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We analyze the motion of charged particles in rotating pulsar magnetosphere using the equation of motion, 
which was proposed earlier. We consider the projected magnetic field lines onto a 2D plane perpendicular 
to the rotation axis, and derive the particle trajectory valid over a radial distance of about 10% of the light 
cylinder radius. The motive behind considering this model is to elucidate some of the effects of rotation on 
pulsar profiles. For example, the asymmetry in the observed pulse shapes can be explained by considering 
the aberration-retardation effects. The single sense circular polarization that has been observed in many 
pulsars, might be due to the relative orientation of sight line with respect to t.he plane of particle trajectory. 

1. Introduction 

It is difficult to understand fully the emission process in pulsars based on models developed with some 
simplifying assumptions. Out of several emission mechanisms, curvature emission can be surmised 
to be the most probable emission mechanism [1-3). Coherent emission by bunches of particles has 
been postulated to explain the high brightness temperature observed in pulsars e.g., [3-5). The 
polarization observations such as the polarization angle swing favors the curvature radiation. It has 
been considered as a natural emission process for pulsars, though there are unresolved problems like 
the bunch formation, orthogonal polarization modes etc e.g., [6-8). In order to study closely the 
curvature emission mechanism the influence of rotation has to be properly understood. Machabeli 
& Rogava (9) have considered the idealized case of particle acceleration where particles move freely 
along an infinitely long, rigidly rotating straight tube, and derived an expression for the trajectory of 
a particle. Gangadhara & Lesch (10) have proposed a model for the particle acceleration in rotating 
magnetosphere in the context of AGN. Reiger & Mannhiem [11) have also discussed the particle 
acceleration along the rotating straight magnetic field lines in AGN, by assuming angular velocity 
of the particles is same as that of AGN. 

Gold (12) was the first one to propose a pulsar emission mechanism based on rotation. Many 
authors have built upon this model but found it difficult to explain the interpulses e.g., [1). Blask­
iewicz et a1. (13) have studied the effects of corotation velocity and Hibschman & Arons (14) have 
extended their work to include the first ordt;r effects because ofthe phase shifts in polarization angle 
sweeps due to polar cap currents. Later, Peyman & Gangadhara [15) have improvised the model of 
Blaskiewicz et aI. [13) and analyzed the effect of rotation on the morphology of pulsar profiles and 
polarization. 

Gangadhara [16) has derived the equation of motion of a charged particle in pulsar magne­
tosphere. He has aSsumed straight field lines projected on to a 2 dimensional (2D) plane placed 
perpendicular to the rotation axis. The magnetic Lorentz force acts as a constraining force and 
drags the plasma along the field lines. Because of the inclination of magnetic axis relative to the 
rotation axis, corotating plasma tends to rotate with an angular velocity less than ~hat of pulsar on 
some field lines. We consider the same 2D geometry and analyze the dynamics of a charged particle. 
We solve the equation of motion, of a charged particle in pulsar magnetosphere, as derived in [16]. 
We approximate that the field lines close to the magnetic axis are straight lines. 
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In super strong magnetic fields particles almost stay on the same field lines all along their trajec­
tories because of negligible drift 'Velocity and very small Larmour radius of gyration. Single particle 
emission is considered in this model and the collective effects are ignored. We take into consideration 
of the non-uniform angular velocity of particles, which can be less than the pulsar angular veloc­
ity on some field lines which are inclined with respect to the meridional plane. Since the particle 
trajectories are found to be curved, we estimate the curvature emission and analyze the effects of 
rotation on the radiation characteristics. In sections 2 and 3, we solve the equation of motion of a 
relativistic charged particle and find its trajectory. In section 4 we estimate the Stokes parameters 
and plot with respect to different parameters. 

