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Determination of molecular hyperfine-structure constant using the second-order relativistic
many-body perturbation theory
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The spin-rotational Hamiltonian parameters A‖ and A⊥ for the BaF molecule are calculated using four-
component relativistic spinors at the second-order many-body perturbation theory (MBPT) level via the Z-vector
technique. The second-order MBPT is applied to assess the accuracy of the computed hyperfine-structure constants
before studying the problem with the state-of-the-art coupled cluster with single and double excitations (CCSD)
method which is highly accurate but computationally more expensive than MBPT. The hyperfine-structure
constants A and Ad resulted from these calculations agree favorably well with experimental findings and with
other correlated calculations. The convergence behavior of A and Ad with respect to the number of active orbitals
used in the perturbative calculations suggests that our estimated A and Ad values should be accurate.
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I. INTRODUCTION

Paramagnetic radicals, such as BaF, YbF, thallium fluoride,
etc., have been the subject of interest in experimental physics
for the search of a permanent electric dipole moment (EDM)
of the electron which for an atomic and/or molecular state
can only arise when both parity (P ) and time reversal (T )
invariance are broken. The existence of a nonzero permanent
EDM is, therefore, regarded as a signature of behavior beyond
that described by the standard model (SM) of particle physics.
Extensive theoretical investigations have been carried out over
the past few decades to determine the P,T -odd interaction
constant Wd (which is used to determine the electron EDM) for
the previously mentioned diatomic systems. However, in order
to interpret the measured data in terms of fundamental con-
stants of the P,T -odd interaction, one must calculate specific
properties of the systems to establish a connection between the
measured data and the studied fundamental constants. These
properties are described by the operators that are prominent in
the nuclear region. It is pertinent to note that the accuracy of
the theoretically estimated P,T -odd interaction constants can
be directly assessed from the accuracy of a theoretical estimate
of hyperfine constant (A and A′ or A‖ and A⊥) as the operator
from which hyperfine constants are determined is more or less
similar to that used for the computation of P,T -odd interaction
constants.

The first calculations of the P,T -odd interaction constants
in molecules were carried out at the self-consistent field (SCF)
level for the TlF molecule by Hinds et al. [1] and Coveney et al.
[2] using relativistic matching nonrelativistic wave function.
A semiempirical and ab initio method based on the relativistic
effective core potential (RECP) calculation of the molecular
wave function were subsequently developed by Kozlov and
co-workers [3,4] for more accurate estimation of the P,T -odd
interactions constants. Titov et al. [5,6] have also applied
the RECP basis to determine the spin-rotational parameters
including hyperfine-structure constant (A) for PbF and HgF
molecules at the SCF level with minimal basis set. Note that the

electron correlation effects were not taken into account in these
pilot applications because of the complexity of the problem.
The first correlated relativistic calculations were carried out by
Titov et al. [7] for the YbF molecule. In their calculations, Titov
et al. employed the restricted active space SCF (RASSCF)
method [8] [a subset of complete active space (CAS) SCF]
to incorporate the electron correlation effect. They concluded
that for accurate calculations of the hyperfine and the P,T -odd
interaction constants, the spin correlation of the unpaired elec-
tron must be taken into account. However, such a procedure is
computationally cumbersome as too many electrons need to
be correlated. In a later article, Kozlov et al. [3] showed that
a significant portion of the core-valence electron correlation
can be incorporated via the effective operator (EO) technique.
They have successfully applied this technique to compute the
P,T -odd interaction and hyperfine structure constants of BaF.
Although the EO method offers a reasonably accurate estimate
of spin-rotational Hamiltonian parameters, it only includes
partial electron correlation. Thus, from a theoretical point of
view, a rigorous ab initio relativistic correlated treatment is
necessary to assess the accuracy of the P,T -odd interaction
constants and related molecular properties such as equilibrium
geometry, hyperfine-structure constant, dipole moment, etc.
At this juncture, it is worth noting that the analytic energy
gradient approaches are the most efficient and powerful
tools to facilitate the study of equilibrium geometries,
vibrational frequencies, transition states of molecular systems
by determining the derivatives of the adiabatic potential
energy surface(s) (for both ground and excited states)
of a molecule with respect to the nuclear coordinate(s).
Analytic derivatives also provide important applications to
the calculations of various electrical and magnetic properties
where the derivatives are taken with respect to the external
field.

