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ABSTRACT

In the previous paper of this series (Anusha & Nagendra 2010), we presented a formula-
tion of the polarized radiative transfer equation for resonance scattering with partial frequency
redistribution (PRD) in multi-dimensional media for a two-level atom model with unpolarized
ground level, using the irreducible spherical tensors T K

Q (i,Ω) for polarimetry. We also presented
a polarized approximate lambda iteration (PALI) method to solve this equation using the Jacobi
iteration scheme. The formal solution used was based on a simple finite volume technique.

In this paper, we develop a faster and more efficient method which uses the projection tech-
niques applied to the radiative transfer equation (the Stabilized Preconditioned Bi-Conjugate
Gradient method). We now use a more accurate formal solver, namely the well known 2D (two
dimensional) short characteristics method.

Using the numerical method developed in Anusha & Nagendra (2010), we can consider only
simpler cases of finite 2D slabs due to computational limitations. Using the method developed
in this paper we could compute PRD solutions in 2D media, in the more difficult context of
semi-infinite 2D slabs as well. We present several solutions which may serve as benchmarks in
future studies in this area.

Subject headings: line: formation – radiative transfer – polarization – scattering– Sun: atmosphere

1. Introduction

The observations of the solar atmosphere indi-
cate the existence of small scale structures, which
break the spatial homogeneity of the atmosphere.
Since these structures have different physical prop-
erties, one can expect the effect of lateral trans-
port of radiation to be rather important. Ex-
tensive studies on radiative transfer in 2D (two
dimensional) and 3D (three dimensional) geome-
tries have been made to understand the inten-
sity profiles in spectroscopic observations. As the
polarization of the radiation field is more sensi-
tive to the breaking of axisymmetry occurring in
2D and 3D geometries than the intensity (Stokes

I parameter), the solution of polarized radiative
transfer equation in 2D and 3D geometries is very
much needed for the understanding of the spec-
tropolarimetric observations. Polarized radiative
transfer problems have been addressed in the past
decade, but only for complete frequency redistri-
bution (CRD). A first investigation with partial
frequency redistribution (PRD), for 3D geometry,
is described in (Anusha & Nagendra 2010, here-
after called Paper 1). Solving polarized transfer
equation with PRD in multi-dimensional geome-
tries is numerically expensive, both in terms of
computing time and the computer memory. To
address this problem, in this paper we develop a
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numerical method for 2D geometry which is faster
than the Jacobi iteration method used in Paper 1.
The method developed here can be easily extended
to 3D geometries. For reviews on iterative meth-
ods see Trujillo Bueno (2003); Nagendra & Sam-
poorna (2009) and references cited therein. For a
detailed historical account of the developments in
the area of multidimensional radiative transfer we
refer to Paper 1.

For 2D geometry, Paletou et al. (1999) solve
the polarized line transfer equation for the Stokes
I,Q,U parameters, with CRD, using a perturba-
tion technique combined with a short characteris-
tics formal solution method. We generalize their
work in following respects. We include PRD, and
solve the radiative transfer problem using a de-
composition of the Stokes parameters into a set
of irreducible components. This Stokes vector de-
composition for multi-dimensional geometries was
developed in Paper 1. Its main advantage is that
the mean intensity components (averaged over all
frequencies and directions of the incident radia-
tion) become independent of the outgoing direc-
tion (Ω) and also the scattering phase matrix.
These properties have allowed us to set up an it-
erative method which is faster and more accurate
than the previous methods.

First, instead of the perturbation method used
in Paletou et al. (1999), and the Jacobi method
used in Paper 1, we have implemented a new
iterative method called the Stabilized Precondi-
tioned Bi-Conjugate Gradient (Pre-BiCG-STAB)
algorithm. The Pre-BiCG and Pre-BiCG-STAB
methods belong to a class of iterative methods
known as projection techniques. Projection meth-
ods have already proved their usefulness for unpo-
larized transfer problems with the CRD approx-
imation in different geometries (see e.g. Klein et
al. 1989; Folini 1998; Papkalla 1995; Meinkhon
2009; Hubeny & Burrows 2007; Paletou & An-
terrieu 2009; Anusha et al. 2009). Polarization
was considered in Nagendra et al. (2009) for pla-
nar geometry. Second, we have generalized the 2D
short characteristics formal solver of Paletou et al.
(1999) to PRD. This 2D formal solver is more ac-
curate than the formal solver used in Paper 1.

The organization of the paper is as follows. In
Section 2 we present the governing equations. In
Section 3 we describe the 2D short characteristics
formal solution method. In Section 4 we give some

details of the computations. In Section 5 we dis-
cuss the Pre-BiCG-STAB algorithm. Section 6 is
devoted to results and discussions.

2. The Polarized transfer equation in a 2D
medium

We consider radiative transfer in a 2D slab in
Cartesian geometry. We assume that the medium
is infinite in X direction and finite in Y and Z di-
rections (see Figure 1). This means that any two
Y Z planes at two different points on the X axis
are identical. As a result, all the physical quanti-
ties like the Stokes vector I, the source vector S

remain independent of the X co-ordinate. We as-
sume that our 2D slab is situated at x = x0. For a
given ray with direction Ω, the transfer equation
in divergence form in the atmospheric reference
frame may be written as

Ω · ∇I(r,Ω, x) =

−[κl(r)φ(x) + κc(r)][I(r,Ω, x) − S(r,Ω, x)],

(1)

where I = (I,Q,U)T is the Stokes vector. We
choose positive Stokes Q to be in the direction
perpendicular to the surface defined by z = Zmax.
Here r = (x, y, z) is the position vector of the ray.
Ω = (η, γ, µ) = (sin θ cosϕ, sin θ sinϕ, cos θ) de-
scribes the direction cosines of the ray with re-
spect to the atmospheric normal Z, with θ, ϕ be-
ing the polar and azimuthal angles of the ray (see
Figure 3(b)). The Stokes V parameter decouples
from the other three. We confine our attention
in this paper to the polarized transfer equation
for (I,Q,U)T . We represent the frequency av-
eraged line opacity and continuum opacity by κl

and κc respectively, and the profile function by
φ. Frequency is measured in Doppler width units
from the line center and is denoted by x, with the
Doppler width being constant in the atmosphere.
It is convenient to work with the transfer equation
written along a ray path. It has the form

dI(r,Ω, x)

ds
= −κtot(r, x)[I(r,Ω, x)−S(r,Ω, x)],

(2)

where s =
√

x2 + y2 + z2 is the path length along
the ray. The total opacity κtot(r, x) is given by

κtot(r, x) = κl(r)φ(x) + κc(r). (3)
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The formal solution of Equation (2) is given by

I(r,Ω, x) = I(r0,Ω, x)e
−

∫ s

s0

κtot(r − s′′Ω, x)ds′′

+

∫ s

s0

S(r − s′Ω,Ω, x)e
−

∫ s

s′

κtot(r − s′′Ω, x)ds′′

×[κtot(r − s′Ω, x)]ds′. (4)

I(r0,Ω, x) is the boundary condition imposed at
r0 = (x0, y0, z0) (see Figure 2).

