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Irradiation effects in close binary stars 
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We studied the reflection effect in 2-dimensional geometry to see how the field will change if we calculate the 
reflected radiation by the transfer equation in a close binary system. The reflected radiation is calculated 
from the extended surface of the components of a close binary system assuming 3-dimensional Cartesian 
coordinate geometry and circular orbits. The specific intensity of the radiation field is estimated along the 
line of sight for an observer at infinity. It appears that radiation field changes depending upon the position 
of the secondary component. 

1. Introduction 

Mo.st stars are found in groups that are gravitationally bound to each other. The majority of these 
stars are found in binary systems which are systems of two stars in orbit around a common center of 
mass. Binaries are useful systems for astronomers because two stars in orbit obey well understood 
laws of motion. From their orbital velocities and periods, it's possible to calculate the combined 
and individual masses of the stars in a system. When the stars are plotted by their brightness and 
their spectral type on Hertzsprung-Russell diagram, most stars falls on to a narrow band called main 
sequence. But the stars that compQse close binary systems are not the same luminosity as star of 
similar type, so they falf slightly off the main sElquence-the primao-y stars tend to appear below it, 
while the secondary above it. 

Kopal [1] first classified all close binaries into three groups - detached, semi-detached, and 
contact systems. In detached systems both star remain well within their respective Roche lobes ({3 
-Aurigae). In semi-detached systems however, one component fills its Roche lobes (Algol, {3 Persi}. 
Contact binaries are still exotic -both components fill their Roche lobes and continually interact 
(44-Bootis B). One can think of a quite a number of binary star configurations in which relatively 
simple numerical treatment of reflection will be adequate. Most obvious is that of slowly rotating 
stars, which are well detached from their limiting lobes and are therefore, not far from spherical. 
Systems of main sequence stars with radii of the order of 10%-15% of their separation fall into this 
category and or reasonably common (for stars which are smaller than this there is, in most cases, 
hardly any reflection effect). . 

In a close binary system each component will receive the radiation from its companion. If a 
star is to remain in radiative equilibrium, all the energy received from outside must be re-emitted, 
without altering the rate of escape of radiation from the deep interior. This phenomenon, known 
as the " reflection effect " is inevitable in close binaries. To explain this effect properly further 
study of the problem is necessary to answer - or at least to give some clues to - several fundamental 
parameters such as mass and radii. In radiative transfer theory, we solve the equation of radiative 
transfer by assuming certain geometrical configuration such as plane parallel or spherical symmetric 
stratification of the media. These geometrical configurations assume symmetric boundary conditions 
and whenever we have asymmetric incident radiation, the solutions developed in the context of 
symmetrical geometries as mentioned above, will have to be modified. Such probiems are encountered 
in the evaluation of radiation from the irradiated component of the binary system. If we treat one 
of the component as a point source in a binary system then the problem of incident radiation from 
such source is equivalent to the searchlight problem. Chandrasekhar [2] has calculated the diffuse 
scattering function in a plane parallel medium when a pencil of beam of radiation from a point 
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source is incident. There have been several attempts for calculating the diffuse radiation field in 
such simple geometries. However, the calculation of the radiation field during the eclipses in close 
binaries is of different complexity. There are two important aspects one should take into account: (1) 
the physical processes that takes place inside the atmosphere and (2) the geometrical shape of the 
illuminated sUrface which reflects the light. Generally, if the atmosphere of the component under 
consideration is extended or fills its Roche lobe, then the problem of determining the emergent 
radiation from such surfaces become very difficult. The process of estimating the radiation field 
from such surfaces become complicated when the various competing physical processes are taken 
into account. Geometrical considerations alone would complicate the calculations because of the 
deformed shape due to tidal effects from the neighbour and due to self radiation. The resultant shape 
would be an ellipsoid and the problem requires special treatment. The solution of radiative transfer 
equation either in plane parallel symmetry or in spherical symmetry or in cylindrical symmetry 
cannot accurately describe the radiation field emanating from such surfaces. 

Since primary components of close binaries do not have spherically symmetric shapes, their 
shapes being distorted by the tidal forces due to the presence of secondary component and their 
self rotation. One can use the solution of radiative transfer equation developed in 3-dimensional 
co-ordmate axes. Peraiah [3) studied the reflection effect in 2-dimensional geometry to see how the 
radiation field will change if we calculate the reflected radiation by employing the transfer equation. 
Peraiah [4) extended this work when secondary component is an extended surface in a close binary 
system. Peraiah and Srinivasa Rao[5-8] studied the effect of reflection on the formation of spectral 
lines and also in the presence of dust. However, one has to study other methods which are available 
and fairly accurate. The problem of incidence from a point source or an extended source is termed 
as a searchlight problem. Chandrasekhar [9) and Rybicki [10] made few attempts but the problem 
remains unsolved in its total complexity. Buerger [11] employed plane parallel approximation in 
computing the continuum radiation and line radiation emitted by rotationally and tidally distorted 
stars which is irradiated by the light of secondary component. In this paper we have made an at
tempt to study the irradiation from the secondary component in 3-dimensional geometry. We have 
developed a method of obtaining the radiation field along the spherical surface irradiated by an 
external source of radiation as a preliminary step to understand the reflection effect in close binaries 
in 3-dimensional geometry. 