The seminal work of Pulay in developing a practical method
for evaluating analytical gradients [9] of the SCF energy
has opened fresh avenues for the study of molecular force
fields [10]. Subsequent extensions by Pople et al. [11] of
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this approach treat contributions to the correlation energy
by implementing analytical gradients for the second-order
many-body perturbation theory method. Genuinely important
breakthroughs in the early 1980s enabled simplified gradient
calculations for correlated many-body methods, including the
state-of-the-art Z-vector technique of Handy and Schaefer [12]
for eliminating the terms involving derivatives of the molecular
orbital coefficients in many-body perturbation theory (MBPT)
and coupled-cluster (CC) methods. [13] These developments
essentially provide the foundation for tremendous progress,
culminating in the genesis of theoretical methods for eval-
uating the gradients, for example, of the MBPT energy all
the way through fourth order [14–19]. The study of analytic
derivatives for CC methods [20] has recently culminated in
analytic gradient theories for equations of motion CC [21]
(EOMCC) and propagator approaches [22] that are appropriate
for specialized studies of excited electronic states and certain
open-shell systems.

The analytic gradient method is nowadays routinely used
in quantum chemistry to determine equilibrium geometries,
vibrational frequencies, electric and magnetic properties, etc.,
for nonrelativistic molecular systems. It is widely accepted
that the analytic energy derivative approaches are essential
for a quantum chemical theory to be of practical use, and
these techniques should be available for every standard
many-body methods. In fact, analytic energy derivatives
at the SCF, CASSCF, and MBPT levels are available in
almost all quantum chemistry packages. However, despite
tremendous methodological and computational advances, the
gradient method is hardly applied for systems which must
be treated relativistically. Thus, from a theoretical as well
as a computational point of view, it is relevant to extend
the analytic gradient approach to the relativistic regime to
study atomic and/or molecular systems containing at least one
heavy atom.

In our earlier communication [23], we employed the
analytic gradient technique at the level of second-order many-
body perturbation theory (MBPT) to study the P,T -odd
interaction constants Ws for BaF and YbF molecules. The
P,T -odd interaction constants Ws resulted from this approach
were encouraging. The present paper is a continuation of
our preceding studies on the numerical applications of the
relativistic gradient approach at the second-order perturbation
theory level. The goal of the present work is to extend
the gradient approach to compute the hyperfine-structure
constants for the ground state of the BaF molecule using
all-electron relativistic spinors [i.e., Dirac-Fock (DF) orbitals].
The hyperfine constants for this system have been reported
earlier by Kozlov et al. [24] at the EO-RASSCF level of
theory. At this point, we reiterate that a rigorous ab initio
study is necessary to assess the results obtained from ab initio
many-body methods as the earlier schemes do not include
the electron correlation in an effective and balanced manner.
Ideally, energy gradient should be determined analytically for
highly correlated and sophisticated many-body methods, such
as the single or multireference-based coupled-cluster method
with single and double (SR-CCSD or MR-CCSD) [25–34]
excitation as these methods are known to be capable of
providing a highly accurate estimate of atomic and molecular
properties. Here, the energy gradient method at the level

of second order is employed to assess the accuracy before
studying the problem with the state-of-the-art CCSD methods.

The outlay of the paper is as follows. Sections II and III
provide a brief outline of the hyperfine matrix elements and
the scheme for evaluation of the analytic energy gradient
with respect to external field via the Z-vector technique.
The calculated results are presented and discussed in the
subsequent section.

