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ABSTRACT

To model the second solar spectrum (the linearly polarized spectrum of the Sun that is due to coherent scattering
processes), one needs to solve the polarized radiative transfer (RT) equation. For strong resonance lines, partial
frequency redistribution (PRD) effects must be accounted for, which make the problem computationally demanding.
The “last scattering approximation” (LSA) is a concept that has been introduced to make this highly complex
problem more tractable. An earlier application of a simple LSA version could successfully model the wings of the
strong Ca i 4227 Å resonance line in Stokes Q/I (fractional linear polarization), but completely failed to reproduce
the observed Q/I peak in the line core. Since the magnetic field signatures from the Hanle effect only occur in the
line core, we need to generalize the existing LSA approach if it is to be useful for the diagnostics of chromospheric
and turbulent magnetic fields. In this paper, we explore three different approximation levels for LSA and compare
each of them with the benchmark represented by the solution of the full polarized RT, including PRD effects.
The simplest approximation level is LSA-1, which uses the observed center-to-limb variation of the intensity profile
to obtain the anisotropy of the radiation field at the surface, without solving any transfer equation. In contrast, the
next two approximation levels use the solution of the unpolarized transfer equation to derive the anisotropy of the
incident radiation field and use it as an input. In the case of LSA-2, the anisotropy at level τλ = μ, the atmospheric
level from which an observed photon is most likely to originate, is used. LSA-3, on the other hand, makes use
of the full depth dependence of the radiation anisotropy. The Q/I formula for LSA-3 is obtained by keeping
the first term in a series expansion of the Q-source function in powers of the mean number of scattering events.
Computationally, LSA-1 is 21 times faster than LSA-2, which is 5 times faster than the more general LSA-3, which
itself is 8 times faster than the polarized RT approach. A comparison of the calculated Q/I spectra with the RT
benchmark shows excellent agreement for LSA-3, including good modeling of the Q/I core region with its PRD
effects. In contrast, both LSA-1 and LSA-2 fail to model the core region. The RT and LSA-3 approaches are then
applied to model the recently observed Q/I profile of the Ca i 4227 Å line in quiet regions of the Sun. Apart from
a global scale factor both give a very good fit to the Q/I spectra for all the wavelengths, including the core peak
and blend line depolarizations. We conclude that LSA-3 is an excellent substitute for the full polarized RT and can
be used to interpret the second solar spectrum, including the Hanle effect with PRD. It also allows the techniques
developed for unpolarized three-dimensional RT to be applied to the modeling of the second solar spectrum.
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1. INTRODUCTION

The Ca i 4227 Å line shows the largest degree of linear
polarization in the second solar spectrum (the linearly polarized
spectrum of the Sun that is due to coherent scattering processes).
The Hanle effect, a magnetic field modification of this linear
polarization, was first observed on the Sun in the core of
this line by Stenflo (1982). Enigmatic behaviors of the line
wing polarization were observed not only in active regions (see
Bianda et al. 2003) but also in the quiet regions of the Sun
(see Sampoorna et al. 2009, hereafter S09). These observations
motivated the modeling of the Ca i 4227 Å line by an extension
of the last scattering approximation (LSA) method, originally
formulated by Stenflo (1982). It is shown in S09 that the
unexpected wing features cannot be interpreted in terms of
the Hanle effect, which was thought to become operative in the
line wings through a combination of frequency redistribution
and elastic collisions (Nagendra et al. 2002; Sampoorna et al.
2007).

The idea behind the LSA introduced in Stenflo (1982) is that
the observed polarization Q/I can be evaluated by considering
only one single scattering process in which the observed Stokes
I plays the role of the incident radiation field. Its center-to-
limb variation (CLV) provides the angular distribution needed
to calculate the anisotropy of the radiation field which is the
ultimate source of linear polarization. The purpose of LSA-
type methods is to derive the linear polarization from Stokes I,
avoiding the solution of the full scale polarized radiative transfer
(RT) equation which is always somewhat computationally
expensive and may still be beyond the capabilities of existing
computers; for example, if one deals with three-dimensional
calculations.

The modeling strategy in S09 is based on an extension of
the LSA method introduced in Stenflo (1982) for frequency
coherent scattering (incident and scattered beams have the
same frequency). For the analysis of the Ca i 4227 Å line,
frequency changes at each scattering are taken into account.
They are described by an angle-dependent Hanle–Zeeman
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partial frequency redistribution (PRD) matrix. In addition, the
anisotropy of the radiation field is made frequency dependent.
It is deduced from the CLV of Stokes I at a set of wavelengths
along the intensity profile. With this procedure, it is possible to
model the observed Q/I profile in the far line wings and the
characteristic maxima of Q/I in the near line wings. However,
the other features of the Q/I profile (the line center peak itself
and the core minima) cannot be reproduced. The PRD matrix
used in S09 provides a good representation of the frequency
redistribution in the line core and the line wings and hence
cannot be held responsible for the failure of the modeling at the
line center. So we embarked on the construction of new LSAs
which can take into account RT effects that are neglected when
the polarization is deduced from the observed intensity only.

In this paper, we present three different LSAs. For clarity,
we refer to them as LSA-1, LSA-2, and LSA-3. LSA-3 and
LSA-2 take into account RT effects, LSA-2 being a degraded
version of LSA-3. LSA-3 is very similar to the single scattering
approximation introduced in Frisch et al. (2009). LSA-1 is
very similar to the LSA used in S09. All these approximations
are computationally much faster than a full polarized RT
calculation.

We validate the performance of LSA-1 to LSA-3 by com-
paring their predictions for the ratio Q/I of the Ca i 4227 Å
line with the solution of a full polarized RT equation, which we
refer to as the RT approach for brevity. For the RT approach, we
use the numerical code developed by D. Fluri (see, e.g., Fluri
et al. 2003; Holzreuter et al. 2005), which can take into ac-
count multilevel atoms and solar atmospheric models. We also
compare the predictions of the LSA-3 and of RT calculations
with recent observations of the Ca i 4227 Å line taken at IRSOL
in 2010 January. With both methods, we can fit the triplet peak
structure of the Q/I profile present around the line center rather
well. A qualitative explanation for this triplet structure, ob-
served in strong chromospheric lines such as Ca i 4227 Å and
Na i D2 5890 Å (see Gandorfer 2000, 2002, 2005), can be found
in Holzreuter et al. (2005). For comparison with observations,
we have incorporated the effect of a microturbulent magnetic
field in the LSA-3 approximation and RT calculation. It is a
very straightforward generalization (see, e.g., Faurobert-Scholl
1993, 1994; Holzreuter et al. 2006). We note that all the approx-
imations presented in this paper can be generalized to the case
of the Hanle effect due to an oriented field (i.e., U �= 0).

In Section 2, we present the polarized RT equations,
which serve as a starting point for the RT approach and the
LSA-3 and LSA-2 approximations. In Section 3, we describe
the observations and the solar atmospheric models that are used
for testing the RT calculation and the LSA-3 approximation. In
Section 4, we briefly discuss the wavelength and depth depen-
dence of the radiation field anisotropy. The basic equations of
LSA-1, LSA-2, and LSA-3 are given in Section 5. Section 6 is
devoted to comparisons between Q/I profiles calculated with
the LSA-3 approximation and a full RT approach and also to
comparisons with observations. The conclusions are presented
in Section 7. A brief discussion on PRD matrices is given in the
Appendix.