2. Method of calculation 

All the calculations are performed in the 3-dimensional X-Y -Z Cartesian geometry as shown in figure 
1. The binary model can be used for a system B type primary ( of all different spectral types) and a 
hot white dwarf secondary. In this method we assume a spherical shell of the primary star with inner 
and outer radii Rjn and Rout respectively. The center of the star is at the origin of coordinates. 
We assume that radiation is incident from a point source at B moving on a circle of radius R in the 
X-Z plane. We calculate the radiation field reflected from the spherical shell. We divide the shell 
into several circular slices such MNPQ parallel to Z-Y plane, with their centers lying on X-axis. We 
consider the transfer of radiation along the lines such as Q82RO. Therefore in the X-Y-Z Cartesian 
coordinate system we should be able to determine the coordinates of any point. 

We assume that the secondary component is situated at the point B and a ray from B intersects 
the outer surface at 81 a.nd passes through the point 82 on the line Q82RO. Let the coordinates of 
the points S2 and B (in figure 1) be (x}, Yt. zd and (X2' Y2, Z2) respectively. The equation of this 
line is given by 

x - Xl Y - YI Z - Zl ---=--=-- (1) 
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Figure 1: Shows the Schematic.diagram of the Cartesian co-ordinate system in X-Y-Z geometry 

By knowing the coordinates of the points 82 and B in advance, the coordinates of the points 81 are 
obtained by solving equation (1) and the equation of the sphere, whose center is at A. The equation 
of the sphere is given by 

~+~+~=~~. 00 
The length of the segments are calculated using distance formula. We need to avoid all points where 
the incident radiation does not reach such as the shadow cone cast by the central star. We calculate 
the equation of the cone from the enveloping sphere 

(3) 

This is given by 

(x2 + y2 + z2 - Rfn)(x~ + Y~ + z~ - Rfn) - (XX2 + YY2 + ZZ2 - Rfn)2 = o. (4) 

The points that lie in the shadow of this cone should satisfy the relation 

(x2 + y2 + Z2 - Rfn) (x~ + y~ + z~ - Rfn) - (XX2 + YY2 + ZZ2 - Rfn)2 ::; 0 (5) 

all those points which satisfies the relation are eliminated from· calculation. 
We estimate the radiation field that is transfered along the line segments such as 8182 to obtain 

the source function along the lines Q82RO. We employed the procedure described in [3]. 

2.1 Calcu.lation of radiation filed due to irradiation 

We shall briefly describe the calculation of the source functions derived in the I-dimensional rod 
model. The total source function including the diffuse radiation field given by 

(6) 

(7) 
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where 8+(r) and S-(1") are the source functions at the optical depth r (for details see [3]). WeT) is 
the afbedo for single scattering and p is the phase function equal to ! in this case. 

We set w( T) = 1 which corresponds to pure scattering in the medium. II and h are the incident 
specific intensities at the boundaries at r = 0 and T = T respectively. For isotropic scattering 
st = 8i and equation (6) ana (7) will reduce to 

Sr = ~ [1+ + 1-] + ~ [Ite-r + 12e-<T-r)] , (8) 

where T is the total optical depth. 
We set T = 0 at point 81 (see figure 1) where the incident ray enters the medium, and we set 

T = T at the point 82 where the source function is calculated. 

and 

therefore 

_ [T-T][l-P] 
1 (T) = It [J ' I+Tl-p 

reT =T) =0= h 
I+(T=O)=It, . 

1 
1+(T = T) = 11--1-, 

1 + 'iT 

I-(T) = o. 
At T = T, the source function becomes, 

8r = ~ [1+ + r] + ~ [It e - T] 
Introducing equation (9) and (10) into the above equation with p = !, we obtain 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Using the above analysis we can calculate the source functions according to one-dimensional rod 
model. 

In addition to the irradiation from the secondary component we have the radiation from the 
primary star itself. In the next section we shall describe method of calculation of self radiation of 
the primary component. 

2.2 Calculation of self radiation of the primary component 

The radiative transfer equation in a spherically symmetric approximation is 

81(1',/1-) 1 8 [ 2] [ ] /1--a:;:- + -:;'8/1- (1- /1- )1(1',/1-) +00(1')1(1',/1-) = 00(1') 8.(1') - 1(1',/1-) , (17) 
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Figure 2: Shows the comparison of self radiation represen.ted by line dash dot, reflected radiation represented 
by the line dash dash and the total radiation is represented by continuous line along the Y-axis in case 1 

where 

S,(r) = ~ [:1 p(r,JJ,JJ')I(r,JJ/)dl1,'. (18) 

Here I(T, JJ) is the specific intensity of the ray making an angle cos-1 JJ with the radius vector. 
The quantities O'(r) and Ss(r) are the absorption coefficient and the source function respectively 

and P( r, JJ, JJ/) is the phase function for isotropic scattering and' function is' normalized such that 

~ [:1 p(r, JJ, JJ/)I(r, JJ/)dJJ' = 1 (19) 

and p(r, JJ, JJ/} ~ 0 and - 1 ~ JJ, JJ' S; 1 

2.3 Brief description of the numerical method for solving the radiative transfer equation in spherical 
symmetry 

The solution of radiative transfer equation (17) in spherical symmetry is developed by using discrete 
space theory of radiative transfer [12]. In general the following steps are followed for obtaining the 
solution. 