II. SPIN-ROTATIONAL HAMILTONIAN

Kozlov and Labzowsky [35] have shown that the molecular
spin-rotational degrees of freedom can be described by the
spin-rotational Hamiltonian as

HSR = BN2 + γ S · N − Den · E + S · ÂI + WAkAn

× S · I + (WSkS + Wdde)S · n, (1)

where N is the rotational angular momentum and B is the
rotational constant. The variables S and I are spin of the
electron and Ba nucleus, n is the unit vector directed along
the molecular axis from Ba to F, and γ is the spin-doubling
constant which characterizes the spin-rotational interaction.
The parameters De and E appearing in the previous expression
are the molecular dipole moment and the external electric field.
The magnetic hyperfine structure is described by the axial
vector Â and the last three terms represent the P -odd and
P,T -odd effects.

The one-electron one-center radial matrix elements of the
magnetic hyperfine tensor interaction, t1 is given by [36]

t1
q = −α(κ + κ ′)(−1)m−1/2

√
(2j + 1)(2j ′ + 1)

×
(

j 1 j ′

− 1
2 0 1

2

)(
j 1 j ′

−m q m′

)
Rκ,κ ′ (r), (2)

where the radial integral Rκ,κ ′ (r) is given by

Rκ,κ ′ (r) =
∫ ∞

0
[Pκ (r)Qκ ′(r) + Qκ (r)Pκ ′(r)]dr, (3)

in which Pκ (r) and Qκ (r) are the large and small component
of the radial part of the atom-centered basis of symmetry label
κ . Now, the magnetic hyperfine interactions A‖ and A⊥ can be
defined as

A‖ = gN
mp

〈ω|t1
0 |ω〉, (4)

and

A⊥ = gN
mp

〈ω|
√

2t1
1 | − ω〉 = gN

mp

〈ω|
√

2t1
−1| − ω〉, (5)

respectively, where ω denotes the projection of electronic total
angular momentum along the molecular symmetry axis. With
the aid of these definitions, the magnetic hyperfine-structure
constants A and Ad can be written as

A = 1

3
(A‖ + 2A⊥), (6)

and

Ad = 1

3
(A‖ − A⊥). (7)
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III. METHODOLOGY

Once the molecular electronic wave function � is known,
the properties of interest can be computed from the expectation
value,

〈O〉 = 〈�|H ′|�〉, (8)

where H ′ is an appropriate operator for the property of interest.
For one-electron properties, Eq. (8) reduces to the contraction
of a density matrix with property integrals. The property values
can also be computed using perturbation theory. In this case,
the property associated with H ′ is given by

〈O〉 = dE/dλ|λ=0, (9)

where

E(λ) = 〈�|H0 + λH ′|�〉, (10)

in which H0 is the unperturbed Hamiltonian. Differentiating
Eq. (10), w.r.t λ, we get

dE/dλ|λ=0 = 〈�|H ′|�〉 +
〈

d�

dλ

∣∣∣∣H0|�〉|λ=0

+〈�|H0

∣∣∣∣ d�

dλ

〉∣∣∣∣
λ=0

, (11)

which reduces to Eq. (8) when � is an exact eigenfunction
of H0 (i.e., when d�/dλ = 0). Under these circumstances
the wave function is said to obey the Hellmann-Feynmann
theorem [37] for H ′.

The simplest approach to compute the property is the finite
difference approach [38], where dE/dλ|λ=0 is estimated by
finite differences, that is,

dE

dλ

∣∣∣∣
λ=0

= E(λ̄) − E(0)

λ̄
, (12)

for small λ̄. However, this approach is neither convenient nor
simple for general application. The alternative to Eq. (12)
is the “coupled perturb” approach where the non-Hellmann-
Feynmann terms are computed explicitly via

dE

dλ

∣∣∣∣
λ=0

= ∂E

∂λ

∣∣∣∣
λ=0

+
∑

k

∂E

∂αk

∣∣∣∣∣
αk=α0

dαk

dλ

∣∣∣∣
λ=0

, (13)

where {α0} is the set of parameters in the optimization of
unperturbed wave function �. It immediately follows from the
previous equation that in order to compute the non-Hellmann-
Feynmann terms in Eq. (11), we have to evaluate ∂E/∂αk and
dαk/dλ. In the actual calculation, this is accomplished by the
Z-vector method [39–41].