In a two-level atom model with unpolarized
ground level, the total source vector S is given
by

S(r,Ω, x) =
κl(r)φ(x)Sl(r,Ω, x) + κc(r)Sc(r, x)

κl(r)φ(x) + κc(r)
.

(5)

Here Sc is the continuum source vector given by
(B(r), 0, 0)T with B(r) the Planck function at the
line center frequency. The line source vector can
be expressed as

Sl(r,Ω, x) = G(r) +

∫ +∞

−∞

dx′

×
∮

dΩ′

4π

R̂(x, x′,Ω,Ω′)

φ(x)
I(r,Ω′, x′), (6)

where G = (ǫB(r), 0, 0)T is the thermal source.
ǫ = ΓI/(ΓR + ΓI) with ΓI and ΓR the inelastic
collisional de-excitation rate and the radiative de-
excitation rate respectively, so that ǫ represents
the rate of photon destruction by inelastic colli-
sions, also known as the thermalization parame-
ter. We assume that φ is a Voigt function. It
depends on the damping parameter a, given by
a = aR[1+(ΓE +ΓI)/ΓR] where aR = ΓR/4π∆νD

and ΓE is the elastic collision rate. As the lower
level is assumed to be infinitely sharp, the radia-
tive, and collisional rates refer only to the up-
per level. R̂ is the redistribution matrix given in
Domke & Hubeny (1988); Bommier (1997). The
solid angle element dΩ′ = sin θ′ dθ′ dϕ′, θ ∈ [0, π]
and ϕ ∈ [0, 2π] (see Figure 3(b)). After decompo-
sition of the vectors I and S into irreducible com-
ponents following the method described in Paper
1, the redistribution matrix R̂(x, x′,Ω,Ω′) can be
factorized into the product of a matrix R̂(x, x′)
and a phase matrix Ψ̂(Ω). Its elements are given

by

ΨKK′

QQ′ (Ω) =

3
∑

j=0

(T K
Q )∗(j,Ω)T K′

Q′ (j,Ω). (7)

Here T K′

Q′ (j,Ω) are irreducible spherical tensors
for polarimetry with K = 0, 1, 2,−K ≤ Q ≤ +K
(see Landi Degl’Innocenti & Landolfi 2004). In
this paper, we consider only the linear polariza-
tion. Therefore, K = 0, 2 and Q ∈ [−K,+K].
The matrix Ψ̂(Ω) is a 6 × 6 matrix. Its elements
and the irreducible components of I and S are
complex quantities. We apply the transformation
described in Frisch (2007) to transform these com-
ponents and the elements of Ψ̂(Ω) matrix into real
quantities. Hereafter we work with only real quan-
tities. We keep the notation Ψ̂(Ω) for the phase
matrix. We introduce the irreducible Stokes vector
I = (I0

0 , I
2
0 , I

2,x
1 , I2,y

1 , I2,x
2 , I2,y

2 )T and irreducible
source vector S = (S0

0 , S
2
0 , S

2,x
1 , S2,y

1 , S2,x
2 , S2,y

2 )T .
The components of I and S are all real. The ra-
diative transfer equation for the vector I is given
by

− 1

κtot(r, x)
Ω · ∇I(r,Ω, x) =

[I(r,Ω, x) − S(r, x)]. (8)

Here S(r, x) = pxSl(r, x) + (1− px)Sc(r, x) with

Sl(r, x) = ǫB(r) + J (r, x), (9)

where the mean intensity vector is

J (r, x) =
1

φ(x)

∫ +∞

−∞

dx′

×
∮

dΩ

4π
R̂(x, x′)Ψ̂(Ω)I(r,Ω, x′). (10)

Sc(r, x) = (B(r), 0, 0, 0, 0, 0)T is the continuum
source vector and B = (B(r), 0, 0, 0, 0, 0)T is
the Planck vector. We assume that the ratio
κc(r)/κl(r) is independent of r. The parameter
px is defined by

px = κl(r)φ(x)/κtot(r, x). (11)

The 2D Cartesian geometry used here implies
some symmetries which simplify the problem. The
radiation field has a symmetry with respect to the

3



X axis which leads to

I(r, θ, ϕ, x) = I(r, θ, π − ϕ, x),

I(r, θ, π + ϕ, x) = I(r, θ, 2π − ϕ, x),

θ ∈ [0, π], ϕ ∈ [0, π/2]. (12)

Because the thermal source vector is unpolarized,
the above symmetry relation leads to the symme-
try of Stokes Q and anti-symmetry of Stokes U
(see Appendix B) namely

Q(r, θ, ϕ, x) = Q(r, θ, π − ϕ, x),

Q(r, θ, π + ϕ, x) = Q(r, θ, 2π − ϕ, x),

U(r, θ, ϕ, x) = −U(r, θ, π − ϕ, x),

U(r, θ, π + ϕ, x) = −U(r, θ, 2π − ϕ, x),

θ ∈ [0, π], ϕ ∈ [0, π/2]. (13)

Using Equations (12) and (13) we can prove that

J2,x
1 = 0, J2,y

2 = 0. (14)

Thus we have S2,x
1 = 0 and S2,y

2 = 0 and I2,x
1 = 0

and I2,y
2 = 0. Thus in a 2D geometry, one needs

to only 4 out of the 6 irreducible components to
describe the linearly polarized radiation field. We
recall that in a 3D geometry all the 6 irreducible
components are non-zero (see Paper 1).

The matrix R̂ is diagonal. It is given by

R̂(x, x′) = Ŵ [α̂rII(x, x
′)+(β̂−α̂)rIII(x, x

′)], (15)

where
Ŵ = diag{W0,W2,W2,W2}, (16)

α̂ = diag{α, α, α, α}, (17)

β̂ = diag{β(0), β(2), β(2), β(2)}. (18)

The weight W0 = 1 and the weights W2 de-
pend on the line under consideration (see Landi
Degl’Innocenti & Landolfi 2004). Here rII(x, x

′)
and rIII(x, x

′) are the angle-averaged redistribu-
tion functions introduced by Hummer (1962). The
branching ratios are given by

α =
ΓR

ΓR + ΓE + ΓI
, (19)

β(K) =
ΓR

ΓR +D(K) + ΓI
, (20)

with D(0) = 0 and D(2) = cΓE , where c is a
constant, taken to be 0.379 (see Faurobert-Scholl
1992).

