region including the telluric oxygen lines of the $a$ group have been measured in order to test the observation reported by Perot that the telluric oxygen lines of the group $B$ indicate a motion shift amounting to $3 \mathrm{~km} / \mathrm{sec}$ in a rertical direction. The result of measures of plates taken with high and low sun gives an entirely negative result: the lines of the $a$ group show no measurable shift depending on altitude.
11. Spectrographic determination of the solar rotation.-A new scheme of work was developed in the favourable atmospheric conditions in Kashmir in 1916, but owing to persistent diffusive and cloudy skies throughout the past year at Kodaikānal no progress was possible. The method is to photograph the east and west limb spectra in the red region near to and including the $\mathrm{H} a$ line, and to measure these by the positive on negative method, confining attention to the strongest Fe and Ca lines and the hydrogen line. These lines can be measured in this way with far greater accuracy and greater freedom from systematic errors than
by the usual method，and the lines chosen are less affected by atmospheric diffusion than weaker lines or lines in the more refrangible regions． Variations in the solar rotation of 1 per cent could，it is believed，be detected with certainty by this method，and with a minimum of labour in measurement．

## Work with the 8－inch horizontal telescope．

12．Star photography in daylight．－At the request of Mr．Lindemann an effort was made to observe the conjunction of Regulus and the Sun on August 22 by the photographic method initiated by him．Light from the siderostat was passed through two large prisms each of 6 inch aperture and $45^{\circ}$ angle but placed 35 feet apart and in reversed positions，the second prism taking up and recombining only the red and infra red rays which then enter the 8 －inch telescope．The more refrangible red rays were cut out by an absorbing screen of cobalt glass placed near the focus． As the sun would be in the field of the telescope together with the star an arrangement was constructed whereby the sun＇s image could be reflected out of the tube during the exposure on the star but yet admitting of an instantaneous exposure，so that a record might be obtained of both sun and star on the same plate．Measures of the distance of the star from the sun＇s limb would then be used to discover whether there was any dis－ placement of the star due to the gravitational field of the sun．

The day of conjunction was not clear enough to test the method satis－ factorily，and no star image appeared on the plates obtained，nor could the star be seen visually during fairly clear intervals．The definition of the sun appeared very good and the spots seemed darker than with ordinary light．

## Summary of sunspot and prominence observations．

13．Sunspots．－The following table shows the monthly numbers of new groups observed at Kodaikānal and their distribution between the northern and southern hemispheres．The mean daily numbers of spots visible are also given ：－

| － |  |  |  | 第 | 若 | 家 | 号 | 官 | 咸 |  | 遃 |  |  | Year． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New groups ．． | $\cdots$ | 32 | 28 | 24 | 26 | 30 | 21 | 31 | 45 | 37 | 28 | 24 | 39 | 365 |
| North ．．． | ．．． | 17 | 13 | 16 | 12 | 17 | 12 | 23 | 20 | 19 | 13 | 13 | 18 | 193 |
| South ．．． | － | 15 | 15 | 8 | 14 | 13 | 9 | 8 | 05 | 18 | 15 | 11 | 21 | 172 |
| Daily numbers | $\cdots$ | 6.0 | $5 \cdot 0$ | $5 \cdot 6$ | $5 \cdot 1$ | $6 \cdot 7$ | 6.9 | 6.7 | 8.8 | 7.6 | 49 | $5 \cdot 4$ | $9 \cdot 3$ | 6.5 |

There is an increase in the number of new groups recorded of 31 per cent and of mean daily numbers visible of 67 per cent compared with the previous year．There was no day in 1917 on which no spots were recorded．

The preponderance of activity in the northern hemisphere is some－ what less marked than in 1916．The approximate mean latitude was $14^{\circ} \cdot 1$ in the northern and $17^{\circ} \cdot 1$ in the southern hemisphere，a decrease of $1^{\circ} .9$ and $1^{\circ} .3$ respectively compared wth the previous year．Judging by the mean latitudes it would appear that the maximum of the sunspot cycle had not yet been reached，although the northern hemisphere alone may possibly have attained its greatest activity．There were 483 reversals of the hydrogen lines， 40 darkenings of $\mathrm{D}_{3}$ ，and 133 displacements of $\mathrm{H} a$ recorded during the year．

The largest spots observed during the present cycle crossed the sun＇s disc in February and in August．
14. Prominences.-The mean daily areas of prominences in square minutes of arc derived from the Kodaikãnal photographic records are as follows :-


These figures indicate a considerable increase of activity compared with the previous year and show that the reduction in 1916 was of a temporary character. The mean daily number of prominences recorded during the year was $19 \cdot 8$.

The distribution in latitude indicates a close approach to the climax in prominence development when the high latitude zones of activity reach the polar regions. The northern zone is shown to have a maximum between $75^{\circ}$ and $80^{\circ}$ and the southern between $70^{\circ}$ and $75^{\circ}$ : the north is thus slightly ahead of the south in its approach towards the pole, and a complete disappearance of these northern prominences may be anticipated during 1918, whilst the southern zone may be expected to continue active some time longer. The northern hemisphere has continued more active than the south and this applies also to prominences projected on the disc as absorption markings, to metallic prominences, and to displacements of the hydrogen lines indicating violent motion.

The prominence areas east and west of the sun's axis show a slight western excess, the proportion.on the east side being $49 \cdot 6$ per cent of the whole. The denser prominences showing as absorption markings on the disc indicate on the other hand the usual eastern excess, the areas east of the meridian being 52.8 per cent of the whole, derived from 4725 markings. $D_{3}$ darkenings and bright reversals of hydrogen lines on the disc were also slightly more frequent east of the meridian ; but of 51 metallic prominences observed at the limb only 19 were east. Three hundred and seventy-five displacements of $\mathrm{H} a$ were recorded in the chromosphere and prominences, and of these 52.5 per cent were on the east limb.

The usual preponderance of displacements of the hydrogen lines towards red is shown both in prominences at the limb and near spots on the disc.

## Solar radiation.

15. Pyrheliometer.-Very few days in 1917 were clear enough for solar radiation measures, but a series of observations was secured by Dr. Royds early in the year with the Angstrom pyrheliometer No. 73, and the results are given in the following table. In this E is the solar constant or the amount of heat which would be received outside the earth's atmosphere, in calories per square centimetre per minute, and $a$ is the transmissive power of the earth's atmosphere.


> Dr. Royds adds the following remarks :-
> " The instrumental constant supplied by the makers has been used, although the absorptive power is at any rate much lower than its assumed value. The values of the solar constant therefore require to be multiplied by an undetermined factor before comparing with observations at other stations.
> "Whilst the variations from day to day may not be real it would seem from the observations that the value of the solar constant was falling from February to May."

## Workshop construction.

16. Dr. Royds has constructed and made experiments with interference standards of the pattern of Fabry and Perot with a view to their use in determining solar displacements with great accuracy. His apparatus is ready for mounting in front of the spectrograph when observing conditions are favourable.

17: A new prism spectrograph for use with the 15 -inch Hyderabad lens, or the 20 -inch mirror from Poona, was constructed during the year. The prism box is large in order to accommodate any prism train. Two $45^{\circ}$ prisms of 6 -inch aperture are at present used with collimator of 3 -foot and camera 5 -foot focal lengths. The spaces surrounding the prisms are filled with small closely packed sand bags. The prism box is mounted on a carriage having 3 flanged wheels running on iron rails in order that the instrument may be run into position in the beam of light from the siderostat which also feeds the spectroheliograph. The immediate purpose of this spectrograph was to obtain Venus and Fe arc spectra when the planet was too near superior conjunction for long exposures with the grating spectrograph, but atmospheric conditions were unfavourable throughout the period when it would have been of use.
18. A new microscope specially adapted for positive on negative measures was fitted to the usual form of Hilger micrometer. This instrument has been fitted with a new high quality screw-and can be used for positive on negative or ordinary filar measures. The eye piece carrying a single thread has also been reconstructed and a screw arrangement provided for rotating the thread through a small angle; this is an almost indispensable aid in spectrum measures but one which appears never to be provided by instrument makers.
19. The 8 -inch telescope from Poona was erected horizontally and fitted with a special form of camera intended for photographing Regulus in red light when near the sun.

Time, meteorology, etc.
20. Time.-The error of the standard clock is usually determined by reference to the 16 -hour signal from the Madras Observatory. This is rendered possible by the courtesy of the Telegraph Department which permits the Madras wire to be joined through to this observatory. The signal is received with accuracy on most days and all failures are at once reported to the Postmaster-General, Madras.
21. Meteorology.-Eye observations are made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$ and $16^{\mathrm{h}}$ local mean time as in former years. The Richard thermograph (wet and dry bulb) and barograph, the Beckley anemograph, and the sunshine recorder also continue in use. Cloud observations with the nephoscope are made three times daily.