Since the basic formalism of the Z-vector method is
available elsewhere [39,40], we briefly review this scheme.
For convenience, we restrict our discussion on the evaluation
of the analytic energy derivative involving the electric field
perturbation for the CI wave function. Let us consider the
following first-order perturbed Hamiltonian operator H ,

H = H0 + λaH
′
a + λf H ′

f (14)

where H0 is the unperturbed Hamiltonian and H ′
a is the first-

order change in the Hamiltonian due to nuclear perturbation,
and H ′

f is the first-order change due to electric field. The

parameters λa and λf in Eq. (14) are the nuclear coordinate
and electric field perturbations, respectively. Since the atomic
orbital basis set depends only on the nuclear coordinate, H ′

a

affects the one-electron, two-electron, and overlap integrals.
On the other hand, H ′

f only affects the one-electron integrals.
The electric dipole moment is defined by

µf = −∂Etotal

∂F
= −∂Enuc

∂F
− ∂Eelec

∂F
= µnuc

f + µelec
f ,

(15)

where F stands for the electric field along the f axis. Now,
the first derivative of the electronic energy for the CI wave
function with respect to the electric field perturbation can be
written as [40]

∂Eelec

∂F
= −

MO∑
ij

Qijh
f

ij − 2
MO∑

ij

U
f

ij Xij , (16)

where Q is the one-electron density matrix [42] and h
f

ij is the
dipole moment matrix. The Lagrangian matrix for the CI wave
function X is given by

X =
MO∑

ij

Qijhij +
MO∑
ijkl

Gijkl(ij |kl), (17)

in which hij and (ij |kl) are the one- and two-electron matrix
elements and G is the two-electron density matrix [42]. The U

f

ij

matrices, which are related to the first derivative of molecular
orbital (MO) coefficients with respect to the electric field
are obtained by solving the coupled perturbed Hartree-Fock
(CPHF) equations in the following matrix form;

AUf = Bf . (18)

For a closed-shell SCF wave function matrices A and B can
be written as

Aij,kl = δij δkl(εj − εi) − [4(ij |kl) − (ik|j l) − (il|jk)],

(19)

and

Bij = h
f

ij , (20)

respectively, where ε’s are single-particle orbital energies. The
one- and two-electron integrals appearing in Eqs. (19) and (20)
are defined in terms of molecular orbitals as

hij =
∫

φ∗
i (1) h(1) φj (1) dτ1, (21)

(ij |kl) =
∫ ∫

φ∗
i (1) φ∗

j (1)
1

r12
φk(2) φl(2) dτ1dτ2. (22)

Now the second term of Eq. (16) may be written as [40]

2
MO∑

ij

U
f

ij Xij = 2XT Uf , (23)
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where XT is the transpose of X matrix. Combining Eqs. (18)
and (23), the second term of Eq. (16) can be written as

2
MO∑

ij

U
f

ij Xij = 2XT A−1Bf = 2ZT Bf , (24)

where the Z vector in this equation is defined by

ZT = XT A−1, (25)

which in turn may be written as

AT Z = X. (26)

Once Z is known, the corrections due to first-order changes of
the MO coefficients may be evaluated as

2
MO∑

ij

U
f

ij Xij = 2
MO∑

ij

B
f

ijZij . (27)

The advantage of the Z vector is now obvious. In Eq. (18) the
simultaneous equations were to be solved for three degrees (x,
y, and z) of freedom, while in Eq. (26) they are solved only
for one degree of freedom. It is worth noting that the Z-vector
method, in principle, is applicable whenever equations of the
form (26) and (27) are valid.