3. A short characteristics method for 2D
radiative transfer

In this section we discuss the short characteris-
tics formal solver used here. The first 2D short
characteristics formal solver was introduced by
Mihalas et al. (1978) for scalar radiative trans-
fer and an improved version was given in Kunasz
& Auer (1988). A further improvement with the
introduction of monotonic interpolation was pro-
posed by Auer & Paletou (1994). Then Auer et
al. (1994) generalized it to the case of 3D geom-
etry. The extension to include polarization in 2D
geometries was done by Paletou et al. (1999) for
Rayleigh scattering and by Manso Sainz & Trujillo
Bueno (1999) and Dittmann (1999) for the Hanle
effect in 2D and 3D geometries. All the above pa-
pers use CRD as the scattering mechanism. PRD
was introduced for the scalar case by Auer & Pale-
tou (1994). In this paper we generalize to the PRD
scattering, the method of Paletou et al. (1999).

A short characteristics stencil MOP of a ray
passing through the point O, projected on to the
2D plane is shown in Figure 3(a). The point O is
always chosen to coincide with a grid point along
the ray path. The points M and P intersect the
boundaries of the 2D cells either on a horizontal
line or on a vertical line, depending on the direc-
tion cosines of the given ray. The length ∆s of the
line segment MO or OP is simply,

∆s = ∆z/µ, if the ray hits the horizontal line,
(21)

and

∆s = ∆y/γ, if the ray hits the vertical line.
(22)

Here ∆z and ∆y are increments (positive or nega-
tive) between two successive grid points in Z and
Y directions respectively. Figure 3(b) shows the
angles θ and ϕ that define the orientation of a ray
that passes through the point O. Figure 3(b) also
shows all the 8 octants contributing to the radia-
tion field at O. The cone of rays above the point O
corresponds to µ < 0, and the one below the point
O corresponds to µ > 0. Each of these cones is
further divided into 4 regions, which are defined
by ϕ ∈ [0, π/2], [π/2, π], [π, 3π/2], [3π/2, 2π]. In
the short characteristics method, the irreducible
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Stokes vector I at O is given by

I(r,Ω, x) = IM(r,Ω, x) exp[−∆τM]

+ψM(r,Ω, x)SM(r,Ω, x)

+ψO(r,Ω, x)SO(r,Ω, x)

+ψP(r,Ω, x)SP(r,Ω, x),

(23)

where SM,O,P are the irreducible source vectors
at M, O and P. The quantity IM is the upwind
irreducible Stokes vector at the point O. If M
and P are non-grid points, then, SM,P and IM

are computed using a parabolic interpolation for-
mula. While computing them, one has to ensure
the monotonicity of all the 4 components of these
vectors, by appropriate logical tests (see Auer &
Paletou 1994). The coefficients ψ depend on the
optical depth increments in Y and Z directions
and are given in Auer & Paletou (1994).

4. Computational details

To calculate the integral in Equation (9) and
the formal solution in Equation (23), we need
to define quadratures for angles, frequencies and
depths.

4.1. The angle quadrature in 2D/3D ge-
ometries

Performing angle integrations in 2D or 3D ge-
ometries is not a trivial task. We have to con-
sider the distribution of the rays in the 3 dimen-
sional angular space namely, Ω = (η, γ, µ). This
is important because a correct representation of
the incident radiation field from all the octants
surrounding the point of interest O is essential.
The same argument is valid also for the radiation
emerging from the point O. A Gaussian quadra-
ture, because it tends to distribute more points
near the limits of integration, is not appropriate
to correctly represent the radiation field in all the
8 octants. The special quadrature method devel-
oped by Carlsson (1963) for neutron transport is
much superior in this respect. For all the compu-
tations presented in this paper, Carlsson type B
quadrature with the order n = 8 is used. In the
first octant, the θ and ϕ grid points are computed
using

θ = arccos |µ|, (24)

and
ϕ = arctan |γ/η|. (25)

The values of the quadrature points (ηi, γi, µi) in
the first octant (θ ∈ [0, π/2], ϕ ∈ [0, π/2]) and the
respective weights wi are given in Table 1. The
values of corresponding θi and ϕi are also listed.

The angle points in the other octants can be
easily computed using simple trigonometric formu-
las. We have found that the order n = 8 provides a
good accuracy for the solution. These quadrature
points can be used in 2D as well as 3D transfer
computations.

4.2. The spatial and frequency griding

In this paper, we use a logarithmic spacing in
Y and Z directions, with a fine griding near the
boundaries. The X direction is taken to be in-
finitely extended. We recall that the polarized ra-
diation field depends on Y and Z co-ordinates, but
is independent of the X co-ordinate.

For most of the results presented in this paper,
a damping parameter of the Voigt profile function,
a = 10−3 is used. The number of frequency points
required for a problem depends on the value of a
and the optical thickness in Y and Z directions
(denoted by TY and TZ). A frequency bandwidth
satisfying the conditions φ(xmax)TY << 1 and
φ(xmax)TZ << 1 at the largest frequency point
denoted by xmax has been used. We have used a
logarithmic frequency grid with a fine spacing in
the line core region and the near wings where the
PRD effects are important.

5. A Preconditioned BiCG-STAB method

The Pre-BiCG (Preconditioned Bi-Conjugate
Gradient) and Pre-BiCG-STAB (Preconditioned
Bi-Conjugate Gradient-Stabilized) are iterative
methods based on projections of residual vectors
on Krylov subspaces (see Saad 2000). We recall
that a great advantage of the Pre-BiCG-STAB
method is that, unlike the Pre-BiCG method, it
does not require the construction and storage of
the transpose of Â matrix, where Â is the matrix
of the system of equations to be solved (see be-
low). The Pre-BiCG and Pre-BiCG-STAB meth-
ods have been applied up to now to radiative
transfer problems with CRD (see Introduction for
references). In this paper we generalize the com-
puting algorithm of the Pre-BiCG-STAB method
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to polarized radiative transfer with PRD in a 2D
medium and show that this method is quite effi-
cient.