2. THE RADIATIVE TRANSFER APPROACH

Throughout this paper, we use the standard notation of line
formation theory (Mihalas 1978; Stenflo 1994). Since we work
with solar model atmospheres, all the physical quantities explic-
itly depend on the altitude z in the atmosphere. The polarized
RT equation in a one-dimensional planar axisymmetric medium

is written in standard notation as

μ
∂ I(λ,μ, z)

∂z
= −[κl(z)φ(λ, z) + κc(λ, z)

+ σc(λ, z)][I(λ,μ, z) − S(λ,μ, z)], (1)

where the Stokes vector I = (I,Q)T . The Voigt profile func-
tion is denoted by φ. The dependence of φ on z comes
from the damping parameter a = Γtot/4πΔνD . The radiative
and collisional broadening are included in Γtot. The Doppler

width is ΔνD =
√

2kBT /Ma + v2
turb/λ0, where kB is the Boltz-

mann constant, T is the temperature, Ma is the mass of the
atom, and vturb is the magnitude of the microturbulent veloc-
ity. Further, κl is the line-averaged absorption coefficient and
σc and κc are the continuum scattering and continuum absorp-
tion coefficients, respectively. The total opacity coefficient is
κtot(λ, z) = κl(z)φ(λ, z) + σc(λ, z) + κc(λ, z). In a two-level
atom model with unpolarized ground level, the total source vec-
tor S = (SI , SQ)T is defined as

S(λ,μ, z) = κl(z)φ(λ, z)Sl(λ,μ, z)

κtot(λ, z)

+
σc(λ, z)Sc(λ,μ, z) + κc(λ, z)B(λ, z)

κtot(λ, z)
. (2)

Here B = (Bλ, 0)T , with Bλ being the Planck function at the
line center wavelength. μ = cos θ , with θ being the co-latitude
with respect to the atmospheric normal. The line source vector
Sl = (SI,l, SQ,l)T is given by

Sl(λ,μ, z) = 1 − ε

φ(λ, z)

∫ +1

−1

dμ′

2

∫ ∞

0
dλ′

R̂(λ, λ′, μ, μ′, z) I(λ′, μ′, z) + ε B(λ, z). (3)

Here, the redistribution matrix R̂(λ, λ′, μ, μ′, z) is the angle-
averaged Domke–Hubeny PRD matrix for the non-magnetic
scattering as given in Equation (A7) of the Appendix. The
thermalization parameter ε is defined by ε = ΓI /(ΓR + ΓI ),
where ΓR and ΓI are, respectively, the radiative and inelastic
collision rates. In Equation (3), (λ′, μ′) refer to the incoming
ray and (λ,μ) refer to the outgoing ray.

The scattering part of the continuum source vector Sc =
(SI,c, SQ,c)T is defined by

Sc(λ,μ, z) =
∫ +1

−1

dμ′

2
P̂R(μ,μ′) I(λ,μ′, z), (4)

where P̂R is the Rayleigh phase matrix defined in the Appendix.
For simplicity, frequency coherent scattering is assumed in
the continuum. We define the total optical depth scale as
dτλ = −κtot(λ, z)dz. The formal solution of Equation (1) can
be written as

I(λ,μ, τλ) = I0(λ,μ, Tλ) exp

[
−

(
Tλ − τλ

μ

)]

+
∫ Tλ

τλ

exp

[
−

(
τ ′
λ − τλ

μ

)]
S(λ,μ, τ ′

λ)
dτ ′

λ

μ
(5)

for μ > 0, and

I(λ,μ, τλ) = I0(λ,μ, 0) exp

(
−τλ

μ

)

−
∫ τλ

0
exp

[
−

(
τ ′
λ − τλ

μ

)]
S(λ,μ, τ ′

λ)
dτ ′

λ

μ
(6)
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for μ < 0. Here, Tλ represents the monochromatic total
optical depth in the medium. In the above equations, I0 is a
radiation field incident on the medium. At the lower boundary,
I0(λ,μ, Tλ) = (Bλ(Tλ), 0)T . We assume that no radiation is
incident on the upper free boundary (τλ = 0). Equations (1)–(6)
are used in Section 5 to construct three different levels of LSA
and to compute the polarized spectrum I(λ,μ, τλ).

The polarized spectrum is calculated by a two-stage pro-
cess described in Holzreuter et al. (2005). In the first stage, a
multilevel PRD-capable Multilevel Approximate Lambda Iter-
ation (MALI) code of Uitenbroek (2001; hereafter referred to
as the RH-code) solves the statistical equilibrium equation and
the unpolarized RT equation self-consistently and iteratively.
The RH-code is used to compute the intensity, opacities, and
collision rates. The angle-averaged redistribution functions of
Hummer (1962) are used in the RH-code. In the second stage,
the opacities and the collision rates are kept fixed, and the Stokes
vector (I,Q)T is computed perturbatively by solving the polar-
ized transfer equation with the same angle-averaged redistribu-
tion functions as in the RH-code. For simplicity, in this stage
a two-level atomic model is assumed for the particular transi-
tion of interest. Such a two-stage approach is justified when the
degree of linear polarization is small, so that it does not affect
the population of the levels under consideration. A perturbation
technique of this type is used in Faurobert (1987) and Nagendra
et al. (2002) for isothermal atmospheres, and is shown to work
well. In Section 6, we present the theoretical model profiles of
(I,Q/I ) computed by the RT approach.

3. OBSERVATIONAL DETAILS AND SOLAR MODEL
ATMOSPHERES

3.1. The Observation of (I,Q/I ) in the Ca i 4227 Å Line

The data acquisition was done using the ZIMPOL-2 polarime-
ter (Gandorfer et al. 2004) at IRSOL in Switzerland. For details
of the instrumentation facilities used for obtaining the results
shown in this paper, see Bianda et al. (2009). As several de-
tails related to the data acquisition are given in S09, we do not
elaborate them here.

Figure 1 shows the observations taken during 2010 January
near the solar north pole (about 6′′ inside the limb around
spatial position 60′′). The spectrograph slit was 60 μm wide
(0.′′5 wide on the disk) and 190′′ long. The resulting CCD
images are 140 pixels high in the spatial direction, with a pixel
corresponding to 1.′′35, and 770 pixels wide in the wavelength
direction, with a pixel corresponding to 5.3 mÅ. The total
exposure time was 10 minutes (120 single recordings of 5 s
each).

Figures 7(a) and (c) show the intensity and the Q/I profiles
obtained by averaging the Stokes I and Stokes Q/I images in
Figure 1 over the spatial interval 13′′–41′′ where the average
distance from the limb corresponds to a value μ = 0.1. The
limb distance is calculated with the help of slit-jaw images
registered during the integration time. Note that due to seeing
effects the position of the limb oscillates with an rms of 1.′′1
which corresponds to an rms of about 0.011 in μ.