(i) We divide the medium into a number of "cells" whose thickness is less than or equal to the 
critical (7'crit). The critical thickness is determined on the basis of physical characteristics of the 
medium. 7'crit ensures the stability and uniqueness of the solution. 

(ii) Now the integration of the transfer equation is performed on the "cell" which is two-
dimensional radius - angle grid bounded by [Tn ,Tn+l] X IJJj-l,JJi+!] where JJi+!~ Ei=l Ck,j = 
1,2 ... , J, where Ck are the weights of Gauss Legendre formufa. 

(iii) By using the interaction principle described in [12], we obtain the reflection and transmission 
operators over the" cell" 



264 M Srinivasa Rao and B A Varghese 

0.4 

0.3 

0.2 

0.1 

o 

(0) 
K=8 
w=1 

.. -
-0.4 -0.2 

---- :0-- . 

o 0.2 0.4 

Y X10 13 

0.4 

0.3 

0.2 

0.1 

o 

(b) 
K=14 
w=1 

-0.4 -0.2 o 0.2 

Y 1 ~ 13 
X u 

Figure 3: Shows the comparison for case2. The notation is same as case 1 
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(iv) Finally we combine all the cells by the star algorithm described in [12] and obtain the ra
diation field. 

2.4 Boundary conditions 

The boundary conditions are assumed as follows 

for all /-Ljs (20) 

for all /-Ljs (21) 

Equation (20) represents the incident radiation on the atmosphere where the radius is minimum, 
and equation (21) represents the boundary condition at maximum radius, for w = 1. 

2.5 Calculation of total source function 

If J(1') is the mean intensity then the total source function BT(X, y, z) is given by 

BT(X, y, z) = Br(x, y, z) + J(x), (22) 

this means that total source function (ST) is sum of the source functions due to self radiation of the 
primary star (B.) = J(x))and the irradiation from the secondary component which is assumed as 
point source (Br ). 

3. Results and Discussion 

We have used the following data: 
Rjn = 1012cm, Rout = 5 x 1012cm, R=1013cm where Rin' Rout is the inner and outer radius 

of the primary star and R is the separation between two components. We assumed a constant 
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electron density of 1012cm-3. As mentioned earlier, we calculate the intensities along the lines such 
as QS2RO in a given circular slice. These slices are designated as K= 1, 2, 3, ... where the slice 
with designation K= 1 corresponds to that at x = Rout, that with K= 11 corresponds to that at 
x = 0 and that with K= 21 corresponds to that at x = -Rout. We give unit incident intensity at 
the surface r = Rout. We set the coordinates (X2, Y2, Z2) of the secondary component as the point 
source in the following cases. We can consider many number of cases keeping secondary component 
in different positions in a cirwlar orbit. We can obtain many possible cases but we consider following 
cases. 

Case 1: X2 = R, Y2 = 0, Z2 = 0; 
Case 2: X2 = Rsin~, Y2 = 0, Z2 = Rcos~; and 
Case 3: X2 = 0, Y2 = 0, Z2 = R. 
In the above cases we have placed the secondary component on the X-axis at a distance R in 

case 1 i.e., (X2 = R, Y2 = 0, Z2 = 0); In case 2, the secondary component is placed between X arid Z 
axis as the line making 45° with X-axis i.e., (X2 = Rsin~, Y2 = 0, Z2 = Rcosi); and in case 3, the 
secondary component is placed on the Z-axis with distance of R i.e., (X2 = 0, Y2 = 0, Z2 = R). 

In figures 2 to 4 we have plotted the self radiation represented by dash dot line, reflected radiation 
represented by dash dash line and total radiation is represented by continuous line for K= 8, 14 in 
a scattering medium along Y-axis which is a line of sight. In all the above three cases we observe 
that the self radiation is same in all the cases, this means that radiation is uniformly scattered in 
all directions from the centre of the star. 

Case. 1: Reflected radiation is reduced in figure 2(b) when compared to K= 8 in figure 2(a). This 
is due to the fact that, irradiation from the secondary component is reduced in the deeper layers of 
the primary component. We also can observe that the maximum radiation is occurring at Y = 0 ie., 
the middle layers of the atmosphere. 

Case 2: In figure 3( a, b) we see the reflected radiation is almost constant in the range -0.3 to 
+0.3. The total radiation also behaves as the self radiation in the range -0.3 to +0.3. 

Case 3: In figure 4( a, b) it is interesting to see that K= 8 and K= 14 the radiation is same in 
both the cases. 
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4. Conclusion 

We have calculated the radiation field when irradiation is a point source in a close binary system. We 
notice that the intermediate regions of the primary component shows more radiation than extreme 
regions. 
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