Using the formal solution expression for I, the
vector J defined in Equation (10) can be written
as we can write

J (r, x) = Λ[S(r, x)]. (26)

The source vector is given by

S(r, x) = px[ǫB(r) + J (r, x)] + (1 − px)Sc(r, x).
(27)

Substituting Equation (26) in Equation (27), we
obtain a system of equations

[Î − pxΛ]S(r, x) = pxǫB(r) + (1 − px)Sc(r, x),
(28)

which can be expressed in a symbolic form as

ÂS = b. (29)

The computing algorithm is given below:
Step (a): Let M̂ denote a preconditioner matrix
(defined below). We introduce the 4-component
initial preconditioned residual vectors ζ0, ζ∗

0 and
conjugate direction vectors p0. We define ζ0 by

ζ0 = M̂−1b − M̂−1ÂS0, (30)

and impose

ζ∗

0 = ζ0, p0 = ζ0. (31)

Here S0 is an initial guess for the source vector
defined by S0 = pxǫB + (1 − px)Sc. As we dis-
cretize the frequency and depths, the 4-component
irreducible source vector and all the auxiliary vec-
tors introduced in this algorithm can be treated as
vectors of length 4× nx × nY × nZ , where nx, nY

and nZ are the number of grid points in frequency,
Y and Z co-ordinates respectively. The iterations
are referred to by an index j, with j = 0, 1, 2, . . .
niter, where niter is the number of iterations
needed for convergence. For the jth iteration, the
following steps are carried out.

Step (b): We use the formal solver to compute
Âpj.

Step (c): We introduce a coefficient αj defined by

αj =
〈ζj, ζ

∗

0 〉
〈M̂−1Âpj, ζ∗

0 〉
. (32)

where the angle brackets 〈 , 〉 represent the inner
product in the Eucledian space of real numbers
R

n, where n = 4 × nx × nY × nZ .

Step (d): We introduce a new vector qj defined as

qj = ζj − αjM̂
−1Âpj. (33)

Step (e): We use the formal solver to compute
Âqj.

Step (f): We introduce a coefficient ωj defined by

ωj =
〈M̂−1Âqj, qj〉

〈M̂−1Âqj, M̂−1Âqj〉
. (34)

Step (g): The value of the new irreducible source
vector is derived from the recursive relation

Sj+1 = Sj + αjpj + ωjqj. (35)

Step (h): New values for the residual vectors ζj

and conjugate direction vectors pj are calculated
with the recursive relations

ζj+1 = qj − ωjM̂
−1Âqj, (36)

pj+1 = ζj+1 + βj(pj − ωjM̂
−1Âpj). (37)

Here, the coefficient βj is defined as

βj =
〈ζj+1, ζ

∗

0 〉
〈ζj, ζ∗

0 〉
αj

ωj
. (38)

Step (i): If the test for convergence described
below is satisfied, we terminate the iteration se-
quence. Otherwise, we go to the Step (b).

Test for Convergence: At each iteration, we cal-
culate the quantities

eS = max
τY ,τZ ,x=0

{| δS0
0/S

0
0 |} (39)

which denotes the maximum relative change
(MRC) on the first component S0

0 of the irre-
ducible source vector and

eP = max
τY ,x=0,θ1,ϕ1

{| δP/P |}(τZ = 0) (40)

with P =
√

(Q/I)2 + (U/I)2, (41)
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which defines a maximum relative change on the
surface polarization. The values of θ1 and ϕ1

are given in Table 1. The test for convergence is
defined as e ≡max[eS, eP] ≤ ω̄, with ω̄, a given
number. In this paper we use ω̄ = 10−8.

The Preconditioner matrix

The preconditioner matrix M̂ is any form of im-
plicit or explicit modification of the matrix Â, that
helps to solve the given system of equations more
efficiently (see Saad 2000). In a way, construc-
tion of the preconditioner matrix is similar to the
construction of Λ⋆ matrix in ALI methods. For
problems with CRD, the M̂ matrix is nothing but
the diagonal matrix [Î − (1 − ǫ)Λ⋆], with Λ⋆ be-
ing the diagonal of the Λ matrix. For problems
with PRD, the kernel in the scattering integral
has dependence on both x and x′ and a diagonal
preconditioner is not sufficient to represent this x,
x′ dependence. Therefore, we construct a precon-
ditioner matrix M̂ given by

M̂ = [Î − (R̂(x, x′)/φ(x))Λ⋆
x′ ]. (42)

It is a block diagonal matrix. Each block is a full
matrix with respect to x and x′. The matrix M̂ is
diagonal with respect to other variables. The Λ∗

x

matrix in Equation (42) is constructed following
the method of constructing the Λ∗

x matrix in the
frequency by frequency (FBF) method of Paletou
& Auer (1995).

Figure 4 demonstrates the performance of Pre-
BiCG-STAB method in comparison to the Jacobi
method. The model parameters chosen are same
as those in Figure 5. We show progress of the max-
imum relative corrections eS and eP as a function
of iteration number for these two methods. While
the Jacobi method takes 186 iterations, Pre-BiCG-
STAB takes only 26 iterations to reach the same
level of accuracy (ω̄ = 10−8). In terms of CPU
time taken for the computations, the Pre-BiCG-
STAB is much faster than the Jacobi method.

6. Results and Discussions

The numerical calculations have been per-
formed with the irreducible Stokes and the source
vectors. Most of the results presented in this sec-
tion are for the Stokes parameters I, Q, U and
the Stokes source vector components SI , SQ, SU

which are related to the irreducible components by

Equations (A1), (A2), and (A3). Figures 5 and 6
show the optical depth dependence of SI , SQ and
SU along the mid-axes in the Y and Z directions
respectively, for two different frequencies namely
x = 0 and x = 5. The optical thickness in Y and
Z directions are TY = TZ = 2×106. The damping
parameter of the Voigt profile is a = 10−3. We
consider the pure line case (κc = 0), with scatter-
ing according to PRD. The elastic and inelastic
collision rates are respectively ΓE/ΓR = 10−4,
ΓI/ΓR = 10−4. The corresponding branching ra-
tios are (α, β(0), β(2)) ≈ (1, 1, 1). This PRD model
is dominated by the rII redistribution function.
The internal thermal sources are taken as constant
(the Planck function B(r) = 1). The medium is
assumed to be self-emitting (no incident radiation
on the boundaries). We have plotted the results
for all the 96 (= 12 × 8) directions that we have
considered, which cover all the octants, with 12
directions per octant. For the first octant, they
are listed in Table 1.

Figures 5(a) and (b) show the variation of
source vectors along the mid Z-axis for x = 0 and
x = 5 respectively. Because the Z-axis is the axis
of symmetry, SQ depends only on |µ|, and hence
only 4 out of 96 curves are distinguishable. For
the same reason, SU = 0.

Depth variation of the source vectors along the
mid Y -axis is shown in Figures 6(a) and (b).
Along the Y -axis, SQ and SU are sensitive to both
µ and ϕ. They show some symmetries which fol-
low from the symmetry of the angle-griding. For
SQ, the distinguishable curves correspond to the
directions of the first octant. For SU , the distin-
guishable curves correspond to all the directions in
the first and second octants (second octant is de-
fined by θ ∈ [0, π/2], ϕ ∈ [π/2, π]). Curves for the
remaining directions coincide with these curves.