Pressure.-The mean pressure was below normal in every month of the year, the defect ranging from 0.003 inch in May, to 0.046 inch in October. The mean for the year was 0.023 inch below normal.

Temperature.-The annual mean temperature was $1^{\circ}$ above normal, the mean maximum almost normal and the mean minimum $1^{\circ}$ below normal.

Humidity.-The annual mean humidity was slightly above normal.
Rainfall.-There was an excess of rain in February, May, June, August, September and November, the total fall for the year exceeding the average by 7.9 inches. The greatest monthly excess and ulso the
heaviest fall for a day, occurred in February, usually the driest month of the year.

Wind.-The mean wind velocity was in excess of normal in January but in defect in every other month, especially in July, August and September.

Cloud and sunshine.-The mean cloudness was greater than normal but the number of hours of bright sunshine actually exceeded the average by 8 per cent.
22. Seismology.-Seventy-two earthquakes were recorded on the Milne horizontal pendulum. Details of the records are given in Appendix I.
23. Library.--One hundred and two volumes were bound during the year.
24. Publications.-Volume I, part 2 of the Observatory Memoirs and five bulletins were published during the year, but under instructions from Government only a few copies were distributed privately outside India. The titles are-

Memoirs, Volume I, part 2.-Results of Prominence Observations, by J. Evershed, F.R.S., and M. A. Evershed.
Bulletin No. LIII.-The displacement of nickel and titanium lines in the sun and are, by T. Royds, D.Sc.
," No. LIV.-The canse of the so-called pole effect in the electric arc, by T. Royds, D.Sc.
" No. LV.--The solar prominence of 1916, May 26, by J. Evershed, F.R.S.
" No. LVI.--Summary of prominence observations for the second-half of the year 1916, by T. Royds, D.Sc.
, No. LVII.-Summary of prominence observations for the first-half of the year 1917, by T. Royds, D.Sc.
In addition the following contributions to "The Observatory" were made by the Director :-

The Einstein Effect and the Eclipse of 1919, May 29, XL, 269.
Day and night "seeing " ... ... ... ... XL, 400 .

KODAIKANAL,
7th February 1918.
J. EVERSHED,

Director, Kodaikanal and Madras
Observatories.

## II.-REPORT OF THE MADRAS OBSERVATORY FOR THE YEAR 1917.

Staff.-The staff at the Observatory during the year 1917 was as follows:-

| Deputy Director | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | R. Ll. Jones. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Computer $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | S. Solomon Pillai. |
| First Assistant | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | C. Chengalvaraya Mudali yar. |
| Second Assistant | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | E. Ramanujam Pillai. |

2. Time service.-The time gun at Fort St. George failed on 20 occasions out of 730 , giving a percentage of success of 97 . The semaphore failed both at 1 and 2 p.m. on two occasions, failed at 1 but dropped at $2 \mathrm{p} . \mathrm{m}$. on eleven occasions and dropped correctly at 1 p.m. on all other occasions. The 4 p.m. roll of signals was sent and received at the Central Telegraph Office, for distribution over India, correctly on every day except one. On this occasion-22nd November-the signals were not received at the Central Telegraph Office owing to a fault in the circuit at the Observatory. The circuit arrangements here have since been changed so as to permit easier inspection and detection of such faults in future.
3. Meteorological observations.-Eye observations were made at $8^{\mathrm{h}}, 10^{\mathrm{h}}$, $16^{\mathrm{h}}$, and $20^{\mathrm{h}}$, local mean time as in former years. The Richard thermograph and barograph, the Beckley anemograph, the sunshine recorder and selfregistering rain-gauge also continue in use. Extra observations were taken for storm warning purposes and telegrams sent to Calcutta on 69 occasions.
4. Buildings, etc.-The usual annual repairs to the office and quarters were carried out during the year. The subsoil drain constructed round the observatory was in part effective in stopping the variations in level of the transit instrument and the changes have been smaller during the past year.
5. Instruments.-The following is a list of the instruments at the Observatory on 31st December 1917 :-

Astronomical.
Eight-inch Equatorial Telescope-Troughton and Simms.
Sidereal clock-Haswall.
Do. Dent, No. 14 C8.
Do. S. Riefler, No. 61.
Mean Time clock-J. H. Agar Baugh, No. 105.
Do. with galvanometer-Shepherd and Sons.
Meridian circle-Troughton and Simms.
Portable transit instrument-Dolland.
Portable telescope with stand.
Tape chronograph-R. Fuess.
Relay for nse with the chronograph-Siemens.
Meteorological.
Richard's barograph-No. 10, L. Casella.
Do. thermograph-No. 29637, L. Casella.
Peander's self-recording rain-gauge-No. 116, Lawrence and Mayo.
Beckley's anemograph-Adie.
Sunshine recorder-No. 149, L. Casella.
Nephoscope-Mons. Jules Daboseq Ph. and Pellin.
Barometer, Fortins-No. 1771, L. Casella.
$\begin{array}{ll}\text { Do. } & \text { No. 725, L. Casella (spare). } \\ \text { Do. } & \text { No. } 1420, \text { L. Casella (spare) }\end{array}$

| Dry bulb thermometer-No. 94221, L. Casella. |  |
| :---: | :---: |
| Do. do. | No. 38037, Negretti and Zambra (spa |
| et do. | No. 94219, L. Casella. |
| Do. do. | No. 38037, Negretti and Zambra (spar |
| Dry maximum thermometer-No. 8581, Negretti and Zambra. |  |
| Dry minimum do. No.69017, L. Casella. |  |
| Wet do. do. | No. 91753, Negretti and Zambra. |
| Sun maximum thermometer-No. 127618, Negretti and Zambra. |  |
| Grass minimum thermometer-No. 3377, Negretti and Zamb |  |
| Rain-gauge ( $8^{\prime \prime}$ diameter)--No. 1042, Negretti and Zambra. |  |
| Measure glass for above. |  |
| Rain-gauge ( $5^{\prime \prime}$ diameter). |  |
| Measure glass for above. |  |
| Stop watch-No. A-3. |  |

The variations in the level of the Transit Circle still continue but have now a much smaller range than in 1915 and previous years before the drain was constructed round the observatory. Further they have now become very nearly periodic, and do not show a net progressive change in one direction for the whole year, as was the case formerly. During the third and fourth week in October there was a rapid recovery in the level but it was only about half of the similar change which occurred in the third week of October in 1916 and one-third of the corresponding sudden change in 1915. The range this year was less than in 1916 and possibly this was due to the better distribution of rainfall this year (see remarks on Rainfall in Weather Summary). The most satisfactory feature however is that the changes are not only smaller but are no longer cumulative. During the first half of January 1917 the mean level error was $+0^{3} .25$ and during the last half of December 19.17 and first half of January 1918 it was $+0^{9} 19$.

The rate of the Riefler clock has been very steady during the year. If it could be placed in a more favourable position where it would not be subjected to such violent fluctuations of temperatures as it undergoes in its present position, no doubt it would be still more satisfactory.
6. Weather summary.-The following is a summary of the meteorological conditions at Madras during 1917 :-

Pressure.-The mean monthly pressure was 0.015 inch above normal in January and below normal during the rest of the year, the defect being greatest in the months of October and December-about 0.065 inch. The highest daily mean was $30 \cdot 150$ inches on January 9.

Temperature.-The mean temperature of the air was above normal in January and November, below normal in June and September and about the average during the remaining months of the year. The maximum shade temperature was below normal in June, August, September and December and normal during the rest of the year. The highest temperature was recorded on May 25 ( $105^{\circ} \cdot 3 \mathrm{~F}$.). The minimum in shade was in defect of the average in May and June and in excess in January, February and November. The lowest temperature recorded was $60^{\circ} 7$ on February 19. The highest sun maximum was $164^{\circ} 1$ on February 28 and the lowest on grass was $57^{\circ} 3$ on February 19.

Humidity.-The percentage of humidity was above normal from July to September and differed little from normal during the rest of the year. The driest day in the year was June 20, when the humidity was only 31.

Wind.-The wind velocity was above normal in January, normal in February and April and below normal throughout the rest of the year. The wind direction was nearly normal in all months except in October when it was 15 points towards west.

Cloud.-The weather was more cloudy than usual in February, September and November and less cloudy during the other months.