2. Equation of motion: solution 

We solve the equation of motion derived in [16] and find an analytical solution for r(t), radial position 
of the particle as a function of time. We assume that the dipolar magnetic field lines are projected 
onto a plane perpendicular to the rotation axis, and consider an inertial Cartesian coordinate system 
as shown in Fig. 1, where the 'z' axis is parallel to the rotation axis (n) of pulsar. The projected 
magnetic axis on the x-y plane coincides with the x-axis at time t = O. The equation of motion for 
a,charged particle accelerated along a rotating magnetic field line is given by 116], 

- m- =mO T d (dr) .2 
dt dt ' 

(1) 

where m = mol is the relativistic mass, I the Lorentz factor, mo rest mass, 0* the angular velocity 
and r the radial position of a particle. 

Let Vr = dr / dt and VqI = rO* be the components of particle velocity, then 

(2) 

where c is the speed of light. 
Consider a particle injected at the point B onto a magnetic field line which is inclined by an 

angle rPp with respect to the x-axis. Let do = OB be the distance between B and the rotation axis. 
The effective angular velocity [16] of a particle is given by 

0* = 0 [r2~d6cos28o-dosin8oJr2-do2cos2801 
r ( J r2 - do 2 cos2 80 - do sin 80 ) 

= 0/1- ::, (3) 

where n is the angUlar velocity of pulsar, b = docos80 and (10 = (-Jr /2) - rPp is the angle between the 
field line tangent and €qI at B. Using the relation for 0*, we can write 'Y as 

(4) 

where D = ndo cos eo/c. Thus, using the expression for I, we rewrite Eq. (1): 

rfr dl dr 2 ( b2 ) 
I dt2 + dt dt = n 1 - r2 I r . (5) 

2 



Influence o/rotation on pulsar emission 

By multiplying Eq. (5) with r/bc2), and defining a dimensionless variable 

n r 
8 = ---;::== 

C VI + D2 ' 

we rewrite Eq. (5) as 

d28 [282 -D2/(1+D2)] (d8)2 22 2 D2 
8 dt2 + 1 _ 82 dt - 8 n + n 1 + D2 = O. 

235 

(6) 

(7) 

Since eo is close to 7r /2 for the field lines, which are close to the x-axis, we find D2 « 8 2 for do < T. 

Therefore, we reduce Eq. (7) by dropping the terms containing D2/1 + D2, and obtain 

d28 28 (d8)2 2 
dt2 + 1 _ 82 dt - 8 n = 0 . (8) 

We solve Eq. (8) and using the expression for s as given by Eq. (6), we find the radial position of 

z 

y 
x 

Figure 1: The coordinate system in which the particle motion is considered. The curve BQ represents 
the particle trajectory in the x-y plane. 

the particle: 

cVl+D2 
T = n cn(A - nt) . (9) 

The radial position of the particle according to Eq. (9) as a function of time is plotted in Fig. 2, 
where we see that the particle position increases with time and reaches a maximum at the distance 
of light cylinder radius rL = Pc/27r, where P is the pulsar period. Next, the particle returns back 
to origin, due to the reversal of the centrifugal force. This type of oscillatory motion of a particle in 
an infinitely long, straight and rigidly rotating tube has been discussed in [9]. 

Though we have extended the calculation of r of a single particle all the way up to light cylinder, 
it may not be realistic in the case of plasma motion. Near the light cylinder, plasma inertia causes 
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Figure 2: Radial position of the particle as a function of time for /'0 = 100, do = 106 em and 

00 = 90°. 

the field lines to sweep back and break down of the rigid body motion. The Lorentz factor of a 
particle, which follows from Eqs. (4), (6) and (8), is given by 

1 
(10) 

3. Particle trajectory and radius of curvature 

In Fig. 3 we consider a particle moving along the field line BQ. The point A represents th~ particle 
injection point at time t = 0 that is at a distance do from the rotation axis. The particle co-ordinates 
can be defined as 

(x, y) = r(t)(cos<Ptot, sin¢tot), (11) 

where ¢tot is the angle between the radial vector to the particle and the x-axis. From on Fig. 3, we 
define 

where 

For do «r, we find 

¢tot(tj = Ot ± ¢'(t), 

do 2 . 2 
1- -2 sm ¢p 

r + dO . 2 ,,) 
-;: Sill 'l-'p 

(12) 