The intensity image shows the broad line of Ca i at 4227 Å,
which is nearly 90% saturated at the line center, with broad
wings interspersed by the blend lines (see also the dotted line
in Figure 7(a)). The polarization signatures seen in Q/I are
due to resonance scattering. Especially worth noting are the
PRD peaks (at λ ≈ 4226.2 Å and λ ≈ 4227.1 Å) with unequal
heights in the near wings and the depolarization of Q/I at the

Figure 1. CCD image of the Stokes parameters in a spectral window around the
Ca i 4227 Å line. The observations are made with the spectrograph slit placed
parallel to the north limb (about 6′′ inside around the spatial position 60′′). Due
to the curvature of the solar limb, the end points of the slit are closer to the limb
when compared to the center of the slit. This explains the decrease in intensity
and increase in the wing amplitude of Q/I when moving away from the center
of the slit. In addition, seeing and guiding cause the image to oscillate and thus
the distance of the limb from the spectrograph slit changes continuously. When
recording an image, we average the measurements from different μ values. In
our case, the averaged value μ = 0.1 has an rms of about 0.011 in μ.

wavelength positions of the blend lines. Further, the depth of
the core minima (at λ ≈ 4226.6 Å and λ ≈ 4226.8 Å) adjacent
to the central peak (at λ0 = 4226.727 Å) is significant. The
line core is defined as the region between λ ≈ 4226.6 Å and
λ ≈ 4226.8 Å. The Q/I in the far wings gradually approaches
continuum polarization (see dotted lines in Figure 7(c)).

Although observations are made in the so-called quiet regions,
Figure 1 shows pronounced and spatially varying U/I signals
in the line core, which is due to the rotation of the plane of linear
polarization by the Hanle effect in the presence of an oriented
magnetic field. Some spatial variations in (Q/I,U/I ) along the
slit length are seen in the near wings. They were referred to as
wing signatures in S09. In this paper, however, we focus only on
modeling the average Q/I spectrum corresponding to the inter-
val 13′′–41′′. The V/I signal in Figure 1 is also weak, showing
that the longitudinal components of the resolved magnetic field
are weak in the observed locations on the solar disk.

3.2. The Smearing Effect

The polarimetric observations for this paper were done with
a slit width of 60 μm. To take into account the finite slit width, a
convolution of the theoretical (I,Q) profiles with a slit spectral
response function becomes necessary. For simplicity, we assume
this function to be a Gaussian. The observed profiles are also
broadened by macroturbulent velocity fields. We account for
both the broadening effects by using a Gaussian function with
a total width at half-maximum of 40 mÅ. The main source
of smearing is due to the macroturbulent velocity fields. The
smearing due to instrumental broadening is quite small (about
10 mÅ) in comparison.

3.3. The Model Atmosphere and the Model Atom

Figure 2 shows the run of some physical parameters as
a function of height in several model atmospheres of the
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Figure 2. Model atmospheres that are tested in this paper in our attempt to fit the observed (I,Q/I ) profiles. Line types: solid, FALA; dotted, FALC; dashed,
FALF; dot-dashed, FALX. We find that the FALX model atmosphere provides a reasonable fit to the observations. FALX represents the coolest model, with the
chromospheric temperature minimum located around 1000 km above the photosphere (panel a). Panel (b) shows the depth dependence of the Planck function at the
line center wavelength. The thermalization parameter ε remains small and almost constant in the chromospheric layers (panel c). The ratio of the continuum scattering
coefficient to the monochromatic line absorption coefficient at the line center reflects the contribution of continuum scattering to the total polarization (panel d). For
the FALX model that we use here, the continuum scattering polarization is particularly large in the chromospheric layers, compared to other model atmospheres.

Sun—namely FALA, FALC, FALF (Fontenla et al. 1993), and
FALX (Avrett 1995) that we have tested in our attempts to fit
the (I,Q/I ) data. The meanings of the abbreviations and the
nature of the atmospheric models are described in the given
references. Basically, all these models represent the quiet solar
atmosphere. For instance, FALA, FALC, and FALF represent,
respectively, the super granular cell center, the average quiet
Sun, and the bright network region on the solar atmosphere.
FALX is a model that was proposed by Avrett (1995) to study
the CO molecular observations. We have retained the FALX
model for our investigation on the LSAs because it appeared
that it could provide a reasonable fit to observations.

In the multilevel RH-code, a Ca i model atom consisting of
20 levels with 17 line transitions and 19 continuum transitions is
considered. The main line is treated in PRD. The angle-averaged
PRD functions of Hummer (1962) are used for this purpose. All
other lines of the multiplet are treated in complete frequency
redistribution (CRD). However, for computing the polarization,
we restrict ourselves to a two-level atom model for the main line
transition. The relevant PRD matrix used for computing Q/I is
given in Equation (A7). All the blend lines are treated in LTE in
the RH-code. Therefore, the blend line absorption coefficient is
implicitly included in the continuum absorption coefficient κc.

4. THE ANISOTROPY FACTOR kG(λ,μ, τλ) AND ITS
DEPTH DEPENDENCE IN THE SOLAR MODEL

ATMOSPHERE

It is well known that the key factor that determines the shape
of the emergent polarization profile is the anisotropy of the

diffuse radiation field within the atmosphere. It is expressed
by the parameter kG, introduced in Stenflo (1982). kG is the
factor by which classical scattering polarization is reduced due
to angular averaging over the incident radiation, as compared
with the case of unidirectional incident radiation. It is given by

kG(λ,μ, τλ)

= 3

2
√

2
(1 − μ2)J 2

0 (λ, τλ)/I (λ,μ, τλ), (7)

with

J 2
0 (λ, τλ) = 1

4
√

2

∫ +1

−1
dμ′(3μ′2 − 1)I (λ,μ′, τλ). (8)

Here, μ′ is the direction of the incident radiation field and μ
is the direction of the scattered beam. The parameter kG thus
takes care of the actual angular distribution of the radiation
field. The integration is over all the incident directions μ′.
Combining Equations (7) and (8), one recognizes the factor
(3/8)(1 − μ2)(3μ′2 − 1) as the (2, 1) element of the Rayleigh
phase matrix (see the Appendix).

Figure 3 shows the anisotropy factor kG for the Ca i 4227 Å
line. The dotted lines in both the panels show kG computed
empirically through a polynomial fit to the observed CLV of
intensity I (see S09). In this way, it represents the observed
anisotropy at the surface (τλ = 0). The other line types in
Figure 3(a) correspond to the kG calculated using I (λ,μ, τλ)
obtained from the RH-code. Throughout this paper, we use
the FALX model atmosphere (Avrett 1995). Good agreement
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Figure 3. Anisotropy factor kG. In panel (a), the solid and dashed lines show the theoretically computed kG for the FALX model at τλ = 0 and τλ = μ = 0.1,
respectively. The dotted lines in both the panels show the kG computed from observations (as in S09). In panel (b), we show kG at various heights within the solar
atmospheric model (FALX). For all heights above the temperature minimum (1000 km), kG is shown by the heavy solid line. The other line types are: dot-dashed line
= 500 km; dot-dot-dashed line = 200 km; and long-dashed line = −40 km, which correspond to the photospheric layers.

between the theoretically computed kG at τλ = 0 (solid line) and
the observationally derived kG (also at τλ = 0) is a measure of the
realism to which the FALX model mimics the solar atmosphere.
The dashed line is the kG computed at the monochromatic optical
depth τλ = μ for μ = 0.1.