Sunshine.-The percentage of bright sunshine was above normal in April, May and July and below in all other months. The total number of hours of bright sunshine during the year was 2190.9 against $2372 \cdot 1$ in the previous year.

Rainfall.-Rainfall was in excess of the average from June to October and in December and in defect during the rest of the year, the greatest excess being $5 \cdot 48$ inches in October and the greatest defect $7 \cdot 18$ inches in November. The total rainfall for the year was 51.06 inches on 101 days. The monsoon rainfall from October 15 to the end of the year was normal and amounted to 26.06 inches. The heaviest rainfall on one day was 6.52 inches on October 20.

Storm.-A depression which formed in the Bay about the 15th October, developed and moved in a north-westerly direction, giving heary rain in the north of the Presidency, and filled up near Nellore about the 22nd October. Another storm which entered the Bay from the east about the middle of November caused squally weather at Madras. Stormy weather was also experienced on the Madras Coast during the beginning of December.

The Observatory, Madras, 3rd February 1918.
R. LL. JONES,

Deputy Director.

APPENDIX I.

STATION-KODAIKANAL OBSERVATORY.
SEISMIC RECORDS.


| No. | Date. |  |  | Phase. | $\begin{aligned} & \text { Time } \\ & \text { G.M.T. } \end{aligned}$ |  |  | $\begin{aligned} & \text { Period. } \\ & \text { (Sec.) } \end{aligned}$ | Amplisude (u). |  |  | Distance.$(\mathrm{Km} .)$ | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | An. | Ae. | Az. |  |  |
| 19 |  |  |  |  |  | M. | s. |  |  |  |  |  |  |
|  | April | 3 |  | ${ }_{\ominus} \mathbf{P}$ | 12 | 48 | 12 | ... | $\cdots$ | $\ldots$ | $\cdots$ | ... |  |
|  |  |  |  | iL | 12 | 52 | 48 | ... | ... |  | ... | ... |  |
|  |  |  |  | M | 12 | 54 | 00 | ... | $\ldots$ | 100 | ... | ... |  |
| 20 |  |  |  | F | 13 | 38 | 36 | $\ldots$ | .. | ... | $\cdots$ | .. |  |
|  |  | 12 | . | $e^{p}$ | $\stackrel{2}{3}$ | 59 | 12 | - | $\cdots$ | $\cdots$ | $\cdots$ |  |  |
|  |  |  |  | $\mathrm{iL}_{\mathbf{M}}$ | 3 | 04 17 | 18 | ... | $\ldots$ | 50 | $\ldots$ | $\cdots$ |  |
|  |  |  |  | $\underset{\mathrm{F}}{\mathrm{M}}$ | 3 3 | 174 | 42 | $\ldots$ | $\ldots$ | ... | ... | $\ldots$ |  |
| 21 |  | 17 | . | $\stackrel{\mathrm{F}}{\mathrm{P}}$ | 18 | 54 | 42 | $\cdots$ | $\ldots$ | $\cdots$ | ... | $\cdots$ |  |
|  |  |  |  | eL | 18 | 59 | 00 | .. | . | 12 | ... | ... |  |
|  |  |  |  | M | 19 | 02 | 30 | ... | .. | 120 | ... | .. |  |
| 22 |  |  |  | F | 19 | 37 | 06 | ... | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ |  |
|  |  | 21 | .. | P |  |  |  | ... | ... | $\cdots$ | $\cdots$ | .. | No P.Ts. |
| 23 |  |  |  | iL | 0 | 59 | 30 | .. | .. | 700 | .. | .. |  |
|  |  |  |  | M | 1 | 05 | 06 | ... | $\cdots$ | 190 | ... | .. |  |
|  |  |  |  | F | 1 | 34 | 06 | ... | $\cdots$ | ... | ... | ... |  |
|  |  | 29 | . | $\bigcirc$ | 12 | 13 | 42 | $\cdots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
|  |  |  |  | 1 L | 12 | 25 | 12 | ... | ... | $\cdots$ | $\ldots$ | ... |  |
|  |  |  |  | M | 12 | 30 | 12 | ... | .. | 80 | $\cdots$ | $\cdots$ |  |
| 24 |  |  |  | F | 12 | 56 | 24 | $\ldots$ | ... | $\cdots$ | ... | ... |  |
|  | May * | 1-2 | .. | eP | 18 | 40 54 | $\stackrel{42}{24}$ | $\ldots$ | ... | $\cdots$ | ... | .... |  |
| 25 |  |  |  | M | 19 | 34 | 06 | $\cdots$ | $\ldots$ | 1420 | $\ldots$ | $\cdots$ |  |
|  |  |  |  | F | 0 | 02 | 30 | ... | ... | $\cdots$ | $\cdots$ | $\cdots$ |  |
|  |  | 24 | . | eP | 20 | 16 | 12 | .. | $\cdots$ | $\ldots$ | ... | ... |  |
|  |  |  |  | el | 20 | 21 | 18 | ... | ... | $\because 70$ | $\cdots$ | ... |  |
| 26 |  |  |  | M | 20 | 30 | 30 | $\ldots$ | $\ldots$ | 70 | , | $\ldots$ |  |
|  |  | 29 | . | $\stackrel{\mathrm{F}}{\mathrm{P}}$ | 20 6 | 42 | 48 12 | $\ldots$ | $\cdots$ | $\ldots$ | ... | $\ldots$ |  |
|  |  | 29 | $\cdots$ | eL | 7 | 00 | 18 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |  |
| 27 |  |  |  | M | 7 | 06 | 24 | ... | $\ldots$ | 50 | $\cdots$ | ... |  |
|  |  |  |  | F | 7 | 17 | 12 | ... | ... | .. | ... | ... |  |
|  |  | 31 | .. | eP | 9 | 06 | 24 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | .. |  |
|  |  |  |  | iL | 9 | 38 | 12 | ... | $\ldots$ |  | ... | ... |  |
|  |  |  |  | M | 9 | 50 | 48 | $\cdot$ | $\cdots$ | 620 | ... | ... |  |
|  |  |  |  | $\stackrel{F}{\text { F }}$ | 9 | 52 | 36 | ... | ... | $\cdots$ | ... | ... |  |
| 28 | June | 3 | .. | $\underset{\mathrm{F}}{\mathbf{P}}$ | 14 | 58 19 | 00 12 | $\ldots$ | .... | .. | ... | $\ldots$ | Widening of line |
| 29 |  | 9 | $\cdots$ | eP | 9 | 46 | 00 | $\ldots$ | $\cdots$ | $\cdots$ | ... | $\ldots$ |  |
|  | - |  |  | iL | 9 | 48 | 48 | ... | $\cdots$ |  |  | ... |  |
| '30 |  |  |  | M | 9 | 49 | 36 | . | ... | 40 | ... |  |  |
|  |  |  |  | $\stackrel{\text { F }}{\text { P }}$ | 10 | 27 | 30 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |  |
|  |  | 9 | . $\cdot$ | eP | 17 | 53 | 36 | , | ... | $\cdots$ | $\ldots$ | $\ldots$ |  |
|  |  |  |  | $\mathrm{el}^{\mathrm{L}}$ | 18 | 01 | 54 | -. | .. | 70 | ... | ... |  |
| 31 |  |  |  | M | 18 | 23 | 48 | $\ldots$ | $\cdots$ | 70 | ... | $\cdots$ |  |
|  |  | 13 | . | eP | 7 | 01 | 30 | ... | ... | ... | $\ldots$ | $\ldots$ |  |
|  |  |  |  | iL | 7 | 07 | 42 | ... | ... | $\cdots$ | ... | ... |  |
| 32 |  | , |  | M | 7 | 49 | 42 | ... | $\ldots$ | 600 | . | ... |  |
|  |  |  |  | $\underset{\sim}{F}$ |  | ... |  |  | ... | $\cdots$ | $\cdots$ | ... |  |
|  |  | 13 | . | P |  | 56 |  |  | ... | ... | $\ldots$ | ... |  |
|  |  |  |  | eL | 9 | 56 | 42 | ... | ... | $\cdots$ | ... | ... |  |
| 33 |  |  |  | $\underset{\sim}{M}$ | 10 | 00 | 12 | . | . | 50 | .. | ... |  |
|  |  | 24 |  | ${ }_{e} \mathrm{P}$ | 20 | 08 | 00 | .... | $\ldots$ | $\ldots$ | ... | $\ldots$ |  |
|  |  |  |  | iL | 20 | 17 | 24 | $\ldots$ | $\ldots$ | ... | .. | $\ldots$ |  |
| 34 |  |  |  | M | 20 | 18 | 12 | ... | $\ldots$ | 70 | $\cdots$ | ... |  |
|  |  |  |  | $\underset{\mathrm{F}}{\mathrm{F}}$ |  | .... |  | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ | ... |  |
|  |  | 24 | . | P |  | E1 |  | ... | $\cdots$ | $\ldots$ | ... | ... |  |
|  |  |  |  | iL | 20 | 51 | 18 | ... | ... | $\cdots$ | . | ... |  |
| 35 |  |  |  | $\stackrel{M}{\mathrm{~F}}$ | $\stackrel{20}{21}$ | 58 | 12 | ... | ... | 50 | ... | ... |  |
|  |  | 26 | .. | iP | 6 | 04 | 24 | ... | ... | $\cdots$ | $\cdots$ | $\cdots$ |  |
|  |  |  |  | iL | 6 | 08 | 42 | ... | ... | $\ldots$ | ... | ... |  |
| 36 |  |  |  | M1 | 6 | 19 | 36 | ... | ... | 500 | $\ldots$ | . |  |
|  |  |  |  | M2 | 6 | 55 | 06 | ... | ... | 700 | ... | ... |  |
|  |  |  |  | M3 | 6 | 56 | 42 | ... | .. | 650 | $\cdots$ | ... |  |
|  |  |  |  | M4 | 7 | 02 | 48 | ... | ... | 1080 | ... | ... |  |
|  | July | 4 |  | ${ }_{e} \mathbf{P}$ | 10 | 48 | 30 48 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | ... |  |
|  |  |  |  | iL | 0 | 53 | 48 | $\ldots$ | ... | $\cdots$ | .... | .... |  |
| 37 |  |  |  | $\mathbf{M}$ | 1 | 13 | 24 | $\ldots$ | ... | 290 | $\cdots$ | $\ldots$ |  |
|  |  |  |  | F | 2 | 39 | 12 | .. | ... | -• | $\cdots$ | $\ldots$ |  |
|  |  | 4 | .. | eP | 5 | 52 | 12 | ... | ... | ... | ... | ... |  |
|  |  |  |  | el | 5 | 55 | 12 | ... | ... | $\cdots$ | ... | ... |  |
| 38 |  |  |  | $\underset{\mathrm{F}}{\mathbf{M}}$ | 6 | 11 | 18 | $\cdots$ | ... | 90 | $\cdots$ | ... |  |
|  |  | 4 | .. | ${ }_{e} \mathrm{P}$ | 22 | 20 | ${ }_{36}$ | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ |  |
| . 39 |  |  |  | F | 22 | 48 | 06 | $\cdots$ | $\cdots$ | $\ldots$ | ... | $\ldots$ | Widening of line. |
|  |  | 15 |  | eP | 11 | 11 | 54 | . | ... | $\ldots$ | ... | $\ldots$ | Widening of line. |
|  |  |  |  | F |  |  | 24 | -.. | ... | , | .. | ... |  |

