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Abstract. The dispersion relation for the propagation of viscous Alfvén surface waves along
viscous plasma-plasma interface has been derived. Two modes of Alfvén surface waves are
found to propagate with their characteristics depend on the interface parameters like magnetic
field, density ratio, viscosity....etc. The viscous damping of Alfvén surface waves has been
studied in the astrophysical point of view. The damping length of Alfvén surface waves due to
viscosity in the solar atmosphere has been estimated.

1. Introduction

The observed inhomogeneous nature of the solar atmosphere has motivated many researchers to study
the wave propagation in a magnetically structured atmosphere. In the solar atmosphere, discontinuities
in magnetic field and density is observed on the edges of sun spots, flux tubes, prominences, coronal
holes...etc which may lead to the existence of surface waves. The magnetohydrodynamic (MHD)
surface waves at a single interface in the incompressible medium have been studied by several authors
[1,2,3].

Recently, Alfvén waves are detected in the solar corona [4] and many researchers have explored
the presence of Alfvén waves in the solar chromosphere [5], in the solar prominence [6], and in the x-
ray jets [7] and confirmed through Hinode observations. The ubiquitous presence of Alfvén waves in
the solar atmosphere has been revealed and accepted by the scientific community. Hence, the study of
Alfvén waves in the structured atmosphere namely the Alfvén surface waves (ASW) may unveil many
interesting phenomena occurring in the solar atmosphere.

The investigation on viscous damping of MHD waves in the solar corona was started much earlier
[8] and significant works have been done later [9, 10]. The viscous damping of surface MHD waves at
a magnetic interface with cold plasma approximation has been studied in the solar corona [11] and in
the solar chromosphere [12] by including the thermal conductivity as an additional damping
mechanism. However, it is suggested that viscosity plays a crucial role in the damping of waves over
the other existing mechanisms such as phase mixing, ohmic heating, resonance absorption...etc [13].
The viscous MHD spectra for cylindrical plasma has been analysed by Santiago et al. [14] and
confirmed the viscosity as the dominant mechanism for coronal loop heating. In this work, we study
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the viscous damping of ASW at a single magnetic interface separating two incompressible viscous
plasma media and estimate the damping length in the solar atmosphere.

2. Basic equations and derivation of dispersion relation

In the highly structured solar atmosphere, in order to describe the propagation of ASW , we consider
a single interface separating two magnetised media. It is assumed that the magnetised media
occupying above (x>0) and below (x<0) the interface (x=0) are incompressible and viscous in nature
with different magnitudes of magnetic field and density.

In the MHD approximation the linearized equations governing the electromagnetic and
hydrodynamic properties of an incompressible viscous medium of density with magnetic field have
been adopted from Uberoi and Somasundaram [15]

Applying a small perturbation of the form f'(x, y,z,t) = f(x) exp[i(ly + kz — a)t)] and solving the
linear MHD equations, the field components can easily be derived. Applying the boundary conditions
that the normal and tangential component of the velocity, tangential viscous stress and total pressure
are continuous, we obtain the dispersion relation for ASW as,
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density and viscosities in medium 1 and 2. Equation (1) is normalized by introducing the following
non-dimensional interface parameters,
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in medium 1 and 2, magnetic filed ratio and density ratio respectively. @ -is the angle between the
background magnetic field and propagation wave vector.

The normalized dispersion relation is obtained as,
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Since the equation (2) is irrational, solving this equation as such becomes very cumbersome.
Hence, by employing the binomial approximation, 7, and T, can be expanded as,



23rd National Symposium on Plasma Science & Technology (PLASMA-2008) IOP Publishing

Journal of Physics: Conference Series 208 (2010) 012071 doi:10.1088/1742-6596/208/1/012071

ECE NER S 8
1 2z 8V,’z*  16V,’2’

T, —1_i(x277—a2)+(x277—0‘2)2 +i(x277_az)3
T 2aW,z BatP)Z 16a'V,'Z

T 4)

Applying the above approximation, the equation (2) becomes,
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3. Results and discussion

The equation (5) is solved numerically and drawn curves for the interface parameters o = Jo.2 ,
171=0.02 and 1.2, V, =0.2, 1.0 and 2.0 and V| ranging from O to 1.0. The dependence of k, and
k, (in units of @/V,, ) on the normalized viscosity (¥, ) for various magnitudes of ¥, (=0.2, 1.0 and
2.0) have been plotted. The values of k, and k; can be calculated from the obtained values of x
(= @/kV ,, ), where k is the complex wave number (k = k, +ik, ).

