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Abstract. The dispersion relation for the propagation of viscous Alfvén surface waves along 
viscous plasma-plasma interface has been derived. Two modes of Alfvén surface waves are 
found to propagate with their characteristics depend on the interface parameters like magnetic 
field, density ratio, viscosity….etc. The viscous damping of Alfvén surface waves has been 
studied in the astrophysical point of view. The damping length of Alfvén surface waves due to 
viscosity in the solar atmosphere has been estimated. 

1.  Introduction  
The observed inhomogeneous nature of the solar atmosphere has motivated many researchers to study 
the wave propagation in a magnetically structured atmosphere. In the solar atmosphere, discontinuities 
in magnetic field and density is observed on the edges of sun spots, flux tubes, prominences, coronal 
holes…etc which may lead to the existence of surface waves. The magnetohydrodynamic (MHD) 
surface waves at a single interface in the incompressible medium have been studied by several authors 
[1, 2, 3]. 

Recently, Alfvén waves are detected in the solar corona [4] and many researchers have explored 
the presence of Alfvén waves in the solar chromosphere [5], in the solar prominence [6], and in the x-
ray jets [7] and confirmed through Hinode observations. The ubiquitous presence of Alfvén waves in 
the solar atmosphere has been revealed and accepted by the scientific community. Hence, the study of 
Alfvén waves in the structured atmosphere namely the Alfvén surface waves (ASW) may unveil many 
interesting phenomena occurring in the solar atmosphere. 

The investigation on viscous damping of MHD waves in the solar corona was started much earlier 
[8] and significant works have been done later [9, 10]. The viscous damping of surface MHD waves at 
a magnetic interface with cold plasma approximation has been studied in the solar corona [11] and in 
the solar chromosphere [12] by including the thermal conductivity as an additional damping 
mechanism. However, it is suggested that viscosity plays a crucial role in the damping of waves over 
the other existing mechanisms such as phase mixing, ohmic heating, resonance absorption…etc [13]. 
The viscous MHD spectra for cylindrical plasma has been analysed by Santiago et al. [14] and 
confirmed the viscosity as the dominant mechanism for coronal loop heating. In this work, we study 
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the viscous damping of ASW at a single magnetic interface separating two incompressible viscous 
plasma media and estimate the damping length in the solar atmosphere. 

2.  Basic equations and derivation of dispersion relation 
 In the highly structured solar atmosphere, in order to describe the propagation of ASW , we consider 
a single interface separating two magnetised media. It is assumed that the magnetised media 
occupying above (x>0) and below (x<0) the interface (x=0) are incompressible and viscous in nature 
with different magnitudes of magnetic field and density. 

In the MHD approximation the linearized equations governing the electromagnetic and 
hydrodynamic properties of an incompressible viscous medium of density with magnetic field have 
been adopted from Uberoi and Somasundaram [15] 

Applying a small perturbation of the form [ ])(exp)(),,,( tkzlyixftzyxf ω−+=  and solving the 
linear MHD equations, the field components can easily be derived. Applying the boundary conditions 
that the normal and tangential component of the velocity, tangential viscous stress and total pressure 
are continuous, we obtain the dispersion relation for ASW as, 
 

( ) ( )[ ] ( )( ) ( )( )[ ]
( ) ( ) ( ) ( )( ) ( )( )[ ]
( ) ( )( ) 04

44

21
2

21
23

1
2
2

22
022

2
1

22
0121

22
2

22
02

2
1

22
01

1
2
2

22
022

2
1

22
01

2
2

22
02

2
1

22
01

=−−−+

−−−−−−−−−+

−−+−−−+−

KKKi

KVkKVkKVkVkKi

KVkKVkVkVki

AAAA

AAAA

ττννω

τωρτωρννωωρωρ

τωρτωρωρωρ

 
(1) 

Where, 

( )
2

1

2
2,1

22

2,1

2,012
2,1












−−= AVk

i
K ω

ων
ρ

τ  and 222 klK += . 

 
01,2

,
2,1 µρ

201B
=AV , 2,01B , 2,01ρ  and 2,1ν are respectively the Alfvén velocity, magnetic field, 

density and viscosities in medium 1 and 2. Equation (1) is normalized by introducing the following 
non-dimensional interface parameters,  
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background magnetic field and propagation wave vector. 

 
The normalized dispersion relation is obtained as, 
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Since the equation (2) is irrational, solving this equation as such becomes very cumbersome. 

Hence, by employing the binomial approximation, 1T  and 2T can be expanded as, 
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Applying the above approximation, the equation (2) becomes, 
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3.  Results and discussion 
The equation (5) is solved numerically and drawn curves for the interface parameters 2.0=α , 
=η 0.02 and 1.2, =2V 0.2, 1.0 and 2.0 and 1V  ranging from 0 to 1.0. The dependence of rk and 

ik (in units of 1AVω ) on the normalized viscosity ( 1V ) for various magnitudes of 2V (=0.2, 1.0 and 
2.0) have been plotted. The values of rk and ik can be calculated from the obtained values of x 

( 1AkVω= ), where k is the complex wave number ( )ir kikk += . 

