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Abstract The method of obtaining the solution of radiative transfer equation using

discrete space theory (DST) is described with (1) interaction principle for different

geometries (2) star product (3) calculation of radiation field at internal points. Some

of the important steps to obtain the solution of radiative transfer equation in spherical

symmetry is also mentioned. Applications of DST are discussed with their results in

two cases (a) study of reflection effect in close binary systems and (b) to compute K1

emission line profiles from an N-type stars

Keywords radiative Transfer · discrete Space theory · close binaries · circumstellar

envelope

1 Introduction

The study of transfer of radiation is pursued in several areas of scientific research such as

astrophysics, reactor physics, meteorology and many other research fields. Astrophysics

is one of the earliest areas of activity in whch serious studies took place. It was George

Stokes (1852, 1862) first developed the concept of invariance in his glass plate problem.

He showed how the reflectance remains invariant when an additional glass plate is

added to a system of parallel plates of glass plates. Lord Rayleigh (1920) obtained

transmission and reflection factors in more complicated situations such as dispersive

medium.

The idea of addition of layer of arbitrary thickness to semi-infinite layer was pro-

posed by Ambarzumian (1942) and noticed that the reflection characteristics remain

invariant in such situations. This was taken up by Chandrasekhar (1960) and solved

several problems through H-functions in a semi-infinite medium and X & Y functions

in a finite medium. So layers with general properties can be added and their transmis-

sion and reflection properties can be calculated directly by utilizing the ”Interaction

Principle” Redheffer (1962), Preisendorfer (1965), Grant and Hunt (1969a, 1969b) is

a generalized form of the invariance principle. Interaction principle is nothing but a

manifestation of the conservation of radiant flux. It balances the emergent radiation
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Fig. 1 Interaction principle (A) One dimensional slab (B) Two dimensional plane (C) Three
dimensional cuboid

with that of reflected and transmitted input radiation together with the internally

generated radiation.

2 Interaction principle

Let I represent the specific intensity and i and o represent the incident and output

intensities as the boundary of A, B in one-dimensional geometry, A B C D in two-

dimensional geometry and at surfaces A B C D E F in three-dimensional geometry. Let

t and r represent the transmission and reflection operators and S(A), S(B) represent

the internal source term.

2.1 Interaction principle for (A) one (B) two and (C) three dimensional geometry

(A) The output intensities in terms of the input intensities for Fig. 1(A) as follows:

I(A, o) = t(B, A)I(B, i) + r(A, A)I(A, i) + S(A) (1)

I(B, o) = t(A, B)I(A, i) + r(B, B)I(B, i) + S(B) (2)

The above can be written in a matrix form

(

I(A, o)

I(B, o)

)

=

(

r(A, A) t(B, A)

t(A, B) r(B, B)

)(

I(A, i)

I(B, i)

)

+

(

S(A)

S(B)

)

. (3)

(B) The output intensities in terms of the input intensities for Fig. 1(B) as follows:

I(A, o) = r(A, A)I(A, i) + t(B, A)(B, i) + t(C, A)I(C, i) + t(D, A)I(D, i)S(A) (4)

Similarly, for other sides I(B, o), I(C, o), I(D, o) and can also be written in matrix

form Peraiah (1984)

(C) For three dimensional geometry the output intensities in terms of the input

intensities for Fig. 1(C) are as follows:

I(A, o) = t(A, B)I(B, i) + t(A, C)I(C, i) + t(A, D)I(D, i) + t(A, E)I(E, i)

+ t(A, F)I(F, i) + r(A, A)I(A, i) + S(A) (5)
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Fig. 2 Schematic diagram shows the (A) interaction principle for spherical case (B) diffuse
radiation field
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Fig. 3 Schematic diagram of the Cartesian co-ordinate system in X-Y-Z geometry; Srinivasa
Rao & Varghese (2008)

Similarly, for other sides I(B, o),I(C, o),I(D, o), E(E, o), F(F, o). This can also be

written in the matrix form Peraiah (1984).

For a spherically symmetric atmospheres output intensities can be written interms

of input intensities. Let us consider a shell with boundaries (n, n+1) as shown in Fig.

2(A), the interaction principle can be written as follows:

(

I+n+1

I−n

)

= S(n, n + 1)

(

I+n

I−n+1

)

+
∑

(n, n + 1) (6)

refer Peraiah (2002, Chapter 6, Page 155) for matrix S(n, n+1) and
∑

(n, n+1).

2.2 Star Product

If there is another shell with boundaries (n+1, n+2) adjacent to (n, n+1), interaction

principle for this shell can be written as
(

I+n+2

I−n+1

)

= S(n + 1, n + 2)

(

I+n+1

I−n+2

)

+
∑

(n + 1, n + 2) (7)

where S(n+1, n+2) is also similarly defined. If we combine the two shells (n, n+1) and

(n+1, n+2), then the interaction principle for the combined shell is written as




I+n+2

I+n+2

I−n



 = S(n, n + 2)

(

I+n

I−n+2

)

+
∑

(n, n + 2). (8)
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Redheffer (1962) calls S(n, n+2) the star product of the two S-matrices S(n, n+1) and

S(n+1, n+2) written as

S(n, n + 2) = S(n, n + 1) ⋆ S(n + 1, n + 2). (9)

For other details refer Redheffer (1962).

3 Method of obtaining the solution of transfer equation

We shall consider equation of transfer with monochromatic radiation field scattering

isotropically and follow the steps to obtain the solution of transfer equation

(i) We divide the medium as shown in Fig. 2(B) into number of ”cells” whose thickness

is less than or equal to the critical (τcrit). The critical thickness is determined on

the basis of physical characteristics of the medium. τcrit ensures the stability and

uniqueness of the solution.