* Driving clock removed for repairs May 5 to 19.


APPENDIX Iİ．
Herht of Barometer cistern above mean sea level 7，688 feet．

| Month． | Baromèter． |  | Dry Bulb Thermometer． |  |  |  | Wet Bulb． |  | Tension． Relative <br> of Vapour． Humidity． |  | Sun Max． <br> in Vac． | $\begin{gathered} \text { Min. } \\ \text { Min. } \\ \text { onass. } \end{gathered}$ | Wind． |  |  | Rain |  | Clear Sky． | $\begin{gathered} \text { Bright } \\ \text { Suin } \\ \text { shine. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Keduced to $32^{\circ}$ ． | Daily Range． | Mean． | Max． | Min． | Range． | Mean． | Min． | By Simpson＇s Tables． |  |  |  | $\left\|\begin{array}{\|c\|} \text { Daily } \\ \text { Velocity } \end{array}\right\|$ | MeanDirection． |  | Amount． | Days． |  |  |
|  | Inches． | Inches． | － | － | o | $\bigcirc$ | o | o | Inches． | Cents． | o | － | Miles． | Points | Points． | Inches． | No． | Cents． | Hours． |
| January | 22：835 | 0.059 | 52.7 | $60 \cdot 6$ | $44 \cdot 9$ | 15.7 | 46.8 | 40.8 | 0.273 | 71 | 113.7 | 39.1 | 379 |  | E．by S． | $1 \cdot 49$ | 3 | 48 | 218.1 |
| February | 823 | －063 | 55.5 | 64.3 | 46.7 | 17.6 | 48.7 | $42 \cdot 6$ | $\cdots 85$ | 67 | $123 \cdot 9$ | ${ }^{41} 3$ | 276 | 4 | N．E．${ }^{\text {N }}$ | ${ }_{6}^{6.52}$ | 5 | 59 | ${ }_{241}^{232} \cdot 7$ |
| March | ． 823 | －063 | 58.1 | ${ }^{67 \cdot 1}$ | 49.0 | 18.1 | 50.3 | 44.6 | $\stackrel{299}{ }$ | 64 | 1313 | 4 | 267 | 4 | N N N．E． | 2.03 | 4 | 54 54 54 | 2416 |
| April | － 819 | $\cdot 056$ | $61 \cdot 3$ | 70.8 | 51.8 | 19.0 | 53.2 | $47 \cdot 1$ | $\cdot 336$ | ${ }_{69}^{64}$ | $135 \cdot 4$ | 44.9 46.1 | 257 <br> 225 | 16 | South | 7.00 | 7 | 54 | $255 \cdot 6$ 238 |
| May | ． 813 | $\cdot 061$ | ${ }^{60 \cdot 3}$ | 68.4 | $52 \cdot 1$ | $16 \cdot 3$ | 53.5 | 48.3 | －348 -389 | 69 80 | $133 \cdot 6$ 124.7 | $46 \cdot 1$ 49 | 225 | ${ }_{24}^{16}$ | $\underset{\text { West }}{\text { Wouth }}$ | $7 \cdot 65$ | 12 | 17 | 238.7 106.3 |
| ${ }^{\text {June }}$ | ${ }^{7} 7418$ | －056 | 58.8 58.5 | 64.5 64.6 | 53.0 52.4 | 1125 |  | 50.0 49.8 | －389 | 80 | 1225 | $49 \cdot 1$ | 322 | 23 | W．by S． | 3．31 | 5 | 23 | ${ }^{106 \%}$ |
| August | $\cdot 757$ | －063 | 58.1 | $63 \cdot 6$ | $52 \cdot 6$ | 11.0 | $55 \cdot 1$ | $50 \cdot 9$ | －412 | 87 | 1208 | 493 | 196 | 24 | West | 11.54 | 16 | 21 | 115\％ |
| September | $\cdot 754$ | $\cdot 074$ | 57.6 | 63.2 | $52 \% 1$ | $11 \cdot 1$ | $54 \cdot 4$ | 50．6 | －401 | 88 | 121.7 | $49 \cdot 1$ | 214 | 22 | W．S．W． | 10.77 | 22 | 17 | $95 \cdot 0$ |
| October | $\cdot 763$ | ．067 | 56.8 | $63 \cdot 7$ | $49 \cdot 9$ | $13 \cdot 8$ | 51.0 | 45.5 | $\cdot 329$ | 73 | 121.7 | $45 \cdot 6$ | 258 |  | N．W．by W． | $3 \cdot 96$ | 7 | 41 | $201 \cdot 9$ |
| November | $\cdot 810$ | $\cdot 060$ | 55.2 | $61 \cdot 1$ | $49 \cdot 3$ | $11 \cdot 8$ | $52 \cdot 1$ | $47 \cdot 9$ | －369 | 87 | 1118 | 46.0 | 254 | 1 | N．by E ． | 10：24 | 15 | 27 | 133\％ |
| December | －792 | ． 066 | 54.4 | $62 \cdot 4$ | $46 \cdot 3$ | 16.1 | 48.2 | $42 \cdot 2$ | －288 | 70 | 118.9 | 39.5 | 248 | 31 | N．by W． | $0 \cdot 81$ | 3 | 49 | 215.0 |
| Annarl | 22：790 | $0 \cdot 061$ | $57 \cdot 3$ | 645 | 50.0 | $14 \cdot 5$ | 51.8 | 46.7 | 0.343 | 75 | $123 \cdot 6$ | $45 \cdot 3$ | 268 | 29 | N．W．by N． | 67.45 | 104 | 39 | $2188 \cdot 4$ |

Extreme Monthly Meteorological Records at the Kodaikanal Observatory in 1917.