In Figures 5(b) and 6(b), SQ and SU are in-
dependent of the optical depth on the surface up
to τ = 104 because, the monochromatic optical
depth at x = 5 is so small that the radiative
transfer effects become negligible. The magni-
tudes of SQ and SU profiles are larger for x = 5
because of the frequency coherent nature of rII in
the wings. When the thermalization has taken
place, SI → B(r) and SQ and SU vanish. For
x = 0 this occurs at τ ≈ 104 and for x = 5 at
τ ≈ 106 (see Figures 5 and 6).

The angular behavior and sign changes of SQ
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and SU depend on the nature of the mean inten-
sity components J0

0 , J2
0 , J2,y

1 and J2,x
2 . The be-

haviors of all these 4 components are controlled
by the angular dependence of the intensity com-
ponent I0

0 . Considering only the action of first
column of the Ψ̂ matrix on I0

0 , these 4 compo-
nents can be written as shown in Equation (B1).
For example, J2

0 changes its sign roughly at the
depth point where I0

0 changes its angular depen-
dence from limb darkening (at the surface) to limb
brightening (at the interior) (see Nagendra et al.
1998). The signs of other components depend on
the θ and ϕ dependence of I0

0 and on the signs
of the trigonometric weights in each octant. For
instance, J2,y

1 can be split into 8 terms, each repre-
senting the contribution from one octant. It can be
easily seen that the trigonometric weights coming
from four of these terms are positive (θ ∈ [0, π/2]
with ϕ ∈ [0, π/2], [π/2, π] and θ ∈ [π/2, π] with
ϕ ∈ [π, 3π/2], [3π/2, 2π]). The weights for the re-
maining four terms are negative. If the sum of the
positive terms dominates over the sum of the neg-
ative terms, then J2,y

1 will be positive, and vice-
versa. This clearly shows that the signs of SQ

and SU in a 2D medium depend strongly on the
combined effects of θ and ϕ dependence of the I0

0

component, unlike the 1D case, where I0
0 being in-

dependent of the azimuth, the sign of SQ depends
only on the θ dependence of I0

0 .

In Figure 7 we show surface averaged emergent
Stokes profiles for T = 2, 200 and 2 × 106. By
surface averaging, we mean that we integrate the
values of the Stokes profiles in the Y direction at
the surface (τZ = 0), by taking an arithmetic av-
erage. The other model parameters are same as
in Figure 5. For both T = 2 and 200, the medium
is effectively thin because ǫ = 10−4, and hence
we see an emission line in the Stokes I profile.
For T = 2 × 106 the medium is effectively thick,
hence we see an emission line with self absorption
in the core. Here the line core means that x . 4.
Due to symmetries in the distribution of the an-
gular quadrature points there are only 3 different
curves for Q/I and only 6 different ones for U/I,
out of the 12 azimuths. For effectively thin cases
(T = 2, 200), the product aT is smaller than unity
and therefore the radiative transfer effects are re-
stricted to the line core (see Nagendra et al. 1998).
Therefore the source functions SQ and SU depend
on the ray direction only in the line core. They

tend to zero in the line wings. The same behavior
is seen of course for emergent Q/I and U/I. For
T = 2 × 106, SQ and SU are almost independent
of the ray direction in the line core but show sig-
nificant variation in the wings. This is because of
the larger monochromatic optical depth in the line
core leading to an increased number of scattering.
For wing frequencies, the angular dependence of
Q/I and U/I is significant because, SQ and SU

show variation throughout the atmosphere as the
thermalization is reached only near the mid slab
(see Figures 5(b) and 6(b)).

The magnitudes of Q/I and U/I increase with
T . For |Q/I| the largest values are always at the
line center. Further, for T = 2 × 106, we see a
dip at x ≈ 12 and a second peak at x ≈ 20. For
|U/I| the situation is a bit more complicated. For
T = 2, 200 the values of |U/I| are largest in the
line core. For T = 2 × 106, |U/I| is very small
in the line core and reaches up to 15 % in the
wings around x ≈ 12. These results are not easy
to interpret, as they represent the case of an un-
saturated radiation field that prevails in 2D slabs
with intermediate optical thickness.

In Figure 8, we compare the surface averaged
components of I for 1D and 2D geometries in a
semi-infinite media (TY = TZ = T = 2×109). The
continuum opacity parameter is κc = 10−8. We
have shown the results for µ = 0.11 and ϕ = 59.9◦

The other model parameters are same as in Fig-
ure 5. The I0

0 component is larger for 1D than
2D due to the leaking of the radiation from the
boundaries of the 2D slab. The component |I2

0 |1D
is larger than |I2

0 |2D because of the surface averag-
ing. It acts in 2 different ways. (1) The signs of I2

0

change along the Y direction (2) the largest values
of I2

0 occurs in narrow regions near the boundaries
of the 2D slab (see Paper 1). The components with
the index Q = 1, 2 are zero for 1D. For 2D geom-
etry, I2,x

1 and I2,y
2 are zero. The components I2,x

2

and I2,y
1 have significant values which contribute

to the differences between the Q/I and U/I in 1D
and 2D geometries.

In Figure 9 we show surface averaged emer-
gent Stokes profiles for CRD and PRD in a semi-
infinite 2D medium (TY = TZ = T = 2 × 109).
We choose the same PRD model as in Figure 5.
This PRD model is dominated by rII. The other
model parameters are same as in Figure 8. We
show the corresponding 1D results for compari-
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son. Figures 9(a) and (b) correspond to ǫ = 10−4

and ǫ = 10−8 respectively. The global behaviors
of I and Q/I for CRD and PRD in a 2D semi-
infinite medium, are similar to those of 1D. As
expected, intensity and polarization profiles for
CRD and PRD are identical in the line core. In
the wings, the Stokes I for CRD reaches a con-
stant value and becomes independent of frequency
whereas for PRD it varies sharply with frequency
and reaches the CRD value only in the far wings.
Further details of the behavior of Stokes profiles in
semi-infinite 1D media can be found in Faurobert
(1988). Now we focus on the essential differences
between 1D and 2D results. [I]2D is smaller than
[I]1D throughout the line profile due to leaking of
the radiation field near the boundaries of the 2D
slab for both CRD and PRD. For CRD, Q/I ap-
proaches zero in the wings while PRD profiles are
non-zero (Q/I can take both positive and negative
values). For CRD, the effects of 2D geometry are
not as significant as for PRD.