IV. RESULTS AND DISCUSSIONS

The hyperfine-structure constants A‖ and A⊥ of the ground
2�1/2 state of BaF are evaluated via the analytic gradient
approach through the second-order MBPT using all-electron
Dirac-Fock orbitals. The calculations are carried out using a
27s27p12d8f and 15s10p even-tempered Gaussian basis set
at the experimental geometry (Re = 2.16 Å). The hyperfine-
structure constants (A and Ad ) resulting from our MBPT are
compared with experimental data and with other theoretical
calculations in Table I. In addition, we also report the results
of A and Ad determined at the RASCI level calculated using the
same basis set and active orbitals. The total number of active
orbitals in the RASCI and MBPT calculations is 75. The first
24 occupied orbitals are kept frozen in the calculation as their
effect on Ws and µ (dipole moment) are not significant. We
would like to note that preliminary calculations exhibit a sharp
increase in the computed A and Ad values with an increasing
number of active unoccupied orbitals which finally stabilizes
for the number of active orbital �60 (for 17 active-electron
cases) [23].

As can be seen in Table I that the A and Ad parameters
estimated at the SCF and RASSCF levels of theories are ∼40%
off from the experiment. This clearly indicates the importance
of electron correlation in the estimation of A and Ad . A similar
trend was observed for the P,T -odd interaction constant Ws for
this molecule. It is also evident from Table I that the inclusion
of electron correlation (partially) via the EO method and/or
ab initio second-order MBPT significantly improves the accu-
racy of the theoretically estimated hyperfine constant values.
A closer inspection of the results displayed in Table I shows
that the MBPT estimated hyperfine A (Ad ) value is off by
∼52 MHz (5 MHz) and 144 MHz (3 MHz) with respect to
the first and to the second experimental values. To analyze
and assess the contribution of inner core electrons, we

TABLE I. Hyperfine-structure constants (in MHz) for BaF.

Methods A Ad

Expt. Ia 2326 25
Expt. IIa 2418 17
SCF [24] 1457 11
RASSCF [24] 1466 11
SCF-EO [24] 2212 26
RASSCF-EO [24] 2224 24
RASCI (This work)b 2176 32
MBPT (This work)b 2230 19
MBPT (This work)c 2274 20

aResults obtained from two different experiments (see Ref. [35] for
details).
bResults from 17 active electrons and 75 active orbitals used in MBPT
calculations.
cResults from 35 active electrons and 75 active orbitals used in MBPT
calculations.

increase the number of active electrons in the calculation
by 18 [i.e., a total of 35 active electrons (freezing lowest 15
occupied orbitals)]. The hyperfine-structure constants resulted
from this calculation shows that the inclusion of inner core
electrons improves the theoretical estimate of A and Ad

by ∼2%.
We reiterate that we have analyzed the variations of A and

Ad with respect to the space of virtual orbitals but not against
the level of correlation. For a reasonably accurate estimate of
the uncertainty in our calculations, the variations of A and
Ad with respect to the basis sets, active space and level of
correlation have to be known. However, this is beyond the
scope of the present work and therefore we are not in a position
to comment on the uncertainty of our estimated hyperfine-
structure constants A and Ad . In passing, we note that
since we have used a fairly large basis set and active orbitals in
the calculations. we trust that our estimated hyperfine-structure
constants should be quite accurate.

We now analyze the results obtained using the RASCI
method. The RASCI calculations are carried out with 17 active
electrons and 75 active orbitals. As can be seen in Table I,
the RASCI approach overestimates the Ad value by almost
7 MHz and underestimates A by 150 MHz with respect to the
first experimental data. Nevertheless, the RASCI calculations
demonstrate that the A and Ad estimate can be also improved
by incorporating the nondynamical electron correlation via
configuration interaction (CI) approach. However, MBPT
should be more preferable over RASCI because RASCI, unlike
MBPT, is not size extensive [43].

Based on the values of A and Ad (also Ws), estimated
from SCF, RASSCF, SCF-EO, MBPT, etc., we conclude that
although the present calculation agrees favorably with earlier
theoretical results, more sophisticated theoretical treatment is
still necessary to improve the accuracy of these spin-rotational
Hamiltonian parameters. State-of-the-art many-body methods
such as multireference many-body perturbation theory and/or
coupled-cluster methods may be used to access higher order
dynamical and nondynamical electron correlation effects and
accuracy of the present estimate. Work in this direction is in
progress and will be presented in our future communication.
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