(13) 

(14) 

The ± signs in Eq. (12) correspond to the signs of the angle ¢p. In Fig. 4 we have plotted the 
trajectories of the particles moving along different magnetic field lines, which are marked with ¢p. It 
shows that the trajectories are curved in the direction of rotation of the pulsar. The particles moving 
in those trajectories are accelerated, and hence they emit curvature radiation. The curvature radii 
of those trajectories slightly differ from one another, as the particle angular n* is different for each 
field line. 
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Figure 3: The geometry of motion of a particle along a rotating field line BQ. The angles are 
LXOM = Dt, LMBQ = ¢p and LMOQ = ¢'; and the radius OA=OB=do. 

To derive the curvature radii of the particle trajectory, we approximate cn(). - Dt) and ret) using 
the formalism given by Pearson [17]: . 

k2 
cn(z, k) = cos z + 4(z - sin z cos z) sin z + O(k4). (15) 

In the limit of t « 1 and k « 1, the series expansion of r( t) is given by 

ret) = ao + alt + a2t2 + a3t3 + a4t4 ..... (16) 

where ao, aI, a2, a3, a4· .. are the expansion coefficients. 
For vo ~ c, Eq. (12) implies k ~ 0, therefore, we find A = 1["/2 and sn z = sin z. Thus, we have 

cJl + D2 . 
ret) ~ D sm (Dt) . (17) 

Using the expression for ret) and Eqs. (11) and (14), we find the curvature radius of particle trajec­
tory: 

p 
[(dx/dt)2 + (dy/dt)2J3/2 

(18) 

It shows that the curvature of particle trajectory is approximately r 1/2 for 80 = 1["/2. However, for 
other values of 80, p becomes slightly larger than 1'L/2. Note that these values are comparable with 
the curvature radii of dipolar field lines in the emission region given by Gangadhara [18J. The par­
ticles are assumed to follow the dipole field lines. The curvature induced by rotation in the particle 
trajectory for the conal emission components is comparable to the radius of curvature, ~ 1'1/2. The 
remarkable point is that for the particles accelerated along the field lines very close to the magnetic 
axis, the inherent radius of Cllrvature of the field lines will be much larger than the radius of curva­
ture induced because of rotation. 
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Figure 4: Particle trajectories during the time interval 0 ~ t ~ 0.02 sec in laboratory frame. The 
corresponding field lines lie with in the range -150 ~ ¢>p ~ 150 , at an interval of 5°. Assumed 
neutron star radius Rn = 10 Km. 

4. Polarization of radiation: Stokes parameters 

We derive the Stokes parameters for the radiation emitted by particles accelerated along the rotating 
field lines. The radiation electric field is given by [7, 19] 

+00 

E(w)=C, J nx(nx ff)exp{iw(t-n.r!c)}dt, (19) 

-00 

where Cf = -iw qeiwSo/c/-.ffrrsoc, So is the distance from the origin to observer, w the radiation 
frequency and n the sight line. We shall express fl x (n x iJ) (see, Appendix-A) and the argument of 
exponential as series expansions in time t to solve the integral. Consider the sight line n that makes 
an "l3.ngle e with the 2D plane, and 7] with the x-axis: 

n = (cos e COS 7], cosesin7], sine). (20) 

To describe the polarization state of emitted radiation, we define orthogonal unit vectors (see, Fig. 1): 

fll = (-sin6cos7], -sinesin7], cose), 
€J. = (- sin 7], COS7], 0). 

The unit vectors (fL, £11' h) form an orthogonal triad: 
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(22) 

(23) 
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Let to be the time at which iJ aligns with ft, and the observer receives radiation. We transform 
the time variable t to t + to such that rho stands for an initial phase. Thus, we find 

(24) 

based on Eqs. (15) and (16). The expansion coefficients an, a~, a2' a~, a~ ... are same as those 
ao, all a2, ... except A replaced by A - Oto. 