We remark that for both CRD and PRD, the
curves for [Q/I]1D remain below the curves for
[Q/I]2D. This can be understood by looking at
the components of the irreducible Stokes vector
I plotted in Figure 8. Equation (A2) can be re-
written as

[Q(r,Ω, x)]1D ≃ −a1 × [I2
0 ]1D,

[Q(r,Ω, x)]2D ≃ −a1 × [I2
0 ]2D + ac, (43)

where a1 depends on µ and is same for both 1D
and 2D cases. The quantity ac depends on µ, ϕ
and the components I2,y

1 and I2,x
2 . For µ = 0.11

and ϕ = 59.9◦ considered for Figure 8, a1 and ac

are positive. As discussed above, |I2
0 |1D is larger

than |I2
0 |2D. When [I2

0 ]2D > 0, −a1 × [I2
0 ]2D >

−a1 × [I2
0 ]1D and therefore the addition of ac to

−a1 × [I2
0 ]2D leads to |Q/I|2D < |Q/I|1D. When

[I2
0 ]2D < 0, −a1 × [I2

0 ]2D < −a1 × [I2
0 ]1D. In this

case, the addition of ac to −a1×[I2
0 ]2D may lead to

|Q/I|2D > |Q/I|1D or |Q/I|2D < |Q/I|1D. But the
contribution from ac is sufficiently large that we
have |Q/I|2D > |Q/I|1D. The differences between
the [Q/I]2D for other ϕ values and [Q/I]1D are
similar.

Finally, as pointed out in Paper 1, [U/I]2D is
non-zero and can become significantly large in the
wings for the PRD case. In the CRD case |U/I|2D
is non-zero only very close to the line center and
goes to zero in the rest of the frequency domain.

As is well known, [U/I]1D ≡ 0 due to axial sym-
metry.

7. Conclusions

In this paper we develop an efficient method
to solve polarized radiative transfer equation with
PRD in a 2D slab. We assume a two-level atom
model with unpolarized ground level. We assume
that the medium is finite in two directions (Y and
Z) and infinite in the third direction (X). First
we apply the Stokes vector decomposition tech-
nique developed in Paper 1 to 2D geometry. We
show that due to symmetry of the Stokes I pa-
rameter with respect to the ϕ = π/2 axis, the
Stokes Q becomes symmetric and the Stokes U
becomes anti-symmetric about this axis (ϕ is mea-
sured from the infiniteX direction anti-clockwise).
Using this property we can represent the polarized
radiation field by 4 irreducible components I0

0 , I2
0 ,

I2,y
1 and I2,x

2 . The Stokes source vectors are also
decomposed into 4 irreducible components which
are independent of the ray direction. Due to axi-
symmetry I2,y

1 and I2,x
2 are zero in 1D geometry.

This decomposition technique is interesting for
the development of iterative methods. Here we
describe a numerical method called the Stabi-
lized Preconditioned Bi-Conjugate Gradient (Pre-
BiCG-STAB) and show that it is much faster than
the Jacobi iteration method used in Paper 1. This
method can be easily generalized to 3D geome-
tries.

Further, in this paper we generalize to PRD,
the 2D short characteristics method developed in
Paletou et al. (1999) for CRD. This formal solver
is much more efficient than the one used in Paper
1.

With these two new features it is possible to
compute the solutions for a wide range of model
parameters. With the method of Paper 1 only
media with small optical depths can be considered.

In Figure 5 and 6 we show the optical depth
dependence of the source vectors along the mid
axes in the Y and Z directions. We recover similar
angular dependence of SQ and SU at line center
as in Paletou et al. (1999). Contrary to CRD,
one can observe the increase in the values of SQ

and SU at x = 5. This is a PRD effect on the
polarization caused by the coherence nature of rII
redistribution function in the wings.
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In Figure 7 we study the surface averaged emer-
gent Stokes profiles for different optical thick-
nesses. We show that the polarization is restricted
to the line core for small values of T . As T in-
creases, Q/I, U/I take larger values in the line
wings as well. This is also a PRD effect. In the
line core Q/I becomes independent of the ray di-
rections and U/I → 0 due to an increased number
of scattering for the line core photons.

In Figures 8 and 9 we consider the case of semi-
infinite atmospheres with TZ = TY = T = 2×109.
In Figure 8 we compare the behaviors of the emer-
gent irreducible components averaged over the sur-
face, for 2D geometry and the corresponding com-
ponents in 1D geometry. For 1D geometry only
non-zero components are I0

0 and I2
0 . The I0

0 com-
ponent is larger for 1D than 2D due to the leaking
of the radiation from the boundaries of the 2D
slab. The component |I2

0 |1D is larger than |I2
0 |2D

due to surface averaging. The contribution from
the components I2,x

2 and I2,y
1 is mainly responsible

for the deviation of Q/I and U/I in 2D geometry
from their 1D values.

In Figure 9 we compare the surface averaged
emergent Stokes profiles in 2D geometry, and the
corresponding 1D solutions for CRD and PRD. We
show that the deviation of polarized radiation field
in 2D geometry from the one in 1D geometry exists
both for CRD and PRD, but is more severe in the
line wings of the PRD solutions. In Figure 9(a),
at x ≈ 12, we see a near wing maxima in −[Q/I].
At this frequency ||Q/I|2D − |Q/I|1D| ≈ 2%. At
this wing frequency we have |U/I|2D ≈ 3% and
|U/I|1D ≡ 0.

We thus propose our numerical method as an
efficient and fast method to solve the polarized
radiative transfer problems with PRD in multi-
dimensional media.

We are grateful to Prof. H. Frisch for critical read-
ing of the manuscript and very useful suggestions
which greatly helped to improve the paper. We
thank Dr. Sampoorna for helpful discussions.
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A. Expansion of Stokes parameters into irreducible components

The Stokes parameters and the irreducible Stokes vector are related through the following expressions.
They are already given in Frisch (2007). However we present these expressions here for an easy reference.
The expressions given below are applicable for radiative transfer in 2D geometry (see Equation (14) and
discussions that follows).

I(r,Ω, x) = I0
0 +

1

2
√

2
(3 cos2 θ − 1)I2

0

+
√

3 cos θ sin θ sinϕ I2,y
1 +

√
3

2
(1 − cos2 θ) cos 2ϕ I2,x

2 , (A1)

Q(r,Ω, x) = − 3

2
√

2
(1 − cos2 θ)I2

0

+
√

3 cos θ sin θ sinϕ I2,y
1 −

√
3

2
(1 + cos2 θ) cos 2ϕ I2,x

2 , (A2)

U(r,Ω, x) =
√

3 sin θ cosϕ I2,y
1 +

√
3 cos θ sin 2ϕ I2,x

2 . (A3)

The irreducible components in the above equations depend on r, Ω and x. The same transformation formulas
can be used to construct the Stokes source vectors from the irreducible source vectors.