| 弪 |  |  <br> 品 |
| :---: | :---: | :---: |
|  |  |  |
| $\begin{aligned} & \text { 官 } \\ & \hline \end{aligned}$ | ＋ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  <br>  |
|  |  | 熍 |
|  |  |  |
|  |  |  |
|  |  |  |
| $\begin{aligned} & \dot{\overrightarrow{\#}} \\ & \overrightarrow{0} \\ & \stackrel{0}{0} \end{aligned}$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  <br>  |
|  |  |  |
|  |  |  <br>  |
|  | 突 |  |
|  | $\begin{aligned} & \text { 萝 } \\ & \stackrel{y}{E} \\ & \hline \end{aligned}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

APPENDIX III.

| Month. | Hours |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| Janaary | 18 | 16 | 15 | 17 | 17 | 17 | 17 | 17 | 17 | 20 | 18 | 15 | 17 | 16 | 14 | 14 | 11 | 11 | 14 | 15 | 14 | 16 | 16 | 16 |
| Febraary | 12 | 12 | 13 | 13 | 14 | 13 | 14 | 14 | 13 | 14 | 14 | 13 | 13 | 11 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 10 | 11 | 11 |
| March | 12 | 12 | 12 | 12 | 12 | 11 | 13 | 12 | 12 | 14 | 14 | 13 | 12 | 11 | 10 | 10 | 9 | 8 | 8 | 8 | 9 | 10 | 11 | 12 |
| April | 10 | 11 | 11 | 11 | 12 | 11 | 11 | 11 | 11 | 13 | 13 | 13 | 11 | 11 | 12 | 12 | 10 | 9 | 9 | 10 | 9 | 8 | 9 | 10 |
| May | 9 | 9 | 9 | 9 | 9 | 9 | 8 | 8 | 9 | 10 | 11 | 12 | 11 | 11 | 11 | 10 | 9 | 8 | 9 | 9 | 9 | 9 | 9 | 9 |
| June | 15 | 16 | 16 | 15 | 15 | 15 | 14 | 14 | 12 | 12 | 11 | 12 | 11 | 11 | 12 | 12 | 12 | 13 | 15 | 14 | 14 | 15 | 15 | 15 |
| July | 15 | 15 | 16 | 16 | 16 | 14 | 15 | 14 | 12 | 12 | 11 | 10 | 11 | 10 | 10 | 12 | 12 | 14 | 14 | 15 | 14 | 16 | 15 | 15 |
| August | 9 | 9 | 9 | 9 | 10 | 9 | 9 | 8 | 6 | 6 | 8 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 9 | 8 | 9 | 10 | 9 |
| September | 11 | 10 | 9 | 10 | 9 | 10 | 10 | 10 | 8 | 9 | 8 | 9 | 8 | 8 | 7 | 8 | 7 | 8 | 8 | 9 | - | 10 | 10 | 10 |
| Ootober | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 10 | 10 | 9 | 10 | 10 | 10 | 9 | 9 | 9 | 10 | 11 | 11 | 11 | 11 | 11 |
| November | 11 | 10 | 11 | 12 | 12 | 12 | 12 | 12 | 11 | 11 | 11 | 9 | 9 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 |
| December | 13 | 12 | 12 | 12 | 12 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 9 | 9 | 8 | 8 | 7 | 8 | 9 | 10 | 11 | 12 | 12 | 13 |
| Mean | 12 | 12 | 12 | 12 | 13 | 12 | 12 | 12 | 11 | 12 | 12 | 11 | 11 | 10 | 10 | 10 | 9 | 9 | 10 | 11 | 11 | 11 | 12 | 12 |

APPENDIX IV.

KoDaikanal mean hourly bright sunshine for the year 1917.

| Month. | Hours. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6-7 | 7-8 | $8-9$ | 9-10 | 10-11 | 11-12 | 12-13 | 13-14 | 14-15 | 15-16 | 16-17 | 17-18 |
| January | 031 | 0.61 | $0 \cdot 65$ | 0.73 | 0.76 | 0.69 | 1.75 | 064 | 0.58 | $0 \cdot 63$ | 0.20 | 0.21 |
| February | $\cdot 50$ | $\cdot 76$ | . 82 | -87 | . 86 | $\cdot 74$ | $\cdot 73$ | 72 | $\cdot 67$ | -61 | $\cdot 57$ | -41 |
| March | $\cdot 53$ | -80 | 90 | $\cdot 91$ | 40 | $\cdot 8.3$ | -65 | -5 | -50 | $\cdot 49$ | $\cdot 41$ | -32 |
| April | -64 | . 88 | $\bigcirc 7$ | $\cdot 93$ | $\cdot 91$ | $\cdot 90$ | $\cdot 79$ | -69 | $\cdot 61$ | $\cdot 55$ | $\cdot 38$ | $\cdot 27$ |
| May | $\cdot 56$ | $\cdot 77$ | $\cdot 92$ | $-94$ | $\cdot 90$ | $\cdot 78$ | -65 | 50 | - 48 | -38 | $\cdot 43$ | $\cdot 32$ |
| June | $\cdot 16$ | -39 | $\cdot 37$ | -48 | $\cdot 48$ | - 41 | 35 | $\cdot 29$ | $\cdots 27$ | -19 | $\cdot 11$ | $\cdot{ }^{(15}$ |
| . July | 16 | 47 | -57 | $\cdot 59$ | . 64 | -50 | 43 | 39 | $\because 26$ | $\cdots 3$ | -11 | $\cdot 02$ |
| August | $\cdot 24$ | -49 | -58 | $\cdot 66$ | $\cdot 58$ | $\cdot 41$ | $: 32$ | - 5 | -10 | -05 | $\cdot 12$ | $\cdot 61$ |
| September | -16 | -42 | 61 | -46 | $\cdot 43$ | $: 37$ | $\cdots 4$ | -14 | $\cdot 17$ | $\cdot 08$ | $\cdot 08$ | -01 |
| October | $\cdot 21$ | -60) | $\cdot 66$ | -70 | $\cdot 70$ | -7) | $\square 8$ | -54 | \% | $\cdot 54$ | - 48 | $\cdot 27$ |
| November | $\because 20$ | $\cdot 52$ | $\cdot 60$ | -63 | -54 | -46 | -39 | -33 | -35 | $\cdot 27$ | $\cdot 12$ | -08 |
| December | $\cdots 25$ | - 68 | $\cdot 77$ | $\cdot 72$ | $\cdot 70$ | $\cdot 70$ | $\cdot(11$ | -65 | -67 | $\cdot 60$ | $\cdot 49$ | -09 |
| Mean | $0 \cdot 33$ | $\cdot 062$ | 0.70 | 0.72 | 0.70 | 063 | 0:54 | $0 \cdot 48$ | $0 \cdot 43$ | $0 \cdot 39$ | $0 \cdot 31$ | 0.17 |

APPENDIX V.

Number of days in each month on which the Nilgiris were visible in 1917.

| Month. | Very clear. | Visible. | Just visible. | Tops only visible. | T'otal. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| January | . | 9 | 4 | 1 | 14 |
| February |  | 9 |  | $\cdots$ | 12 |
| March | $\ldots$ | 2 | 4 | $\ldots$ | 6 |
| April |  | $\cdots$ | 1 | $\ldots$ | 1 |
| May | 2 | 4 | 1 | $\ldots$ | 7 |
| June | 8 | 4 | $\ldots$ | $\ldots$ | 12 |
| July |  | 1 | 3 | $\cdots$ | 4 |
| August | 3 | 10 | 1 | ... | 14 |
| September | 2 | 4 | ... | ... | 6 |
| October | 3 | 7 | ... | ... | 10 |
| November | ... | 5 | 1 | $\cdots$ | 6 |
| December | ... | 10 | 1 | $\because$ | 13 |
| Total | 18 | 65 | 19 | 3 | 105 |