Using Eqs. (9) and (11), we find the series expansion of the exponential argument and keep the 
terms up to the order of t 3 : 

w [( t + to) - n~r] . w [t + to - ~ cos () (cos 1] cos <Ptot + sin 1] sin <Ptotl] 

= No + NIt + N2t2 + N3t3 .... (25) 

The series expansion of exponential argument is converging, and it is quite obvious from Eqs. (9) 
and (15). In the limit of k :::::: 0, the series expansion of r behaves like the trigonometric sin function. 
Since the angular width of emission beam is :::::: 2/r, the time taken by the particle to cross the 
angular width of the order of emission beam is :::::: 2p/Cf. Thus the truncation of higher order terms 
introduce a negligible error in our calculations. Since we intend to reduce the integral in Eq. (19) 
to a known form, we limit the series expansion terms up to the order of t3 . 

Using the transformation given by Buschauer & Benford [20J, we find the electric field compo­
nents (see, Appendix-B): 

Now, we define the Stokes parameters: 

I EIIE" +EJ.E~, 
Q EIlE" - EJ.E~, 

U 2iR(E[EJ.) ' 

V = 2~ (Eo EJ.) . 

The linear polarization is given by 
L = JQ2+U2. 

4.1 Stokes parameters of radiation emitted by many particles 

(26) 

(27) 

(28) 

(29) 

We consider a set of field lines on the 2D plane, and estimate the total emission by particles accel­
erated along them. During pulsar rotation, the sight line stays at a particular () with respect to the 
2D plane. Since the emission from each particle is relativistically beamed in the disection of velocity 
iJ, the observer tends to receive the radiation from all those particles, for which !3 falls with in the 
angular width of ±l/r with respect to ft. 

First we estimate the Stokes parameters of the radiation emitted by a single particle at the 
instant to ::; tmax . The instant to is the time at which ft.iJ = 1 for a given initial ci>p- As the rotation 
progresses, new to is computed for the advanced rotation phase by again solving n.iJ = 1, and 
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computed the Stokes parameters. This procedure is ,·:ontinued till to ~ tmo.x , where tmo.x is the time 
at which the particle goes out of radio emission zone (do :5: r :5: 3 x 103 Km). Since the radiation is 
emitted over a range of r, due to the aberration and retardation, the radiation beam gets shifted to 
the leading side of the pulf..e. The role of retardation and aberration phase shifts has been discussed 
by e.g., Phillips [21} and Gangadhara & Gupta [22). 

. In order to compute the total Stokes parameters with respect to the rotation phase, we sort the 
Stokes parameters due to single particles into groups of phase bins and add them. In the following 
steps, we give the details of the procedure: 

1. Fixed the observer's sight line at a specific e with respect to the 2D plane. 
2. Selected & set of field lines in the range of _5° :5: ¢p :5: 5° with a successive line spacing of 
0.1°. 
3. Solved fI.p = 1· to find to at the point of emission on the trajectory corresponding to each 
field line, and estimated the Stokes parameters at those points. 
4. The retardation phase shift O(tmax -to) is subtracted from 1J assigned for each of the emission 
beam, and estimated the effective rotation phase. 
5. Next, the sight line is rotated by 0.1° to a new phase, and repeated the procedure (1-4) 
over the range of -12° :5: 1J:5: 12°. 
6. Finally, the array of Stokes parameters are sorted into groups of phase bins, and added to 
get the total pulse profile. 
In Fig. 5, we have given the total Stokes parameters computed from the emissions by many 

particles as functions of rotation phase. In panel (a) we have plotted the profile that is obtained 
when the sight line lies in the 2D plane, and panel (b) for the case when the sight line is inclined by 
-0.05°. The profiles indicate that the peak emissions are shifted to the earlier phase as a consequence 
of the aberration-retardation effect. 