Figure 3(b) shows the run of the anisotropy factor kG within
the solar atmospheric model FALX. The line types correspond
to different heights. The long-dashed line represents the deepest
layers (−40 km below the photosphere), where the radiation
field approaches the Planck function due to thermalization,
and therefore kG approaches zero. The dot-dashed and dot-
dot-dashed lines represent the kG in the photospheric layers
(500 km and 200 km, respectively). In these layers, kG seems
to be most sensitive to the optical depth stratification. For all
the heights from the temperature minimum at 1000 km and
above, the radiation field saturates to nearly a constant value
with respect to the depth, and hence the kG plots for all these
heights merge into a single curve represented by the heavy
solid line (in other words, kG becomes independent of depth).
Holzreuter et al. (2005) have presented a detailed analysis of the
correspondence between the depth dependence of the anisotropy
and the shape of the emergent Q/I spectra of this line. A similar
argumentation can be used to understand the anisotropy plots
presented in Figure 3. Hence we do not elaborate further on this
aspect.

5. THE LAST SCATTERING APPROXIMATIONS

The concept of LSA implies that one first determines Stokes
I, either through observations or with a numerical calculation
in which the polarization is neglected. This is possible for
the second solar spectrum because the polarization is a few
percent at most. One then assumes that a single scattering of
this intensity field suffices to properly evaluate the observed
linear polarization. This LSA concept has been used in Stenflo
(2005) for the solar continuum polarization, in S09 for the Ca i

4227 Å line, in Belluzzi et al. (2007) for the Ba ii D1 and D2
lines, and the ratio Q/I is deduced from the observed Stokes I.
In Faurobert & Arnaud (2002) for the scattering polarization of
molecular emission lines, the photospheric intensity field used
is a solution of an unpolarized RT equation.

In this paper, we present different levels of approximations
based on the concept of LSA. From the most sophisticated one
to the most simple one, they are LSA-3, LSA-2, and LSA-1. A
common point to these approximations and what makes them

interesting is that they allow one to separately obtain Stokes
I and Stokes Q. In contrast, in the full RT method, I and Q
are calculated simultaneously. In LSA-3 and LSA-2, we first
calculate Stokes I (λ,μ, τλ) at all the depth points in a solar
model atmosphere, ignoring the contribution of Stokes Q in
the source terms SI,l and SI,c (see Equations (3) and (4)). In
LSA-1 we use the observed intensity (Stokes I). To obtain
the polarization, we keep only the terms depending on the
intensity in the equations for the source terms SQ,l and SQ,c

(see Equations (3) and (4)). Once SQ has been obtained, one
can either solve a simple transfer equation to calculate Stokes Q
(this is the LSA-3 approximation) or evaluate Stokes Q with an
Eddington–Barbier relation (this is the LSA-2 approximation).
For LSA-1, we use a somewhat different method for the
calculation of Stokes Q (see below).

The approximations LSA-3 and LSA-2 are directly related
to the iterative method for calculating linear polarization intro-
duced in Frisch et al. (2009). In this method, as done here, one
neglects the polarization for the calculation of Stokes I but the
polarization is kept in the Q component of the source term and
an integral equation is established for this SQ. Its solution can be
written as a series expansion in the mean number of scattering
events. The first term, which gives the value of SQ after a single
scattering of the incident radiation field depends only on Stokes
I and is identical to our approximation. The following terms
in the expansion take into account additional scattering events.
They can be calculated iteratively.

We now describe in detail the LSA-3, LSA-2, and LSA-1
approximations.

5.1. LSA-3

As explained in Section 5, we neglect the contribution
of Q(λ,μ, τλ) on the right-hand side of the equations for
SI,l(λ,μ, τλ) and SQ,l(λ,μ, τλ). Therefore, Equation (3) can
be written as

[SI,l(λ,μ, τλ)]LSA-3 = 1 − ε

φ(λ, z)

∫ +1

−1

dμ′

2

∫ ∞

0
dλ′

× R11(λ, λ′, μ, μ′, z) I (λ′, μ′, τλ′ ) + εBλ(τλ) (9)

for SI,l , and

[SQ,l(λ,μ, τλ)]LSA-3 = 1 − ε

φ(λ, z)

∫ +1

−1

dμ′

2

∫ ∞

0
dλ′

× R21(λ, λ′, μ, μ′, z) I (λ′, μ′, τλ′ ) (10)
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for SQ,l . Here, τλ and τλ′ stand for τλ(z) and τλ′(z), respectively.
This also holds for Equations (15), (17), (23), and (24) below.

5.1.1. LSA-3 with Angle-averaged Partial Redistribution

In this section, we restrict our attention to the use of the angle-
averaged version of the Domke–Hubeny redistribution matrix
(see Equation (A7)). For this particular choice, the redistribution
matrix elements can be written as

R11(λ, λ′, μ, μ′, z) = R(0)(λ, λ′, z)

+ R(2)(λ, λ′, z)P (2)
11 (μ,μ′) (11)

and

R21(λ, λ′, μ, μ′, z) = R(2)(λ, λ′, z)P (2)
21 (μ,μ′), (12)

where

R(0)(λ, λ′, z) = γcohRII(λ, λ′, z)

+ (1 − γcoh)RIII(λ, λ′, z), (13)

R(2)(λ, λ′, z) = W2[γcohRII(λ, λ′, z)

+ (1 − γcoh)kcRIII(λ, λ′, z)]. (14)

Substituting Equation (11) into Equation (9), we obtain

[SI,l(λ, τλ)]LSA-3 = εBλ(τλ)

+
1 − ε

φ(λ, z)

∫ ∞

0
dλ′R(0)(λ, λ′, z)J (λ′, τλ′ ),

(15)

where

J (λ′, τλ′ ) =
∫ +1

−1

dμ′

2
I (λ′, μ′, τλ′ ). (16)

In Equation (15), the contribution from R(2)P
(2)
11 is neglected

because it is on the order of polarization and hence much
smaller than the contribution from the term R(0)J . Substituting
Equation (12) into Equation (10), we get

[SQ,l(λ,μ, τλ)]LSA-3 = 3

2
√

2

1 − ε

φ(λ, z)
(1 − μ2)

×
∫ ∞

0
dλ′R(2)(λ, λ′, z)J 2

0 (λ′, τλ′ ), (17)

where J 2
0 (λ′, τλ′ ) is defined in Equation (8).

So far we considered only the line source functions. Clearly,
the continuum is also polarized and needs to be appropriately
included. The LSA concept can again be applied to obtain a
simpler expression for SI,c and SQ,c, namely

[SI,c(λ, τλ)]LSA-3 = J (λ, τλ) (18)

and

[SQ,c(λ,μ, τλ)]LSA-3 = 3

2
√

2
(1 − μ2)J 2

0 (λ, τλ). (19)

The total source functions [SI (λ, τλ)]LSA-3 and [SQ(λ,μ,
τλ)]LSA-3 can be computed by substituting Equations (15), (17),

(18), and (19) into Equation (2). Finally, we obtain an approxi-
mate formula for the emergent Q/I by using SI and SQ computed
above in the formal solution expression (Equation (5)), namely

[
Q

I
(λ,μ)

]
LSA-3

= s

∫ Tλ

0

dτ ′
λ

μ
exp

(
−τ ′

λ

μ

)

× [SQ(λ,μ, τ ′
λ)]LSA-3

/∫ Tλ

0

dτ ′
λ

μ
exp

(
−τ ′

λ

μ

)
× [SI (λ, τ ′

λ)]LSA-3. (20)

In the denominator of the above equation, we have neglected the
contribution from incident intensity at the lower boundary. The
quantity s is a global scaling parameter. It is a free parameter
that is used to achieve a fit of the Q/I computed by the LSA
approach with the Q/I computed from the RT benchmark.
Ideally it should be unity. But in practice it can take values either
smaller or slightly larger than unity. It can therefore be used as
a measure of the goodness of the last scattering approximations
(see Section 6.2.1).