APPENDIX VI,

| Abnormals of |  |  |  | January. | February. | March. | April. | May. | June. | July. | August. | September | October. | November. | December. | Annual. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reduced atmospheric pressure | ... | ... | ... | + 0.015 | $-0.032$ | -0.020 | $-0.026$ | - 0.041 | $-0.016$ | -0.033 | - 0.027 | - (r.040 | $-0.066$ | -0.047 | $-0.067$ | $-0.026$ |
| Temperature of air ... |  | $\ldots$ | ... | $+1 \cdot 1$ | + 0.7 | + 0.5 | $+0.4$ | $-0.4$ | - 20 | + $0 \cdot 4$ | - 02 | - $1 \cdot 1$ | + 05 | + 15 | $-0.4$ | + $0 \cdot 1$ |
| Do. of evaporation | ... | ... | . | + 0.1 | + $0 \cdot 4$ | - $0 \cdot 1$ | + 05 | -0.9 | $+1.0$ | $+17$ | + 20 | + 1.2 | + 05 | + $2 \cdot 1$ | -0.2 | + 0.7 |
| Percentage of humidity | ... | ... | . | - 4 | - 1 | - 3 | same as | -. 2 | + 10 | + 6 | + 9 | $+10$ | + 1 | + 3 | + 1 | + 3 |
| Greatest solar heat in vacuo | ... | $\cdots$ | ... | + $11 \cdot 1$ | +. $11 \cdot 9$ | + 14.0 | $+136$ | + 9.7 | -0.4 | + 57 | + 50 | + 70 | + 96 | + 49 | + 9.5 | + $8 \cdot 4$ |
| Maximum in shade | ... | $\ldots$ | ... | $-0.8$ | - 0.8 | + $0 \cdot 1$ | + 0.2 | -0.8 | $-3 \cdot 8$ | - 0.5 | - 1.6 | - 32 | same as | same as | - 10 | $-10$ |
| Minimum in shade .. | ... | ... | ... | + 17 | + 15 | -0.3 | + $0 \cdot 5$ | - 12 | - 19 | + 0.2 | -0.2 | -0.5 | + 0.1 | + 20 | - 0.8 | + 0.1 |
| Do. on grass ... | .. | - | . | $+2 \cdot 4$ | +29 | + 0.6 | $+1 \cdot 4$ | - 1.0 | - 11 | +. 0.8 | + 0.9 | + 02 | $+10$ | +3.1 | -02 | + 13 |
| Rainfall in inches ... | .. | $\ldots$ | ... | - 0.51 | - 0.22 | -0.39 | - 0.62 | $-1.50$ | $+3 \cdot 42$ | + 0.34 | $+1 \cdot 83$ | + 0.61 | + 548 | - 718 | + 0.78 | ... |
| Do. since January 1st | .. | ... | ... | ... | -0.73 | ... 1112 | - 1.74 | - 3.24 | + 0.18 | + 0.52 | + $2: 35$ | + $2 \cdot 96$ | + 8.44 | + 1/26 | + $2 \cdot 04$ | + 2.04 |
| General direction of wind ... | ... | .. | ... | same as | same as | 2 points E. | same as | 1 point E. | same as | 1 point S. | same as | 1 point S . | 15 points W. | same as | 1 point N . | same as |
| Daily velocity in miles ... | $\ldots$ | $\ldots$ | ... | + 24 | + 6 | - 24 | $-5$ | - 40 | -85 | - 50 | - 46 | - 54 | - 19 | - 18 | - 24 | - 26 |
| Percentage of cloudy sky ... | ... | ... | ... | - 3 | + 5 | same as | - 11 | - 13 | + 3 | -3 | -- 6 | + 5 | -8 | + 3 | - 3 | - 3 |
| Do. of bright sunshine |  | . | . | - $2 \cdot 6$ | - 40 | -6.2 | + $5 \cdot 1$ | + 1.0 | -- 11•1 | + 19.5 | $-74$ | - 10.8 | - 24 | $-77$ | $-38$ | - 8.7 |

[^0]
## APPENDIX VII.

Abstract of the Mean Meteorological Condition of Madras in the year 1917 compared with the average of past years.

| Mean values of |  |  |  | 1917. | Difference from | Average. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reduced atmospheric pressure | ... | ... | ... | 29.838 | $0 \cdot 026$ below. | 29.864 |
| Temperature of air ... ... | $\ldots$ | $\ldots$ | ... | 81.2 | 0.1 above. | $81 \cdot 1$ |
| Do. of evaporation ... | ... | ... | ... | 75.2 | 0.7 , | 745 |
| Percentage of humidity ... | ... | ... | ... | 75 | 3 " | \% |
| Greatest solar heat in vacuo | ... | ... | $\ldots$ | 1481 | 8.4 | 1397 |
| Maximum in shade | ... | ... | ... | 89.8 | 1.0 below. | 90.8 |
| Minimum in shade | ... | ... | ... | 748 | $0 \cdot 1$ above. | 747 |
| Do. on grass | ... | .. | ... | $73 \cdot 2$ | 13 | 71.9 |
| Rainfall since January 1st on 101 days | ... | ... | ... | 51.06 | $2 \cdot 04$ | 49.02 |
| General direction of wind | ... | ... | ... | S.E. | same as | S.E. |
| Daily velocity in miles ... | ... | ... | ... | 145 | 26 below. | 171 |
| Percentage of cloudy sky ... | ... | ... | ... | 46 |  | 49 |
| Do. of bright sunshine ... | ... | ... | ... | 49.7 | 8.7 | $58 \%$ |

DURation and Quantity of the Wind from different points.

| From |  | Miles. | From | - | Miles. | From | 突 | Miles. | From | 喏 | Miles. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North. | 337 | 2,299 | East. | 257 | 1,128 | South. | 142 | 933 | West. | 249 | 1,570 |
| N. by E. | 229 | 1,434 | E. by S. | 235 | 1,206 | S. by W. | 242 | 1,707 | W. by N. | 224 | 1,252 |
| NNE. | 213 | 1,657 | ESE. | 348 | 1,504 | SS. W. | 211 | 1,280 | W. N.W. | 69 | 996 |
| NE. by N . | 413 | 3,135 | SE. by E. | 608 | 3,131 | SW. by S. | 275 | 1,595 | N. W.by W. | 111 | 515 |
| N.E. | 285 | 2,220 | SE. | 522 | 3,094 | S. W. | 171 | 1,014 | NW. | 75 | 314 |
| NE by E. | 233 | 1,588 | SE. by S. | 572 | 4,326 | SW.by W. | 201 | 1,093 | NW. by | 143 | 958 |
| ENE. | 165 | 1,034 | SSE. | 447 | 3,596 | WSW. | 249 | 1,486 | NNW. | 171 | 1,067 |
| E. by N. | 251 | 1,113 | S. by E. | 323 | 2,156 | W. by S . | 340 | 1,983 | N. by W. | 165 | 1,177 |

There were 234 calm hours during the year. The resultant corresponding to the above numbers is represented by a SE. by E. Wind, blowing with a uniform daily velocity of 30 miles.
APPENDIX VIII.