1 (a) 9 =0· 
~~--'---~-1 

1 (b) I 9=_0.05° 
i I 

.?;> 0.8 0.8\ j 
.... l ; <II = 0.6 0.6

1 
j 

j I 

0.4 

"'1 
0.2 0.2 

-5 0 5 10 -5 0 5 10 
</> (deg) </> (deg) 

Figure 5: The simulated profiles: panel (a) for e = 0° and panel (b) for () = -0.05°. The parameter 
¢ is the rotation phase. Used 'Yo = 100 and do = 10 Km. 

5. Discussion 

Since our aim is to understand the rotation effects on particle dynamics and pulse profile, we consider 
the single particle emission, and leave the collective plasma emissions to latter works. Our region 
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of interest extends from a few stellar radii to a radial distance well within the light cylinder. In 
this region' the radio emission is expected to occur and the bead-on-wire approximation holds. Our 
model is more relevant for the cases where the inclination angle a bf the magnetic axis relative to 
rotation axis is large enough. In such cases, the projected field lines may be approximated to be 
straight lines over a significant radial distance. We have derived an expression for the radial position 
of a particle (Eq. 9), which shows an oscillatory behavior, as shown in Fig. 2. 

Gangadhara [16) has shown that the particle angular velocity cannot be same as the field line 
angular velocity if the magnetic axis is inclined with respect to the rotation axis. We. considered this 
effect in our treatment of particle motion, and found the particle trajectories and their curvature 
radii vary with field line orientation. 

Since the magnetic field is very strong drift velocity becomes very small. So, the particles are 
assumed to follow the same set of field lines all along their trajectories. In the case of single particle 
dynamics, magnetic field dominates, and ~ence the rigid body motion may be extended all the way 
up to the light'cylinder. The oscillatory motion that our solution predicts, can not be achieved in 
a real physical situation like pulsars because of distortion of magnetic field lines due to rotation of 
the pulsar in the regions close to the light cylinder. So, the particle which reaches the vicinity of the 
light cylinder can not come back, but can escape from the magnetosphere as a pulsar wind. 

We find the radius of curvature of particle trajectory is approximately n/2, which is comparable 
to the actual radius of curvature of dipolar field lines [18). So, we helieve the curvature emission 
due to the rotational motion of particles should be comparable to the actual curvature emission in 
corotating frame. 

In a later work, Rogava et a1. [23) have showed that if a particle freely moves along a tube 
with an arbitrary curvature, the centrifuga.l force does not reverse always. They have showed that 
the particles move in the t,ube with a variable angular velocity. This supports our result that the 
particles angular velocity on some field lines differs from that of pulsar. That is the particles moving 
along the field lines with ¢p = 0 rotate with the angular velocity which is same as the pulsar angular 
velocity. But those moving along other field lines, for which ¢p ::f 0, rotate with the angular velocity 
which is smaller than the pulsar angular velocity. 

By taking into account of aberration-retardation, we have reproduced a simula.ted pulse profile 
(Fig. 5) by adding the radiation emitted by particles accelerated on a set of field lines. The sign of ¢ 
has been flipped to match with the phase sign convention followed in pulsar profiles. The roughness 
in the curves of Fig. 5 are due to the increments of 0.1 ° in ¢p and 'fl. The choice was made due to the 
limitation in computing time. However, the smoother profiles can always be generated by choosing 
smaller increments and opting for longer computing time. Since we consider an uniform plasma flow 
along the field lines, our profiles do not have subpulse components. 

Our model shows the effects such as the aberration and the retardation make the pulse profiles 
to become asymmetric about the pulse center. This phenomenon has been observed in most of the 
pulsar profiles, e.g., [22, 24). 

In our model, we find if the sight line is at a fixed angle «() = -0.05°, see, Fig. 5 b) to the 
particle trajectory plane, observer tends to receive a single sign circular polarization. This type of 
single sign circular polarization has been observed in many pulsars, e.g., [25). 