(ii) Now the integration of the transfer equation is performed on the ”cell” which is

two-dimensional radius - angle grid bounded by [rn, rn+1]×[µj− 1

2

, µj+ 1

2

] where µj+ 1

2

=
∑j

k=1
Ck, j = 1, 2 . . . , J , where Ck are the weights of Gauss Legendre formula.

(iii) By using the interaction principle described in Peraiah and Grant (1973), we obtain

the reflection and transmission operators over the ”cell”.

(iv) Finally we combine all the cells by the star algorithm described in Peraiah and

Grant (1973) and obtain the radiation field.

(v) Using discrete space theory the solution is developed for a non-LTE two level

approximation case. We represent the integration by summation, derivatives by the

differences for frequency (x), angle (µ) and radius (r).

The above mentioned steps (i)-(iv) has to be followed to obtain the solution of transfer

equation in spherical symmetry and for details refer Peraiah (2002, Chapter 6, Page

179).

4 Applications of radiative transfer equation in spherical symmetry:

The DST method is a finite difference, discrete ordinance method which is a very accu-

rate and easy to generalize to different physical problems. It is applied for 1) reflection

effect in close binaries for calculating the self radiation of the primary component in a

binary system, 2) K1 emission lines from circumstellar shells of N-Type star R Scl and

3) Stellar winds in O and B type stars: Hydrogen atmosphere 4) To study the effects of

aberration and advection in a plane parallel medium in motion and 5) Non-magnetic

resonance scattering polarization in spherically symmetric media, polarized line forma-

tion in moving media, CRD, PRD and many more other applications. Presently first

two cases are presented in the next section.

5 Results and discussion

• Calculation of irradiation in 3D geometry, Fig. 3:

Peraiah (1983), Peraiah & Srinivasa Rao( 1983, 1998, 2002), Srinivasa Rao & Pera-

iah (2000) studied effect of reflection in a close binary system in two dimensional ge-

ometry when secondary component is (1) a point source (2) an extended source and
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(3) effect on spectral lines. They concluded that the reflection effect phenomenon

has to be considered while modeling the close binary system. Since we all know three

dimensional approach is more realistic than the two dimensional. recently, Srinivasa

Rao & Varghese (2008) calculated the reflected radiation from an extended surface

of the primary component of a close binary system in a 3-dimensional Cartesian

coordinate geometry. They assumed that the secondary component is point source

and moves in circular orbits with respect to the primary component. The specific

intensity of the radiation field on the primary component is estimated along the

line of sight observer at infinity Fig. 3.

The coordinates of the secondary component was set as (x2, y2, z2) where the radi-

ation is incident on the primary component. The following cases were considered to

calculate the direction cosines of the lines which are parallel to the Z-axis and also

parallel to the line of sight. In their calculations secondary component positioned

at different places like; Case 1: x2 = R, y2 = 0, z2 = 0; Case 2: x2 = R sin π
4
,

y2 = 0, z2 = R cos π
4
; and Case 3: x2 = 0, y2 = 0, z2 = R. It is no-

ticed that the radiation field changes depending upon the position of the secondary

component and shown in the surface contours, Srinivasa Rao & Varghese (2008)

• Calculation of K1 emission line profiles from circumstellar envelope:

It is commonly observed that many super giants of O and B type stars and red

giants have circumstellar shells and it formed due to various physical phenomena.

We rarely obtain high resolution observations of the emission lines formed in these

shells. Gustaffson et. al (1997, hereafter GEKOO) studied three N-type stars R

Scl, VAql and X TrA of the K1 769.9 nm resonance line. The emission line profiles

of K1 presented in the figure 2 of GEKOO are observed at two different position

angles and these show significantly different characteristics.

DST radiative transfer is applied to calculate above emission line profiles of the

K1 line formed in the circumstellar envelope of the N-type star R Scl. The input

data was taken from GEKOO regarding expansion velocity, mass loss rate, radii

etc. The equation of line transfer in spherically symmetric approximation in a

comoving frame is applied to obtain the radial distribution of the source functions.

Using these source functions, the emergent intensities along the line of sight are

calculated by using the formal solution of radiative transfer. At different radii the

theoretical line profiles are generated. The velocity of expansion with VB = 5 mean

thermal units (mtu) resembles the observed profiles. It also important to calculate

the equivalent withs of the line and compare with the observations which is under

progress and the detailed calculations are given in forth coming paper.

6 Merits and Demerits of the method:

• The DST method can be generalized for more complicated physical situations

like, 2D and 3D-geometry Accuracy and stability of the numerical solution can

be checked to the machine accuracy Self consistency checks like reflection and

transmission matrices, flux conservation is used to ensure the correct coding and

accuracy of the discrete representation of the method. The algorithm of DST is

written in such a way that the code can be written for parametric study. While

changing the required parameters one can compare the results with different ge-

ometries of the problem like plane parallel to spherical and comoving frame to rest

frame etc.
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⊕ Application to the realistic atmospheric modeling work, leads to increased dimen-

sionality of the matrices in the algorithm heading to large memory and CPU time

requirement.

7 Conclusion:

The Discrete Space theory method is a finite difference, discrete ordinance method

is presented. It is very accurate method and can be generalized to different physical

problems. At present only two applications of the method is discussed 1) reflection

effect in close binaries, 2) K1 emission lines from circumstellar shells of N type stars.

Many more applications are left because of constrains on size of the article.
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