In the RT approach, we compute polarization by perturbation.
First, we give the initial unpolarized source vector as input and
calculate the Stokes vector using a formal solution. A new source
vector is then computed using the improved Stokes vector—and
this process is repeated. In LSA-3, we avoid this perturbative
loop. For the calculation of Stokes I, we ignore the polarization.
The component SQ of the source function is deduced from the
explicit expressions given in Equations (17) and (19) which
involve only integrations over the directions and frequencies of
Stokes I. Stokes Q can then be calculated by using a formal
solver.

5.1.2. LSA-3 with Angle-dependent Partial Redistribution

In this section, we present a formula for Q/I that can be
used in the case of the angle-dependent (μ-dependent, but
azimuthally averaged) redistribution matrices given in Equa-
tion (A6). In this case, the redistribution matrix elements can be
written as

R11(λ, λ′, μ, μ′, z) = R(0)(λ, λ′, μ, μ′, z)

+ R(2)(λ, λ′, μ, μ′, z)P (2)
11 (μ,μ′) (21)

and

R21(λ, λ′, μ, μ′, z) = R(2)(λ, λ′, μ, μ′, z)P (2)
21 (μ,μ′). (22)

Here, R(0)(λ, λ′, μ, μ′, z) and R(2)(λ, λ′, μ, μ′, z) have the
same form as the functions R(0)(λ, λ′, z) and R(2)(λ, λ′, z)
given in Equations (13) and (14), but with the replacements
RII,III(λ, λ′, z) → RII,III(λ, λ′, μ, μ′, z). We recall that angle-
dependent partial redistribution (in the presence of a magnetic
field) was used in S09. A simple formula for Q/I was given
in S09 by assuming μ′ = 1 in the expression for the redis-
tribution matrix elements. We can apply the same approxi-
mation to the redistribution functions R(0)(λ, λ′, μ, μ′, z) and
R(2)(λ, λ′, μ, μ′, z). With this approximation, we now obtain

[SI,l(λ,μ, τλ)]AD
LSA-3

= εBλ(τλ) +
1 − ε

φ(λ, z)

∫ ∞

0
dλ′

× R(0)(λ, λ′, μ, μ′ = 1, z)J (λ′, τλ′ ) (23)
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and

[SQ,l(λ,μ, τλ)]AD
LSA-3

= 1 − ε

φ(λ, z)

3

2
√

2
(1 − μ2)

×
∫ ∞

0
dλ′R(2)(λ, λ′, μ, μ′ = 1, z)J 2

0 (λ′, τλ′ ). (24)

The symbol AD refers to the case of angle-dependent partial
redistribution. The above equations along with Equations (18)
and (19) can be used to compute the total source functions SI
and SQ. The Q/I can be calculated from Equation (20) using
these SI and SQ.

5.2. LSA-2: Eddington–Barbier Approximation

We proceed exactly as with LSA-3 but use the
Eddington–Barbier approximation to calculate Q and I once
SQ and SI have been determined. We also set the thermalization
parameter ε = 0. Equation (20) is replaced by

[
Q

I
(λ,μ)

]
LSA-2

= s
SQ(λ,μ, τλ(zλ,μ))

SI (λ, τλ(zλ,μ))
, (25)

where zλ,μ denotes the point in space where τλ = μ, for a
given λ and a given μ. Equation (25) is the polarized analog of
the Eddington–Barbier relation for Stokes I (see Mihalas 1978,
p. 39). The Eddington–Barbier approximation for Q/I has been
shown by several authors to be useful. See, e.g., Faurobert (1987,
1988) who used it for a semi-quantitative analysis of the linear
polarization profiles formed in an isothermal atmosphere.

5.3. LSA-1: Semi-empirical Approach

In LSA-1, we use the observed CLV of Stokes I to calculate
the anisotropy factor kG and, as done in S09, assume that the
ratio Q/I may be written as

[
Q

I
(λ,μ)

]
LSA-1

= s

[
φ(λ)

φ(λ) + C

× [ZQ,l(λ,μ, 0)]LSA-1 +
C

φ(λ) + C
PC

]
, (26)

with

[ZQ,l(λ,μ, 0)]LSA-1

= 3

2
√

2
(1 − μ2)

∫ ∞
0 dλ′R(2)(λ, λ′)J 2

0 (λ′, 0)∫ ∞
0 dλ′R(0)(λ, λ′)I (λ′, μ, 0),

(27)

where R(2) and R(0) are taken to be independent of depth and are
computed for a damping parameter corresponding to a chosen
value of ΓE/ΓR and ΓI /ΓR set to zero. As in S09, ΓE/ΓR is
treated as a free parameter. In Equation (26), C is the ratio of
continuum to the line-averaged opacity and PC is the continuum
polarization. Here, s, C, and PC are treated as free parameters

for a chosen value of ΓE/ΓR . We refer to S09 for details on the
use of LSA-1 to model the Ca i 4227 Å line wings in the Q/I
spectra.

6. RESULTS AND DISCUSSIONS

In this section, we first show how well the approximate
solutions introduced above compare with the RT solution.
Subsequently, we also demonstrate how the formulas for Q/I
derived under different levels of the LSA approach can be used
in a preliminary analysis of the observed Q/I spectra.

6.1. Theoretical Validation of the LSA Approaches

In this section, we use the RT solution as a theoretical
benchmark. In Figure 4, we compare LSA-3 solutions with
the benchmark RT solution for different values of μ. Figure 4
shows that the agreement between the LSA-3 approximation
and the full RT calculation is excellent, except for the central
peak and wing minima. We stress that in this figure the scaling
factor is s = 1. The differences in the line core region are due
to the fact that we have neglected the contribution of Q in the
expression of SQ,l . This contribution plays a significant role in
the line core (Frisch et al. 2009). Figure 4 also shows that the
LSA-3 approach is valid for any value of μ.

Figure 5 shows a comparison of Q/I computed by the RT
approach (dot-dot-dashed lines) and different levels of the LSA
approach (solid lines) for μ = 0.1. Panel (a) of Figure 5 is
identical to panel (a) of Figure 4. As the LSA-3 approximation
has already been discussed above, we concentrate now on LSA-
2 and LSA-1. Figure 5(b) shows that LSA-2, which makes use of
the Eddington–Barbier relation, can fit the line wings, including
the near wing maxima, rather well provided one applies a scaling
factor of s = 1.6. Here we note that we obtain essentially the
same Q/I profile if the Eddington–Barbier approximation is
used for the calculation of Q only.