6. Conclusions 

By considering projected dipolar magnetic field lines on a plane perpendicular to the rotation axis, 
we have developed a 2D model for the particle dynamics in pulsar magnetosphere. The motive 
behind developing this model is to elucidate some of the rotational effects induced in the pulsar 
profiles. We have obtained the analytical expressions for the pa.rticle trajectory and its curvature 
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radius. The energy of particles increase at the expense of neutron star's rotational energy. We 
find the sight line orientation relative to the particle trajectory plane might determine the sign of 
circular polarization. The asymmetries observed in pulse profiles can be explained by considering 
the aberration-retardation effects. 

Appendix-A: To find a series expansion for the factor fJ. x (fJ. x iJ) that appears in Eq. (19) 

Consider iJ in Cartesian co-ordinates: 

(A-I) 

where x and fJ are the unit vectors along the x and y-axes, respectively, (Fig. 1). Then it follows 
from Eq. (2) that 

IT V. (<ptot (t + to) ) V;. (<ptot (t + to)) 
Yx = r cos 2 - ¢ sm 2 ' (A-2) 

and 
IT _ v. . (<ptot(t + to)) + V; (<ptot(t + to)) 
Yy - r sm 2 ¢ cos 2 (A-3) 

Using Eq. (24), we derive the series expansions for radial velocity Vr and rotation velocity V¢ : 

dr 
v;. = dt ' 

V¢ = rn' . 

By substituting v;. and V¢ into by Eqs. (A-2) and (A-3), we obtain 

Vx Vxo + Vxlt + Vx2t2 • 

V y = VyO + Vylt + Vy2t2 ..• 

(A-4) 

(A-5) 

(A-6) 

The expressions of Vxo. VyO , Vxl, Vy1 .•. in the above expansions are lengthy. Using the triple vector 
identity and the definitions of iL, Ell and €1, we obtain 

where 

sin f) . = --(Vy SIllTJ + Vx COSTJ), 
c 

1 
- (Vy cos 1] - Vx sin 1]) . 
c 

Using the series expansions of Vx and Vy, we write 

where 

VII i = Vyi sin 1] + Vxi cos 1] • 

V.l i = Vxi sin 1/ - Vyi cos 1] , 
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(A-lO) 

(A-Il) 

(A-12) 
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and i = 0, 1, 2 . 

Appendix-B: 'Iransformations for solving Eq. (19) 

Using the method of Buschauer & Benford [20], we make the following transformations in order to 
solve the integral in Eq. (19). 

Consider 
00 00 

J exp[i(Nlt+N2t 2 +N3PlJdt== N~/3eiCo J exp[i(zr+r3)]dr, (B-1) 
-00 -00 

where 

is a dimensionless variable, and 

1 ( N2) 
Z == N I /3 Nl - 3~3 

3 

By differentiating the Eq. (B-1) with respect to Nl and N2 , we obtain 
00 00 

J t exp[i(N1t + N2t2 + N3t3 )] dt == N~/3 eiCn [J l' exp[i(zr + r 3 )J dr 
-00 3 -00 

00 

(B-2) 

(B-3) 

-Ct J exp[i(zr + r 3 )J dr] (B-4) 
-00 

and 
00 00 

J t2 exp[i(NJ t + N2t2 + N3t3 ) J dt == N~/3 eiCn [Cm J exp!i( zr + 1'3) 1 dr 
-00 -00 

00 

+Cp J rexp[i(zr + r 3 )]dr] . (B-5) 
-00 

We define 
00 

L1 (z) == J exp[i(zr + r 3)J dr = ~.JZKl/3[2(Z/3)3/2J, (B-6) 

-00 

L2(Z) = (B-7) 

-00 

Bo = (B-8) 

Bl (B-9) 

B2 (B-lO) 
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where 

q N2 
3N;/3 ' 

Cn = N2 [2N~ _ Nl] 
3N3 9N3 

Cm = [2N~ Nl] 
9N~ - 3N3 ' 

Cp 
2N2 

= 3Nt/3 . 
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