B. Symmetry of polarized radiation field in 2D geometries

Equation (14) concerns symmetry of polarized radiation field in 2D geometries. A proof of Equation (14)
can be given as an algorithm.

Step (1): First we assume that the medium has only an unpolarized thermal source namely, S(r, x) =
(ǫB(r), 0, 0, 0, 0, 0)T .

Step (2): Use of this source vector in the formal solution expression (Equation 23) yields I =
(I0

0 , 0, 0, 0, 0, 0)T .
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Step 3: Using this I, we can write the expressions for the irreducible mean intensity components as

J0
0 (r, x) ≃

∫

x′,Ω

R̂(x, x′)

φ(x)
I0
0 (r, θ, ϕ, x),

J2
0 (r, x) ≃ c2

∫

x′,Ω

R̂(x, x′)

φ(x)
(3 cos2 θ − 1) I0

0 (r, θ, ϕ, x),

J2,x
1 (r, x) ≃ −c3

∫

x′,Ω

R̂(x, x′)

φ(x)
sin 2θ cosϕ I0

0 (r, θ, ϕ, x),

J2,y
1 (r, x) ≃ c4

∫

x′,Ω

R̂(x, x′)

φ(x)
sin 2θ sinϕ I0

0 (r, θ, ϕ, x),

J2,x
2 (r, x) ≃ c5

∫

x′,Ω

R̂(x, x′)

φ(x)
sin2 θ cos 2ϕ I0

0 (r, θ, ϕ, x),

J2,y
2 (r, x) ≃ −c6

∫

x′,Ω

R̂(x, x′)

φ(x)
sin2 θ sin 2ϕ I0

0 (r, θ, ϕ, x),

(B1)

where
∫

x′,Ω

=

∫ +∞

−∞

dx′
∮

dΩ

4π
, (B2)

and ci, i = 2, 3, 4, 5, 6 are positive numbers (see appendix A of Paper 1). We recall that dΩ = sin θ dθ dϕ,
θ ∈ [0, π] and ϕ ∈ [0, 2π].

Step 4: Notice that cos(π − ϕ) = − cosϕ, sin 2(π − ϕ) = − sin 2ϕ.

Step 5: Using the formal solution computed with the thermal source vector (ǫB(r), 0, 0, 0, 0, 0)T , and the
fact that in a 2D geometry, the medium is homogeneous in the X direction, it follows that

I0
0 (r, θ, ϕ, x′) = I0

0 (r, θ, π − ϕ, x′),

I0
0 (r, θ, π + ϕ, x′) = I0

0 (r, θ, 2π − ϕ, x′), ϕ ∈ [0, π/2]. (B3)

Step 6: Substituting Equation (B3) in Equation (B1), we can easily prove that

(J2,x
1 )(1) = 0, (J2,y

2 )(1) = 0,

and hence

(S2,x
1 )(1) = 0, (S2,y

2 )(1) = 0, (B4)

where the superscript (1) means that it is a first order solution.

Step 7: Using Equation (B4), along with Equations (A1), (A2) and (A3) applied to the source vectors we
deduce

SI(r, θ, ϕ, x) = SI(r, θ, π − ϕ, x),

SI(r, θ, ϕ+ π, x) = SI(r, θ, 2π − ϕ, x),

SQ(r, θ, ϕ, x) = SQ(r, θ, π − ϕ, x),

SQ(r, θ, ϕ+ π, x) = SQ(r, θ, 2π − ϕ, x),

SU (r, θ, ϕ, x) = −SU (r, θ, π − ϕ, x),

SU (r, θ, ϕ+ π, x) = −SU (r, θ, 2π − ϕ, x).

(B5)
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Step 8: Using formal solution for Stokes parameters I,Q,U and using the homogeneity of the 2D slab in
the X direction, it follows that

I(r, θ, ϕ, x) = I(r, θ, π − ϕ, x),

I(r, θ, ϕ+ π, x) = I(r, θ, 2π − ϕ, x),

Q(r, θ, ϕ, x) = Q(r, θ, π − ϕ, x),

Q(r, θ, ϕ+ π, x) = Q(r, θ, 2π − ϕ, x),

U(r, θ, ϕ, x) = −U(r, θ, π − ϕ, x),

U(r, θ, ϕ+ π, x) = −U(r, θ, 2π − ϕ, x).

(B6)

Step 9: Now we recall the expression for the complex irreducible source vector components SK
Q,l (see Equation

(14) in Paper 1 and Equation (20) for zero magnetic field case in Frisch (2007)) namely,

SK
Q,l(r, x) = GK

Q (r, x) + JK
Q (r, x), (B7)

where

JK
Q (r, x) =

1

φ(x)

∫ +∞

−∞

dx′
∮

dΩ

4π

×RK(x, x′)

3
∑

j=0

(−1)QT K
−Q(j,Ω)Ij(r,Ω, x

′).

(B8)

Here I0, I1, I2=I,Q,U . The quantity R(0)(x, x′) is the first element of the matrix R̂. All the other elements
are given by R(2)(x, x′).

Step 10: We consider the case K = 2, Q = 1. Substituting the expressions for T K
−Q(j,Ω) from Landi

Degl’Innocenti & Landolfi (2004) for the reference direction γ = 0, the integral over ϕ in Equation (B8) can
be written as

∫ 2π

0

dϕ

3
∑

j=0

(T 2
1 )∗(j,Ω)Ij(r,Ω, x

′) =

∫ 2π

0

dϕ

[

(T 2
1 )∗(0, θ, ϕ)I(r, θ, ϕ, x′)

+(T 2
1 )∗(1, θ, ϕ)Q(r, θ, ϕ, x′) + (T 2

1 )∗(2, θ, ϕ)U(r, θ, ϕ, x′)

]

. (B9)

Step 11: The ϕ integral in Equation (B9) can be split into 2 parts, one from 0 to π and the other from π
to 2π. It can be shown that both these integrals yield purely imaginary functions. First we consider the
integral from 0 to π and decompose into integrals over 0 to π/2 and π/2 to π. In the integral from π/2 to π
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we perform a change of variable ϕ→ π − ϕ. We obtain

∫ π

0

dϕ

3
∑

j=0

(T 2
1 )∗(j,Ω)Ij(r,Ω, x

′)

=

∫ π/2

0

dϕ

[

(T 2
1 )∗(0, θ, ϕ) + (T 2

1 )∗(0, θ, π − ϕ)

]

I(r, θ, ϕ, x′)

+

[

(T 2
1 )∗(1, θ, ϕ) + (T 2

1 )∗(1, θ, π − ϕ)

]

Q(r, θ, ϕ, x′)

+

[

(T 2
2 )∗(1, θ, ϕ) − (T 2

1 )∗(2, θ, π − ϕ)

]