Figures la, 1b and 1c are plotted for o = \/ﬁ , 17 =0.02 with various magnitudes of V,. It can
be seen from the figures that there are two modes of ASW. It is interesting to note that in all the
figures (la-1c), for a typical critical value of V,(V,.), k,, has a down hump and £k, has a raising
hump in the first mode, which is vice versa in the second mode. This critical ¥, value increases as V,
increases. From the figures la-lc, V| for V,=0.2, 1.0 and 2.0 are obtained as 0.1, 0.2 and 0.4
respectively. In the figures 2a-2c, we observe the same characteristics as that of figures la-1c. These
graphs are drawn for o = Jo.2 , 7 =1.2 with various V,values. The amplitudes of the observed
peaks are significantly higher than observed in figures la-1c. The critical values of V| (V,.) are same
for figures 1b and 2b, Ic and 2c, except that the V| value in figure 1a and 2a has been measured to be

0.1 and 0.05 respectively. However, from the figures 1c and 2c, it seemed that a second critical
V', value (=0.1) appears for V,>1, which is less than V) (=0.4).
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In this study, we have taken typical numerical values in the solar corona, the field aligned viscosity

b
vp ' =6.9%x107 %0 om? sec™ [16], temperature 7 =10°-10° K, number density
n=10" ecm™, Alfvén velocity V= 10* ¢m sec™ and frequency @ =1sec™' [17]. For the above

values, the calculated value of normalized viscosity lies between 2.18x107° —6.9x107 . Damping
length of ASW due to viscosity has been estimated at the critical values of V| observed in figures la-

lc for different values of ¥, when 77 =0.02. At V| ,=0.1 forV,=0.2, the first mode in figure la has
the values k,, =0.836698 w/V,, , k, =0.063515 w/V,, . The propagation wavelength (4,,) and
damping length (4,;) can be calculated from the formulae, A, =27/k, and A, =27/k, . Hence,
A,=75%x10"km, 2, =9.88x10" km the ratio A, /4., =13.17 ~13 can be calculated. Similarly

for the second mode, 4,, =6.36x10> km, A, =5.90x10*km and A,/A., =9.28~9, which

reveals that the first mode damps slowly since the damping length is 13 times that of propagation
wavelength, whereas, the second mode gets damped shortly than first mode as the damping length is 9
times that of propagation wavelength. Hence, first mode experiences slow damping which can
propagate outwards to longer distance while second mode suffers heavy damping. The damping length
calculation for V, 21 (figures 1b and Ic) shows that the first mode damps slowly as the damping
length is 10 times that of propagation wavelength and second mode suffers heavy damping since
damping length to propagation length ratio is just 3.

From the figure 2a, for ¥,=0.2, 7 =15 at ¥V, =0.05, for the first mode A, = 3.88x10° km,

A, =522x10° km, the ratio A,/4,, =1.35~1, for the second mode A, =3.70x10"km,
A, =1.66x10* km , the ratio A,,/A,, =4.486 ~ 4. In this case, for the first mode, the damping

length and the propagation wavelength are nearly equal (A, = 4,), hence it suffers a very heavy
damping and the second mode can propagate to a distance more than first mode before damping since
the ratio between damping length to propagation length ratio is 4. This change is observed due to the
influence of 77, because the already reported damping length to propagation wavelength ratio at
viscous plasma-vacuum interface has been 14 [15]. Hence the density plays a major role in damping
of surface waves. However, when ¥, > 1, from figures 2b and 2c, for the first mode, A, /4,, = 1. The

damping length and the propagation wavelength are nearly equal for the first mode and hence it
suffers a very heavy damping. For the second mode, A,/A, ~7, therefore, the second mode

propagates 7 times of the propagation wavelength before being damped. Hence, the first mode in
figures 2a-2c¢ experiences heavy damping and dies out shortly due to the influence of density

enhancement since this mode has the ratio (4, /4,, )10 in the calculations from figures la-1c. The

damping length of second mode increases as 77 increases when V, 21, while decreases for V, <.

It is clear from the numerical calculation that among the two modes of ASW modified by viscosity,
one of them is damped normally while the other is heavily damped. From the figures 1a-1c, first mode
is normally/weakly damped and the second mode is heavily damped. The calculation from figure 2a-
2c¢ shows that the first mode suffers very heavy damping and dies out shortly while the second mode
exhibits normal damping.

4. Conclusion

In this work, the viscous damping of ASW at a magnetic interface in the solar atmosphere has been
studied. Two modes of ASW modified by viscosity are observed. The damping length has been
calculated in the solar coronal situations. The results show that one of the modes is normally damped
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and the other is heavily damped depending on the interface parameters. Interestingly, for @ =+/0.2,

n =1.2, for all values of V,(0.2, 1.0 and 2.0), one of the modes suffer rapid damping since the

propagation wavelength and damping length are almost equal. Hence, the density plays a vital role in
the damping of surface waves in addition to the viscosity.
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