| Month. | N. | 1 | 2 | 3 |  | 5 | 6 | 7 | E. | 9 | 10 | 11 | 12 | 13 | 14 | 15 | S | 17 | 18 | 19 | 20 | 21 | 22 | 23 | W. | 25 | 26 | 27 | 28 | 29 | 30 | ${ }^{1} 1$ | Calm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | ... | 19 | 73 | 154 | 111 | 84 | 38 | 49 | 76 | 57 | 38 | 25 | ... | .. | ... | ... | .. | ... | . | ... | ... | ... |  | $\ldots$ | ... | ... | ... | $\cdots$ | . | ... | ... | ... | 20 |
| February | $\pm$ | 20 | 6 | 46 | 49 | 48 | 49 | 69 | 21 | 33 | 76 | 83 | 76 | 33 | 18 | 2 | ... |  | 1 | 1 | 1 | 3 | . | . | ... | ... | .. | $\cdots$ | $\cdots$ | ... | ... | ... | 33 |
| March | . | . | .. | 27 | 20 | 18 | 37 | 34 | 91 | 49 | 89 | 127 | 117 | 74 | 9 | 8 | 2 | 4 | 2 | 1 | ... | .. | .." | " | ... |  | . | .. | ... | ... | ... | . | 35 |
| April | $\cdots$ | .. | $\cdots$ | . | ... | ... | . | 2 | 12 | 6 | 25 | 83 | 87 | 179 | 166 | 68 | 26 | 28 | 15 | 6 | 1 | 1 | ... | 1 | .. | ... | ... | ... | ... | ... | ... | .. | 14 |
| May | 4 |  | 2 | 5 | 8 | 4 | 2 | 2 | 4 | 8 | 24 | 75 | 105 | 119 | 107 | 58 | 32 | 32 | 26 | 25 | 8 | 13 | 17 | 11 | 6 | 6 | 3 | 7 | 9 | 3 | 10 | 2 | 7 |
| June | 1 |  | . | .. | 1 | 4 | 2 | 1 | 10 | 10 | 3 | 9 | 11 | 23 | 45 | 81 | 24 | 60 | 40 | 65 | 47 | 29 | 38 | 56 | 51 | 38 | 12 | 37 | 7 | 7 | 3 | 1 | 4 |
| July | 4 | ... | . | ... | 1 |  | 6 | 4 | 18 | 6 | 19 | 39 | 35 | 38 | 30 | 33 | 23 | 41 | 37 | 67 | 35 | 35 | 65 | 69 | 46 | 32 | 16 | 11 | 6 | 9 | 6 | 8 | 5 |
| August | 6 | ... | ... | 2 | 2 | 1 | . | 22 | 4 | 4 | 6 | 33 | 39 | 21 | 43 | 8 | 15 | 84 | 59 | 53 | 37 | 35 | 45 | 65 | 36 | 29 | 23 | 29 | 8 | 23 | 5 | 4 | 3 |
| September | 15 | ... | 2 | 7 | 2 | 2 | 1 | 9 | 6 | 16 | 50 | 73 | 44 | 47 | 25 | 18 | 8 | 34 | 9 | 47 | 28 | 54 | 43 | 67 | 27 | 18 | 14 | 3 | 12 | 2 |  | 1 | 36 |
| October | 24 | 1 | 1 | ... | 1 | 2 | 8 | 13 | 9 | 45 | 18 | 40 | 2 | 2 | 2 | 46 | 11 | 8 | 22 | 10 | 10 | 26 | 38 | 71 | 82 | 93 | 1 | 21 | 13 | 23 | 35 | 16 | 50 |
| November | 105 | 75 | 34 | 85 | 68 | 32 | 8 | 28 | 6 | 1 | . | 21 | 6 | 36 | 2 | 1 | 1 | 1 | .. |  | 4 | 5 | 3 |  | 1 | 8 | ... | 3 | 20 | 59 | 32 | 50 | 25 |
| December | 174 | 114 | 95 | 87 | 22 | 38 | 14 | 18 | $\cdots$ | .. | . |  | ... |  |  |  |  | ... |  |  | ... | ... | ... | ... | ... | . | ... | $\cdots$ | .. | 17 | 80 | 83 | 2 |
| Annual total. | 337 | 229 |  | 413 | 285 | 233 | 165 | 251 | 257 | 235 | 348 | 608 | 522 | 572 | 447 | 323 | 142 | 242 | 211 | 275 | 171 | 201 | 249 |  | 249 | 224 | 69 | 111 | 75 | 143 | 171 | 165 | 234 |

APPENDIX IX．

| Month． | N． | 1 | 2 | 3 | 4 | 5 | 6 | 7 | E． | 9 | 10 | 11 | 12 | 13 | 14 | 15 | S． | 17 | 18 | 19 | 20 | 21 | 22 | 23 | W． | 25 | 26 | 27 | 28 | 29 | 30 | 31 | Total． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | $\cdots$ | 202 | 695 | 1，330 | 977 | 555 | 316 | 298 | 323 | 336 | 131 | 77 | ．． | $\cdots$ | ．． | ．． | ．． | ．．． | $\ldots$ | ．．． | $\cdots$ | ． | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | ．． | ．． | $\cdots$ |  | ．． | 5，240 |
| February | 38 | 115 | 21 | 281 | 532 | 365 | 332 | 267 | 124 | 103 | 279 | 425 | 348 | 182 | 127 | 15 | ．．． | ．．． | 8 | 6 | 8 | 9 | ．．． | $\cdots$ | ．．． | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ |  | 3，585 |
| March | ．． | ．． |  | 186 | 128 | ． 151 | 143 | 163 | 369 | 295 | 422 | 703 | 655 | 519 | 85 | 45 | 11 | 28 | 17 | 7 | ．．． | $\cdots$ | ．． | $\cdots$ | ． | ＊ | 3，927 |
| April |  |  | ． |  | ．． |  | ．． | 13 | 29 | 45 | 125 | 377 | 614 | 1，684 | 1，402 | 559 | 234 | 283 | 141 | 54 | 9 | 9 | $\ldots$ |  | ．．． | ．．． | $\cdots$ | ．．． | $\ldots$ | $\cdots$ | $\cdots$ | $\ldots$ | 5，585 |
| May | 31 | ． | 10 | 40 | 79 | 45 | 25 | 20 | 35 | 53 | 123 | 501 | 719 | 1，067 | 1，016 | 440 | 194 | 249 | 221 | 219 | 63 | 87 | 106 | 62 | 55 | 48 | 33 | 74 | 75 | 17 | 72 | 12 | 5，791 |
| June | 6 | ． |  |  | 2 | 38 | 15 | 11 | 76 | 80 | 10 | 52 | 95 | 168 | 374 | 486 | 160 | 363 | 259 | $40: 3$ | 279 | 193 | 249 | 363 | 406 | 267 | 81 | 117 | 34 | 22 | 26 | 8 | 4，652 |
| July | 27 | ．．． | $\ldots$ | $\cdots$ | 6 | ．．． | 41 | 25 | 70 | 45 | 111 | 256 | 217 | 266 | 210 | 231 | 124 | 207 | 181 | 352 | 222 | 202 | 425 | 477 | 358 | 259 | 111 | 65 | 38 | 30 | 14 | 11 | 4，581 |
| August | 51 | ． | $\ldots$ | 14 | 14 | ＋ |  | 84 | 15 | 28 | 43 | 199 | 259 | 151 | 246 | 86 | 101 | 396 | 291 | 286 | 203 | 163 | 215 | 347 | 208 | 158 | 112 | 109 | 47 | 97 | 21 | 24 | 3，972 |
| September | 35 | ．．． | 9 | 38 | 16 | 14 | 8 | 21 | 28 | 65 | 187 | 316 | 152 | 190 | 111 | 82 | 47 | 137 | 0 | 219 | 154 | 262 | 267 | 308 | 133 | 97 | 51 | 19 | 27 | 9 | ．． | 4 | 3，061 |
| October | 110 | 6 | 4 | ．． | 7 | 7 | 29 | 78 | 31 | 149 | 73 | 162 | 13 | 13 | 13 | 207 | 50 | 40 | 107 | 49 | 63 | 142 | 211 | 419 | 406 | 395 | 8 | 119 |  | 142 | 93 | 70 | 3，235 |
| Norember | 785 | 464 | $35!$ | 616 | 334 | 240 | 43 | 70 | 28 | 7 | ．． | 63 | 22 | 86 | 12 | 5 | 3 |  | ．．． |  | 13 | 26 | 13 | ．．． |  | 28 | ．． | 12 |  | 480 | 205 | 421 | t， 417 |
| December | 1，216 | 647 | 5759 | 630 | 125 | 169 | 82 | 63 | ．．＇ | ．． | ．．． | $\cdots$ | ．． | ． | $\cdots$ | ．．． | $\ldots$ | ．． | $\cdots$ | ．．． | ．．． | ．．． | ．．． | 161 | （i36） | 627 | 4，915 |
| Annual |  | $\stackrel{\text { 筞 }}{\sim}$ | $\xrightarrow{\text { 喣 }}$ | 哭 | N | $\xrightarrow{\infty}$ | ＋ | $\stackrel{\text { ¢ }}{\underset{\sim}{7}}$ | $\stackrel{\text { ¢ }}{\stackrel{\sim}{=}}$ | － | 苓 | $\frac{\vec{m}}{m}$ | $\begin{aligned} & \text { تた } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$ |  | $\begin{aligned} & \mathscr{\circ} \\ & \end{aligned}$ | $\stackrel{\stackrel{0}{0}}{\stackrel{\rightharpoonup}{\text { in }}}$ | 枈 | $\stackrel{\text { N }}{\sim}$ | $\underset{\sim}{\stackrel{\circ}{\mathrm{N}}}$ |  | $\underset{\sim}{\underset{\sim}{t}}$ |  |  | $\begin{aligned} & \text { O } \\ & \underset{\sim}{\circ} \mathrm{C} \end{aligned}$ | $0$ | $\begin{gathered} \text { 黍 } \\ \hline \end{gathered}$ | ¢ | 10 | 岗 | ¢ | 皆 | $\xrightarrow[\sim]{\text { E }}$ | $\begin{aligned} & \text { Be } \\ & \text { 令 } \end{aligned}$ |

appendix X.