In the line core, LSA-2 is clearly not an acceptable ap-
proximation. We recall that the Eddington–Barbier approxi-
mation, which amounts to replacing an integral of the form
I (μ) = ∫ ∞

0 S(τ )e−τ/μ(dτ/μ) by I (μ) = S(μ), provides an
exact value of I (μ) when S is a linear function of τ . So the
accuracy of this approximation will depend on the departures
of S(τ ) from linearity. For the line Ca i 4227 Å, SQ(λ,μ, τλ)
has a non-monotonic variation when λ is around the line cen-
ter. So the failure of the Eddington–Barbier approximation
in this wavelength range is not surprising. In the line wings
SQ(λ,μ, τλ) increases regularly toward the surface, follow-
ing the increase in the anisotropy of the radiation field (see
Figure 3(a)) but the increase is much faster than linear. There-
fore, the Eddington–Barbier approximation underestimates the
value of Q and a scaling factor of s = 1.6 is needed to fit the
RT calculation. A comparison between panels (a) and (b) in
Figure 5 clearly shows that the depth dependence of the
anisotropy factor kG has to be taken into account for a proper
modeling of the line center peak. For strong chromospheric lines
such as Ca i 4227 Å, an accurate non-LTE treatment of the line
formation is needed to calculate this depth dependence with
accuracy.

Figure 5(c) shows that LSA-1 can be made to fit the top
envelops of the PRD peaks of the Ca i 4227 Å line, blend lines,
and the far wing continuum polarization, with a proper choice
of the free parameters as it does in S09. The free parameters
used in Figure 5(c) to compare the LSA-1 and RT solution
are: s = 0.9, C = 2.1 × 10−3, and PC = 0.0013, for a
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Figure 4. Comparison of Q/I computed by the LSA-3 approach (solid lines) with the benchmark solution computed by the RT approach (dot-dot-dashed lines), for
different values of μ. The global scaling parameter s for the LSA-3 is unity for all the panels.

Figure 5. Comparison of Q/I for different LSA approaches (solid lines) and the solution computed by the RT approach (dot-dot-dashed lines). Note that different
levels of LSA require different extents of the global scaling parameter s (= 1, 1.6, and 0.9, respectively, for LSA-3, LSA-2, and LSA-1).
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Figure 6. Comparison of Q/I computed by the LSA-3 approach (solid lines) and the observations taken during 2010 January (dotted lines). The scaling parameter
sobs = 1.4, 1.8, 1.1, and 1.35, respectively, for panels (a), (b), (c), and (d). Panels (b) and (d) are based on an increase of the elastic collision rate ΓE,vW by a factor
of 1.5, which improves the fit significantly. The fit of the core peak is optimized by using a microturbulent magnetic field of strength 15, 25, 10, and 15 G for panels
(a)–(d).

chosen ΓE/ΓR = 10. We recall that LSA-1 requires no
numerical solution of transfer equations and is independent of
the model atmosphere.

6.2. Observational Validation of the LSA-3 and RT Approaches

In Figures 6 and 7, we compare the observations with
predictions from the LSA-3 and RT calculations for μ = 0.1
and μ = 0.3. Figure 6 shows Q/I computed by the LSA-3
approximation. Figure 7 shows the Q/I profiles and also the
intensity profile from the RT approach. I is actually computed
using the polarized RT approach. However, this I does not differ
very much from the intensity computed by the unpolarized RH-
code.

Three free parameters are used in the modeling procedure.
They are (1) an enhancement parameter c, associated with the
elastic collision rate ΓE,vW (of the van der Waal type), (2) a global
scaling parameter sobs, and (3) a microturbulent magnetic field
Bturb.

With an appropriate choice of these three free parameters,
we can achieve a reasonable fit of the theoretical Q/I profile
with observations for all the wavelengths. We first choose a
value of c not far from unity (here we have chosen c = 1 and
c = 1.5), then determine sobs by a fit to the wings and finally
Bturb by a fit of the core peak. The choice of sobs is done by
requiring an overall simultaneous fit to the PRD peaks and the
blend line minima over all of the Q/I wings. The values of
the three free parameters used in Figures 6 and 7 are listed in
Table 1.

Table 1
Values of Free Parameters Used in Modeling the Observed Q/I Spectra

Approach Figure μ c sobs Bturb

LSA-3 6(a) 0.1 1 1.4 15
RT 7(c) 0.1 1 1.4 20
LSA-3 6(b) 0.1 1.5 1.8 25
RT 7(c) 0.1 1.5 1.8 30
LSA-3 6(c) 0.3 1 1.1 10
RT 7(d) 0.3 1 1.1 15
LSA-3 6(d) 0.3 1.5 1.35 15
RT 7(d) 0.3 1.5 1.35 20

6.2.1. The Role of Global Scaling Parameter sobs in Modeling the Q/I
Profile

To compare the theoretical Q/I with the observed Q/I
profile as the new benchmark, we introduce a new scaling
parameter denoted by sobs, which multiplies both the LSA-3
and RT profiles. sobs is different from s, which was used as the
scaling parameter when the RT solution was the benchmark (see
Figures 4 and 5). It is defined as

sobs = [(Q/I )wing]observed

[(Q/I )wing]theory
. (28)

While one might expect that sobs should be close to unity,
Figures 6(a) and (c) require sobs = 1.4 and 1.1, respectively.
Figures 6(b) and (d) need even larger values of sobs, namely 1.8
and 1.35, respectively. Such increased values of sobs become
necessary to account for the depolarization caused by the
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Figure 7. Comparison of (I, Q/I ) spectra computed using the RT approach (solid lines) and the observations taken during 2010 January (dotted lines). Thick solid
lines correspond to the case of ΓE,vW enhanced by a factor of 1.5 (the line that matches with the observed data closely at the PRD peaks). Thin solid lines are without
any such enhancement of ΓE,vW. In panel (c), we require sobs =1.4 (for thin solid line) and 1.8 (for thick solid line). In panel (d), we require sobs = 1.1 (for thin solid
line) and 1.35 (for thick solid line). In panel (c), thin and thick solid lines correspond to Bturb = 20 G and 30 G, respectively. Similarly, Bturb =15 G and 20 G for the
thin and thick solid lines in panel (d). The continuum intensity Ic is chosen at λ = 4228.8 Å .

enhancement of ΓE,vW (the necessity for an enhancement of
the elastic collision rates in our model fitting is discussed in
Section 6.2.2). The values of sobs needed for the LSA-3 and RT
approaches are the same (see Figures 7(c) and (d); Table 1).
Note that for μ = 0.3 the value of sobs is closer to unity than it
is for μ = 0.1.

The rationale behind the use of the scaling parameters can be
explained as follows: when comparing two Q/I spectra, either
LSA with RT (for which the scaling factor s is introduced) or
LSA and RT with observations (for which the scaling factor
sobs is introduced), there are two aspects of the comparison: (a)
the relative shapes of the Q/I spectra and (b) the absolute
Q/I amplitudes. Aspect (a) is much more important than
aspect (b) for various reasons. (1) The relative shapes between
observations and theory (RT and LSA) can be brought to
good agreement, in contrast to the absolute amplitudes. (2) For
magnetic field determinations, one should not use the absolute
Q/I core amplitude, but instead the ratio between the core
and wing amplitudes (see Section 6.2.3). With this differential
approach any global scale error divides out, greatly reducing the
effects of model deficiencies. (3) The absolute Q/I amplitudes
are, in addition to the model deficiencies, directly affected by
observational errors in the μ value. These observational errors
divide out with the differential approach.