     Figures 1a, 1b and 1c are plotted for 2.0=α , =η 0.02 with various magnitudes of 2V . It can 
be seen from the figures that there are two modes of ASW. It is interesting to note that in all the 
figures (1a-1c), for a typical critical value of 1V ( cV1 ), 1rk  has a down hump and 1ik  has a raising 
hump in the first mode, which is vice versa in the second mode. This critical 1V  value increases as 2V  
increases. From the figures 1a-1c, cV1 for 2V =0.2, 1.0 and 2.0 are obtained as 0.1, 0.2 and 0.4 
respectively. In the figures 2a-2c, we observe the same characteristics as that of figures 1a-1c. These 
graphs are drawn for 2.0=α , =η 1.2 with various 2V values. The amplitudes of the observed 
peaks are significantly higher than observed in figures 1a-1c. The critical values of 1V ( cV1 ) are same 
for figures 1b and 2b, 1c and 2c, except that the cV1 value in figure 1a and 2a has been measured to be 
0.1 and 0.05 respectively. However, from the figures 1c and 2c, it seemed that a second critical 

1V value (=0.1) appears for 2V >1, which is less than cV1 (=0.4). 
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Figure 1a. Plots are drawn for 
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 0.02 and =2V 0.2 

Figure 1b. Plots are drawn for 
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 0.02 and =2V 1.0 

Figure 1c. Plots are drawn for 
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 0.02 and =2V 2.0 
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Figure 2a. Plots are drawn for  
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 1.5 and =2V 0.2 

Figure 2b. Plots are drawn for  
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 1.5 and =2V 1.0 

Figure 2c. Plots are drawn for  
rk and ik (in units of 1AVω ) 

against 1V  with 2.0=α , 
=η 1.5 and =2V 2.0 
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In this study, we have taken typical numerical values in the solar corona, the field aligned viscosity  
1212

571 sec109.6 −−− ×= cmnTρν [16], temperature KT 65 1010 −= , number density 
3910 −= cmn , Alfvén velocity 18

1 sec10 −= cmVA  and frequency 1sec1 −=ω [17]. For the above 
values, the calculated value of normalized viscosity lies between 35 109.61018.2 −− ×−× . Damping 
length of ASW due to viscosity has been estimated at the critical values of 1V  observed in figures 1a-
1c for different values of 2V  when =η 0.02. At cV1 =0.1 for 2V =0.2, the first mode in figure 1a has 
the values 836698.01 =rk 1AVω , 063515.01 =ik 1AVω . The propagation wavelength ( 1rλ ) and   
damping length ( 1iλ ) can be calculated from the formulae, 11 2 rr kπλ = and 11 2 ii kπλ = . Hence, 

1rλ km3105.7 ×= , 1iλ km41088.9 ×=  the ratio 1317.1311 ≈=ri λλ  can be calculated. Similarly 

for the second mode, kmr
3

2 1036.6 ×=λ , kmi
4

2 1090.5 ×=λ  and 928.922 ≈=ri λλ , which 
reveals that the first mode damps slowly since the damping length is 13 times that of propagation 
wavelength, whereas, the second mode gets damped shortly than first mode as the damping length is 9 
times that of propagation wavelength. Hence, first mode experiences slow damping which can 
propagate outwards to longer distance while second mode suffers heavy damping. The damping length 
calculation for 2V 1≥  (figures 1b and 1c) shows that the first mode damps slowly as the damping 
length is 10 times that of propagation wavelength and second mode suffers heavy damping since 
damping length to propagation length ratio is just 3.  

From the figure 2a, for 2V =0.2, =η 1.5 at cV1 =0.05, for the first mode kmr
3

1 1088.3 ×=λ , 

kmi
3

1 1022.5 ×=λ , the ratio 135.111 ≈=ri λλ , for the second mode kmr
3

2 1070.3 ×=λ , 

kmi
4

2 1066.1 ×=λ , the ratio 4486.422 ≈=ri λλ . In this case, for the first mode, the damping 
length and the propagation wavelength are nearly equal ( 11 ir λλ ≈ ), hence it suffers a very heavy 
damping and the second mode can propagate to a distance more than first mode before damping since 
the ratio between damping length to propagation length ratio is 4. This change is observed due to the 
influence of η , because the already reported damping length to propagation wavelength ratio at 
viscous plasma-vacuum interface has been 14 [15]. Hence the density plays a major role in damping 
of surface waves. However, when 2V 1≥ , from figures 2b and 2c, for the first mode, 111 ≈ri λλ . The 
damping length and the propagation wavelength are nearly equal for the first mode and hence it 
suffers a very heavy damping. For the second mode, 711 ≈ri λλ , therefore, the second mode 
propagates 7 times of the propagation wavelength before being damped. Hence, the first mode in 
figures 2a-2c experiences heavy damping and dies out shortly due to the influence of density 
enhancement since this mode has the ratio ( 11 ri λλ )≥ 10 in the calculations from figures 1a-1c. The 

damping length of second mode increases as η increases when 2V 1≥ , while decreases for 2V <1. 
It is clear from the numerical calculation that among the two modes of ASW modified by viscosity, 

one of them is damped normally while the other is heavily damped. From the figures 1a-1c, first mode 
is normally/weakly damped and the second mode is heavily damped. The calculation from figure 2a-
2c shows that the first mode suffers very heavy damping and dies out shortly while the second mode 
exhibits normal damping.  

4.  Conclusion 
In this work, the viscous damping of ASW at a magnetic interface in the solar atmosphere has been 
studied. Two modes of ASW modified by viscosity are observed. The damping length has been 
calculated in the solar coronal situations. The results show that one of the modes is normally damped 
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and the other is heavily damped depending on the interface parameters. Interestingly, for 2.0=α , 
=η 1.2, for all values of 2V (0.2, 1.0 and 2.0), one of the modes suffer rapid damping since the 

propagation wavelength and damping length are almost equal. Hence, the density plays a vital role in 
the damping of surface waves in addition to the viscosity. 
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