## APPENDIX XI.

Madras Observatory.-Wind, cloud and bright sunshine, 1917.

| Month. | Wind resultant. |  | Cloud (0-10). |  |  |  |  | Bright sunshine. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Velocity. | Direction. | 8 H. | 10 H. | 16 H. | 20 H. | Mean. | Average per day. | Greatest number of hours in a day. |
|  | miles. | points. |  |  |  |  |  | Hours. | HOURs. |
| January | 142 | NE by E. | 3.6 | 40 | 28 | 29 | 34 | $7 \cdot 5$ | $9 \cdot 2$ |
| February | 95 | East | $2 \cdot 9$ | 34 | 27 | 24 | 29 | 8.5 | 11.0 |
| March | 103 | ESE. | $2 \cdot 9$ | 35 | $1 \cdot 5$ | $1 \cdot 8$ | 24 | 8.1 | $10 \%$ |
| April | 180 | SSE. | 23 | $2 \cdot 2$ | 15 | 08 | 1.7 | $9 \cdot 2$ | $10 \cdot 8$ |
| May | 129 | SSE | 22 | 18 | 28 | 30 | $2 \cdot 5$ | 78 | $9 \cdot 7$ |
| June | 95 | S. by W. | $6 \cdot 1$ | 56 | 8.2 | 67 | 6.7 | $7 \cdot 3$ | $7 \cdot 5$ |
| July | 80 | SW. by S. | $7 \cdot 1$ | 66 | $7 \cdot 1$ | 64 | 6.8 | 3.9 | 8.6 |
| August | 67 | SW. by S. | $5 \cdot 7$ | 5.5 | 78 | $5 \cdot 1$ | 6.1 | 40 | $9 \cdot 1$ |
| September | 48 | SSW. | 6.9 | $7 \%$ | 6.4 | 62 | 6.7 | 37 | $9 \cdot 1$ |
| October | 42 | W.by S. | $5 \cdot 0$ | $5 \cdot 1$ | 56 | 44 | $5 \cdot 1$ | $5 \cdot 6$ | 10.4 |
| November | 115 | N. by E. | 6.6 | 68 | $6 \cdot 3$ | $5 \cdot 1$ | 6.2 | 46 | 97 |
| December | 143 | N. by E. | $4 \cdot 3$ | 48 | $5 \cdot 7$ | 46 | 4.9 | 56 | 8.4 |
| Annual | 30 | SE. by E. | 4.6 | 47 | 4.9 | 41 | 4.6 | $6 \cdot 3$ | ... |

APPENDIX XII．
Mean Monthly and Annual Meteorological Results at the Madras Observatory in 1917.

| Month． | Barometer． |  | Dry Bulb Thermometer． |  |  |  | et Bul |  | （ Tension｜Relative |  | $\begin{gathered} \mathrm{Sun} \\ \text { Mn ax } \\ \text { in Vac. } \end{gathered}$ | $\begin{gathered} \text { Min. } \\ \text { Mrass. } \end{gathered}$ | Wind． |  |  | Rain． |  | Cload． | $\begin{aligned} & \text { Bright } \\ & \text { sonht } \\ & \text { shine. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reduced to $32^{3}$ ． | $\begin{aligned} & \text { Daily } \\ & \text { Range. } \end{aligned}$ | Mean． | Max． | Min． | Range | Mean． | Min． | ${ }^{\text {By }} \mathrm{Bl}_{\mathrm{T}}$ | ${ }^{\text {ford＇s }}$ |  |  | $\begin{aligned} & \text { Daily } \\ & \text { Deilo } \end{aligned}$ city. |  | Mean | Amount． | Days． |  |  |
|  | Inches． | Inches． |  |  |  |  |  |  | Inches． | ents． |  |  | Miles． | Points | Points． | nches． | No． | Cents． | Hours． |
| Janury | － | －111 | ${ }_{77 \cdot 4}^{76.4}$ | 8838 | ${ }_{69.5}^{69.1}$ | 14.7 163 | ${ }_{71.2}^{69.3}$ | ${ }_{66 \cdot 1}^{66.5}$ | ${ }_{0}^{0.633}$ | ${ }_{72}^{69}$ | ${ }_{\text {1 }}^{1495}$ | ${ }_{6}^{65 \cdot 5}$ | ${ }_{128}^{168}$ |  | NE．be E． |  | ${ }_{2}^{1}$ | ${ }_{29}^{34}$ |  |
| March | 29：933 | ． 123 | ${ }_{80} 8.5$ | ${ }_{89}^{89} 8$ | ${ }_{717} 69$ | 17.5 | 73．8 | ${ }_{70}^{67.2}$ | ${ }^{7} 78$ | ${ }_{71} 7$ | 105 <br> 1545 <br> 154 <br>  | － 6 6．7． | ${ }_{128}^{128}$ | ${ }_{10}^{8}$ | ${ }_{\text {ESESt．}}$ East． |  |  | ${ }_{24}^{29}$ |  |
| ${ }_{\text {April }}$ | －775 | ${ }^{.132}$ | 88．4． | ${ }_{97}^{93 \cdot 1}$ | ${ }_{79}^{77.6}$ | 15.4 17.4 | ${ }_{77-4}^{78 \cdot 1}$ | ${ }_{74} 75$ | ：874 | 74 65 | ${ }^{155 \cdot 3}$ | ${ }_{77}^{76.1}$ | 186 | 13 | SE．by S． |  | $4$ | ${ }_{25}^{17}$ |  |
| June | ${ }_{6} 686$ | ${ }^{113}$ | 8 | ${ }_{994}^{94}$ | 78.5 | 16. | ${ }_{77} 76$ | ${ }_{74} 74$ | ． 882 | ${ }_{71}^{65}$ | ${ }^{1340} 1$ | ${ }_{77} 7.5$ | 155 | 19 | SW s by s ． | ${ }_{5}^{6.53}$ | － 10 | ${ }_{68}^{67}$ | （110．2 |
| ${ }_{\text {August }}$ | ${ }_{722}$ | ${ }_{122}$ | ${ }_{8}^{85.1}$ | ${ }_{92} 9.1$ | 787 | 15.0 | 78.0 | ${ }_{75}$ | ：889 | 79 | ${ }^{1454}$ | ${ }_{76}^{76.3}$ | 1128 | 19 | SW．bys． | ${ }_{6}^{4} 89$ | ${ }_{18}^{18}$ | ${ }_{61}^{68}$ | ${ }_{1}^{1229}$ |
| September | .778 | ${ }^{129}$ | 81.9 81.1 | 890． | ${ }_{75 \cdot 3}^{76.6}$ | ${ }_{13}^{13.7}$ | ${ }_{76}^{77.1}$ |  | ${ }^{1885}$ | ${ }_{79}^{82}$ | 1488 <br> 148.7 <br>  | － 73.8 | ${ }_{104}^{102}$ | ${ }_{22}^{17}$ | S． S S． w ． | $\begin{array}{r}5.30 \\ 1648 \\ \\ \hline\end{array}$ | 119 | ${ }_{51}^{67}$ | ${ }_{174.3}^{11.2}$ |
| November | ：912 | －106 | ${ }_{751}^{79.0}$ | ${ }_{82}^{85}$ | ${ }^{74.3}$ | ${ }_{13}^{10.6}$ | 75.0 70.4 | $72 \cdot 6$ 67.7 | －814 | ${ }_{78}^{82}$ | $142: 3$ $145 ;$ | $72 \cdot 6$ 70.4 | 147 159 | 1 | N． N W．E． E ： | 6：03 6 | ${ }_{7}^{17}$ | ${ }_{49}^{62}$ | ${ }_{1}^{1372} \times$ |
| Annual | ${ }^{29.817}$ | $\cdot 121$ | 81.2 | ${ }^{89.8}$ | 748 | 150 | 75.2 | 72.2 | －92 | 75 | 148.1 | 73.2 | 145 | 12 | SE． | 51.06 | 101 | 46 | 21909 |

\footnotetext{
Extreme Monthly Meteorological Records at the Madras Observatory in 1917.

| 年 |  |  |
| :---: | :---: | :---: |
|  |  |  |
| B |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  | 家 |
|  |  |  |
|  |  |  |
|  |  |  |
| $\begin{aligned} & \text { 尃 } \\ & \text { 思 } \\ & \end{aligned}$ | $\begin{aligned} & \text { 罾 } \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$ |  |
|  |  |  |
| $\begin{aligned} & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ |  |  |
|  |  |  |
|  |  |  |
|  |  | －Mentup |
|  |  |  |
|  |  |  |
|  |  |  |
|  | $\begin{gathered} \text { 䍚 } \end{gathered}$ |  |
|  |  |  |
|  | $\begin{array}{\|l\|l} \substack{\text { 部 } \\ \text { 品 }} \end{array}$ |  |
|  |  |  |
|  |  |  |


[^0]:    + means above normal ; - means below normal.