The parameter sobs is essential for a comparison of the relative
shapes of the theoretical Q/I profiles with the observed ones
when sobs differs from unity. The circumstance that sobs for both
RT and LSA-3 differs significantly from unity is an indicator
of deficiencies in the modeling of this particular line. Another
indicator that there is indeed a modeling problem is the relatively
poor fit of the theoretical Stokes I profiles with the observed

Stokes I. The discrepancies are particularly large for μ = 0.1.
Possible causes for sobs to deviate from unity are (1) the choice
of model atmosphere, (2) the use of one-dimensional geometry
to represent the solar atmosphere, (3) the use of angle-averaged
redistribution functions, and (4) observational uncertainties in
the value of μ.

The parameter sobs absorbs all these as well as possible
unknown sources of errors. In addition, the degree of deviation
of the scaling factors s and sobs from unity can be used as a
measure of the goodness of the model fit.

6.2.2. The Role of Elastic Collision Rate ΓE,vW in Modeling the Q/I
Wings

We have found that in fitting the Q/I wing shape, an enhanced
value of ΓE,vW becomes necessary. We denote this enhancement
parameter by c. It is used as a source of additional broadening.
In Figures 6(a) and (c), we have set c = 1. In Figures 6(b)
and (d), we have used c = 1.5. One can notice a substantial
improvement in fitting the shape of the Q/I profile, when
going from c = 1 to c = 1.5, in particular in reproducing the
asymmetry of the wing maxima. Similar enhancement was also
applied by Faurobert-Scholl (1992) to fit the observed Q/I wing
polarization. The justification for this can be found in Derouich
et al. (2003) and Barklem & O’Mara (1997) who, respectively,
show that the old theories of D(2) and elastic collision rate
ΓE actually underestimate ΓE,vW. An enhanced value of ΓE,vW
causes depolarization (decrease of Q/I in magnitude) in the line
wings which are formed in the deeper layers of the atmosphere
where collision rates are higher. This wing depolarization can be
compensated for by using an appropriate value of sobs to obtain
the actual magnitude of Q/I in the wings.
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In Figures 7(c) and (d), we show a comparison of the Q/I
computed by the RT approach and the observations. In these
two panels, one can also notice the improvement in fitting the
shape of the Q/I wings when c = 1.5 (thick solid lines), as
compared to the case of c = 1 (thin solid lines).

6.2.3. The Role of Microturbulent Magnetic Field Bturb in Modeling
the Q/I Core Peak

Once a reasonable fit to the Q/I wings is achieved, we focus
on obtaining a good fit to the Q/I at the line core. This can be
done by using an appropriate value of Bturb which is the third
free parameter.

In other words, Bturb can be determined by demanding that

[(Q/I )core]observed

[(Q/I )wing]observed
= [(Q/I )core]theory,Bturb �=0

[(Q/I )wing]theory
(29)

should be satisfied. We can rewrite Equation (29) as

[(Q/I )core]observed = sobs[(Q/I )core]theory,Bturb �=0, (30)

where sobs is defined in Equation (28). In Equation (29),
[(Q/I )core]theory,Bturb �=0 is obtained either from LSA-3 or from
the RT approach. It depends on fB (which is a function of Bturb)
defined in Equation (A11) through the modified phase matrix
elements. The value of Bturb is found by solving Equation (30).
The described procedure is a differential approach for determin-
ing Bturb because we use the ratio of the core peak to the wing
peak amplitudes, instead of the absolute core peak amplitudes.

The set of values of Bturb deduced from the LSA-3 approach is
systematically smaller than that deduced from the RT approach
(see Table 1). This is essentially due to the underestimation of
the core peak values by LSA-3 (see Figures 4 and 5(a)). This
underestimation of Bturb when using LSA-3 instead of a full RT
calculation is not specific to the Ca i 4227 Å line. It will appear
whenever one uses an LSA-3 approximation rather than a full
RT approach to evaluate the linear polarization of the strong
resonance lines.

7. CONCLUSIONS

In this paper, we develop a mathematical framework for the
LSA approach, starting from the polarized RT equation. We de-
rive simple formulas for Q/I by applying a few approximations
to the governing equations of the RT approach.

LSA-1 is the simplest approach, which is based on observa-
tionally derived anisotropy at the surface (it was used in S09 to
explore the wing signatures observed in the Ca i 4227 Å line).
It ignores the depth variation of all the physical quantities. For
this reason, LSA-1 fits only qualitatively the PRD peaks and the
envelopes of the wings in the Q/I spectra. The line core itself as
well as the core minima could not be reproduced using LSA-1.
In this paper, we aim at modeling various features (including the
line core) of the observed Q/I spectra of this line in a greater
detail. To this end, we generalize the LSA-1 by introducing two
more levels of LSA, namely LSA-2 and LSA-3. We find that
the LSA-2 approach, which takes into account the anisotropy
factor at atmospheric heights where the condition τλ = μ (for
a given μ and a given λ) is satisfied, is insufficient to repro-
duce the line core region. The only way to adequately model
the core region without using the full polarized RT approach
is through LSA-3. This is because, unlike LSA-1 and LSA-2,
LSA-3 takes into account the run of the anisotropy factor over

the optical depth, apart from taking the depth dependence of
other concerned physical quantities.

We validate the LSA approaches by comparing it with the
RT approach. The advantage of the LSA-3 (and also the LSA-2)
approach is that it is sufficient to solve the unpolarized RT equa-
tion only once to obtain accurate values of I (λ,μ, τλ), opacities,
and collision rates throughout the atmosphere. These are sub-
sequently used as inputs to the approximate LSA formulas to
evaluate the emergent Q/I spectra. In this way, we avoid solv-
ing the polarized RT equation—which is computationally more
expensive. As for the timing efficiency, LSA-1 is 21 times faster
than LSA-2, 25 times faster than LSA-3, and 58 times faster than
the RT approach. The main advantage of LSA-1 is that it does
not need the solution from the RH-code (on the other hand, the
inputs from the RH-code are needed by LSA-2, LSA-3, and also
the polarized RT). In the relative comparison between LSA-2,
LSA-3, and the RT approaches, the time taken by the RH-code
to compute Stokes I is excluded, because it is common to all of
them. Thus, LSA-2 is 5 times faster than LSA-3 and 38 times
faster than RT approach. LSA-3 is 8 times faster than the RT
approach. Therefore, compared with the full scale polarized RT
approach, the LSA approaches are quite efficient.

To illustrate the usefulness of the LSA-3 approach in mod-
eling the second solar spectrum, we compare both the LSA-3
and the RT solutions with the recently observed Q/I spectra of
the Ca i 4227 Å line. These recent observations are made in the
quiet regions on the Sun. In modeling efforts both the LSA-3
and the RT approaches require three free parameters, namely an
enhancement parameter c, associated with the elastic collision
rate ΓE,vW, a global scaling parameter sobs that accounts for all
the known and unknown sources of errors, and a microturbulent
magnetic field strength Bturb.

LSA-1 can only be useful for certain qualitative studies
of wing effects, e.g., to explore the existence of the wing
Hanle effect (see S09), or to study quantum interference in
the Ca ii H and K lines (see Stenflo 1980). Although LSA-
2 can be used to perform wing analysis in the same way as
LSA-1, computationally it is not as advantageous as LSA-1.
As for LSA-3, it gives a reasonable fit to the observed Q/I
throughout the line profile (including the line core). Thus, the
main advancement of this paper compared to S09 is that we have
improved the fit to the important features of the observed Q/I
spectra such as (1) core peak, (2) asymmetric core minima,
(3) asymmetric PRD peaks in the near wings, (4) blend line
polarization, and (5) far wing polarization.