U(r, θ, ϕ, x′),

=

∫ π/2

0

dϕ

[
√

3

2
sin θ cos θ(−e−iϕ − e−i(π−ϕ))

]

I(r, θ, ϕ, x′)

+

[
√

3

2
sin θ cos θ(−e−iϕ − e−i(π−ϕ))

]

Q(r, θ, ϕ, x′)

+

[
√

3

2
i sin θ(e−iϕ − e−i(π−ϕ))

]

U(r, θ, ϕ, x′)

=

∫ π/2

0

dϕ

[
√

3

2
sin θ cos θ(2i sinϕ)

]

I(r, θ, ϕ, x′)

+

[
√

3

2
sin θ cos θ(2i sinϕ)

]

Q(r, θ, ϕ, x′)

+

[
√

3

2
i sin θ(2 cosϕ)

]

U(r, θ, ϕ, x′), (B10)

which is purely an imaginary function. Similarly we can prove that the integral of ϕ from π to 2π also yields
a purely imaginary function. Thus J2

1 is purely imaginary. Since J2,x
1 is the real part of J2

1 , we have J2,x
1 = 0.

Following similar lines we can prove that J2
2 is purely real, which proves that J2,y

2 = 0 where J2,y
2 is the

imaginary part of J2
2 . Thus we get

(J2,x
1 )(2) = 0, (J2,y

2 )(2) = 0, (B11)

and hence

(S2,x
1 )(2) = 0, (S2,y

2 )(2) = 0, (B12)

where the subscript (2) means second order solution. Repeating the above steps (7)–(11), we can prove that
Equations (B11) and (B12) are valid for any order n. Hence the proof.
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Table 1: The 12-point Carlsson type B angle points and weights for a quadrature of order n = 8 . See
Figure 3(b) for the definition of θ and ϕ.

(a)

i µi ηi γi wi

1 0.857080E+00 0.111044E+00 0.503073E+00 0.142935E-01
2 0.702734E+00 0.111044E+00 0.702734E+00 0.992212E-02
3 0.503073E+00 0.111044E+00 0.857080E+00 0.142935E-01
4 0.857080E+00 0.503073E+00 0.111044E+00 0.142935E-01
5 0.702734E+00 0.503073E+00 0.503073E+00 0.315749E-02
6 0.503073E+00 0.503073E+00 0.702734E+00 0.315749E-02
7 0.111044E+00 0.503073E+00 0.857080E+00 0.142935E-01
8 0.702734E+00 0.702734E+00 0.111044E+00 0.992212E-02
9 0.503073E+00 0.702734E+00 0.503073E+00 0.315749E-02

10 0.111044E+00 0.702734E+00 0.702734E+00 0.992212E-02
11 0.503073E+00 0.857080E+00 0.111044E+00 0.142935E-01
12 0.111044E+00 0.857080E+00 0.503073E+00 0.142935E-01

(b)

i θi ϕi

1 0.310097E+02 0.775526E+02
2 0.453533E+02 0.810205E+02
3 0.597965E+02 0.826178E+02
4 0.310097E+02 0.124474E+02
5 0.453533E+02 0.450000E+02
6 0.597965E+02 0.544019E+02
7 0.836245E+02 0.595887E+02
8 0.453533E+02 0.897951E+01
9 0.597965E+02 0.355981E+02

10 0.836245E+02 0.450000E+02
11 0.597965E+02 0.738219E+01
12 0.836245E+02 0.304113E+02
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Fig. 1.— Figure showing the radiative transfer in 2D geometry. The medium is finite in Y and Z directions
and infinite in the X direction. The mid-axes along Y and Z are marked. In Figures 5 and 6 the variation
of the Stokes source vectors along these mid axes are shown.
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Fig. 2.— The definition of the spatial location r and the projected distances r − s′Ω which appear in the
2D formal solution integral. r0 and r are the arbitrary initial and final locations considered in the formal
solution integral.
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Fig. 3.— Figure showing the geometry of the 2D transfer problem. MOP in panel (a) represents a stencil
of short characteristics along a ray path, after projecting the ray onto a 2D plane. The points used for the
interpolation of S, κtot at M and P, and the upwind intensity IM are marked. In panel (b) we show all the
rays in the 4 π steradians considered for computing the scattering integral, in the local co-ordinate system
at O.

Fig. 4.— Figure showing the progress of maximum relative correction in the first component of the irreducible
source vector (eS) and the surface polarization (eP ) for Jacobi and Pre-BiCG-STAB methods. A convergence
criteria of 10−8 is used. Spatial griding has 12 points per decade.
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Fig. 5.— Variation of the Stokes source vectors as a function of optical depth. The model parameters are
(TZ , TY , a, ǫ, κc, ΓE/ΓR)=(2 × 106, 2 × 106, 10−3, 10−4, 0, 10−4). Panels (a) and (b) show variations of
the source vectors along the Z-axis at Ymax/2 for frequencies x = 0 and x = 5 respectively. The mid Y -axis
is marked in Figure 1. The results are shown for a half slab only due to symmetry about the mid axes. The
curves are labeled by the values of µ.
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Fig. 6.— Same as Figure 5, but along the Y -axis at Zmax/2. The mid Z-axis is marked in Figure 1. The
indices 1–12 near the curves refer to the indices of the directions for first octant given in Table 1. The indices
13–24 refer to the indices of the directions in the second octant. They can be computed easily using simple
trigonometric relations. The labels for the curves in panel (b) are the same as those in panel (a) for the
respective line types.
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Fig. 7.— Optical depth effects on 2D polarized radiation field. The surface averaged emergent Stokes profiles
are presented for TY = TZ = T = 2, 200, 2×106. The other model parameters are same as those in Figure 5.
The results are plotted for 12 directions with µ = 0.11 and 12 ϕ values given by ϕi(i = 1, 12)=59.9, 44.9,
30.4, 300.4, 315, 329, 120.4, 135, 149.6, 239.6, 225, 210.4. First 3 ϕ values correspond to first octant and are
given in Table 1. The curves are labeled by the indices of ϕ. Due to symmetry reasons, only some of them
are distinct.
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Fig. 8.— Comparison of the surface averaged components of irreducible Stokes vector I in 1D and 2D
semi-infinite media (T = TY = TZ = 2 × 109). The results are shown for µ = 0.11 and ϕ=59.9◦. The
continuum opacity parameter κc = 10−8. Other model parameters are same as those in Figure 5.
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Fig. 9.— The important differences between CRD and PRD Stokes profiles in a semi-infinite 2D atmosphere.
The results are shown for µ = 0.11 and ϕ=59.9◦. The 1D results are shown for comparison. The results are
presented for two values of ǫ. The model parameters are same as those in Figure 8.
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