In this paper, we have shown that LSA-3 can provide a fit to
the observed Q/I spectra, which is nearly as good as the RT
approach itself. As mentioned above, this can be achieved at a
lower computational cost. Thus, LSA-3 may be applied (1) to
interpret the second solar spectrum and the Hanle effect in lines
with PRD, (2) to test different theories of the elastic collisions,
(3) to explore the formation of the second solar spectrum in
media where three-dimensional RT effects have to be taken
into account, and (4) to estimate the strength of microturbulent
magnetic fields in the solar chromosphere.
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APPENDIX

THE REDISTRIBUTION MATRICES

We are primarily interested in a one-dimensional polarized
RT problem. In this appendix, we briefly discuss the polar-
ized redistribution matrices in the Stokes (I,Q,U ) basis. The
use of (I,Q,U ) becomes necessary whenever there is non-
axisymmetry in the problem, the two well-known examples of
which are (1) the incidence of non-axisymmetric radiation at
the boundary and (2) the presence of an oriented magnetic field.
Both of these break the azimuthal symmetry of the radiation
field. In axisymmetric problems, we can work with the (I,Q)
basis, as U ≡ 0. In this paper, Q positive is defined to be parallel
to the limb. We begin by writing down the redistribution matrix
for non-magnetic scattering (see Domke & Hubeny 1988). We
then describe the assumptions leading us from this general form
to simpler forms which are actually used in this paper. These
details are scattered in several publications. Hence it is useful
to list them here for the sake of clarity. The angle-dependent
Domke–Hubeny PRD matrix can be written (see Domke &
Hubeny 1988) as

R̂(λ, λ′, Θ, z) = γcoh RII(λ, λ′, Θ, z) P̂(Θ;Weff = W2)

+ (1 − γcoh) RIII(λ, λ′, Θ, z) P̂(Θ;Weff = kcW2). (A1)

The depth-dependent coherence fraction is defined as

γcoh = ΓR + ΓI

ΓR + ΓI + ΓE

. (A2)

The collisional depolarization factor is defined as

kc = ΓR + ΓI

ΓR + ΓI + D(2)

ΓE − D(2)

ΓE

, (A3)

where D(2) is the rate of depolarizing elastic collisions. The
factor W2 in Equation (A1) depends on the angular momentum
quantum numbers Jl and Ju of the lower and upper states,
respectively. Note that W2 = 1 for the Ca i 4227 Å line. RII and
RIII are the scalar redistribution functions of Hummer (1962).
P̂(Θ) is the scattering phase matrix (see Bommier 1997). The
scattering angle Θ is given by

cos Θ = μμ′ +
√

(1 − μ2)(1 − μ′2) cos(ϕ′ − ϕ), (A4)

where μ = cos θ and μ′ = cos θ ′ represent the inclinations of
the outgoing and incoming rays and ϕ and ϕ′ are the respective
azimuths in the atmospheric coordinate system fixed to the
planar slab atmosphere, in which the scattering is described
(see Figure 8).

For the axisymmetric (azimuthally independent) RT, the
redistribution matrix can be written as

R̂(λ, λ′, μ, μ′, z) = 1

2π

∫ 2π

0
R̂(λ, λ′, Θ, z) d(ϕ′ − ϕ).

(A5)

Figure 8. Scattering geometry. Ω′ and Ω define the directions of the incoming
and outgoing beams, respectively. Θ is the scattering angle. The z-axis is along
the atmospheric normal.

We make the approximation

R̂(λ, λ′, μ, μ′, z) = γcoh RII(λ, λ′, μ, μ′, z) P̂(μ,μ′;
Weff = W2) + (1 − γcoh) RIII(λ, λ′, μ, μ′, z)

P̂(μ,μ′;Weff = kcW2). (A6)

In writing this expression, we assume that the azimuthal aver-
age of the redistribution matrix can be replaced by the prod-
uct of the azimuthal averages of the redistribution functions
and of the phase matrix. A similar factorization leads to the
so-called hybrid approximation for PRD suggested by Rees
& Saliba (1982). Averaging the redistribution functions in
Equation (A6) over the scattering angle (defined by the angles
θ and θ ′), one recovers the usual angle-averaged redistribution
matrix

R̂(λ, λ′, μ, μ′, z) = γcoh RII(λ, λ′, z) P̂(μ,μ′;Weff = W2)

+ (1 − γcoh) RIII(λ, λ′, z) P̂(μ,μ′;Weff = kcW2), (A7)

where

RII,III(λ, λ′, z) = 1

2

∫ π

0
RII,III(λ, λ′, Θ, z) sin Θ dΘ (A8)

(see Equation (103) in Bommier 1997, and the averaging method
in Hummer 1962; Mihalas 1978). Equation (A7), which is the
hybrid approximation of Rees & Saliba (1982), is used in this
paper and in most of the work with PRD (see, e.g., Faurobert-
Scholl 1992; Nagendra 1994; Holzreuter et al. 2005; Sampoorna
& Trujillo Bueno 2010). To recover the CRD limit, we set
γcoh = 0; replace RIII(λ, λ′, z) = φ(λ, z)φ(λ′, z), and also
set (ΓE − D(2))/ΓE = 1 in the expression for kc. The limit
of frequency coherent scattering in the laboratory frame can
be recovered by setting γcoh = 1 and through a replacement
RII(λ, λ′, z) = δ(λ − λ′)φ(λ′, z).

The scattering phase matrix is given by

P̂(μ,μ′;Weff) = P̂
(0)

+ Weff P̂
(2)

(μ,μ′), (A9)

which goes to the Rayleigh phase matrix P̂R when Weff is

set equal to unity. P̂
(0)

and P̂
(2)

are the multipolar com-
ponents of the scattering phase matrix. They are written as
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(Stenflo 1994)

P̂
(0) =

(
1 0
0 0

)
; P̂

(2)
(μ,μ′)

= 3

8

(
1
3 (1 − 3μ2)(1 − 3μ′2) −(1 − 3μ2)(1 − μ′2)
−(1 − μ2)(1 − 3μ′2) 3(1 − μ2)(1 − μ′2)

)
.

(A10)

Redistribution matrix for the microturbulent magnetic fields.
In this paper, we also use the microturbulent magnetic-field-
averaged redistribution matrices. These matrices are found to be
necessary in order to reproduce the core peak amplitude in the
Q/I spectra of the Ca i 4227 Å line. The relevant redistribution
matrix can be obtained simply by replacing Weff by WefffB ,
where

fB =
{

1 − 2
5

[
γ 2

h

1+γ 2
h

+ 4γ 2
h

1+4γ 2
h

]
for (λ, λ′) in the line core

1 elsewhere,

(A11)

for the particular case of isotropic angular distribution of the
microturbulent magnetic field (Stenflo 1982; Faurobert-Scholl
1993). The Hanle gamma parameter in the above equation is
given by

γh = 0.88 gJ

Bturb

ΓR + D(2)
. (A12)

Here, Bturb is the magnetic field strength in Gauss and gJ is the
Landé g factor of the upper level (gJ = 1 for the Ca i 4227 Å
line). ΓR and D(2) are expressed here in units of 107 s−1.
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