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Summary. The nature of solar surface magnetism has been an open problem in
solar physics. In this paper we address three frontline problems of spectropolarime-
try of the Sun. We first review the theoretical formulation and numerical solutions
of Zeeman absorption and then the Hanle scattering phenomena in ‘turbulent mag-
netic fields’. We show that the mean emergent Stokes profiles can not be obtained by
simply averaging the scattering and absorption opacities respectively, over a given
distribution of the random field (except when the micro-turbulence prevails). A new
formulation of the transfer equation is necessary to study the astrophysically inter-
esting meso-turbulence case. Such formulations of the stochastic polarized radiative
transfer problems for absorbing and scattering media are developed only in recent
years. We review them and show some results computed by our new formulations.

Until recent years the solution of the polarized line radiative transfer equation
in LTE (Zeeman absorption in strong fields), and its NLTE counterpart (Hanle scat-
tering in weak fields), were treated as two disparate problems. The reason for this
artificial division was more due to the theoretical and numerical difficulties encoun-
tered in the solution of the combined Hanle-Zeeman radiative transfer equation. A
very general form of the transfer equation was formulated only a decade ago, for the
case of complete frequency redistribution. A more difficult case of partial frequency
redistribution is explored by us recently. We review these developments through a
study of the Hanle-Zeeman effect in arbitrary strength magnetic fields.

1 Introduction

The radiative transfer equation represents one of the most fundamental equa-
tions in astrophysics. It is an energy balance equation that describes the trans-
mission and reflection (scattering) of radiation in a stellar atmosphere. In a
general form it describes the non-equilibrium thermodynamic processes re-
sponsible for the net outflow of radiant energy from the stellar atmosphere.
In this review we focus on the processes responsible for the ‘generation
and transfer’ of polarized radiation in an astrophysical plasma. Polarization is
produced by (a) scattering of anisotropic radiation on atoms and/or (b) emis-
sion/absorption of radiation by atoms in an external magnetic field. Scattering
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can give rise to polarization even in the absence of magnetic fields (‘resonance
scattering’). A modification to this scattering brought about by the weak mag-
netic fields is called ‘Hanle-effect’ (Hanle 1924). Scattering in arbitrary fields
is termed Hanle-Zeeman effect (Stenflo 1998; Sampoorna et al. 2007a).

The paper is organized into three parts. In the first part (cf. Sect. 2.2)
we review our recent work on polarized Zeeman line formation in turbulent
magnetic media. In the second part we discuss the effects of magnetic turbu-
lence (stochasticity) on the Hanle scattering polarization (see Sect. 2.3). The
relevant radiative transfer equations are formulated and solved. Stochastic po-
larized line formation theory has a diagnostic potential in stellar spectroscopy.
The third part of the review (cf. Sect. 3) concerns our recent formulation of the
theory of Hanle-Zeeman effect, and solution of the relevant transfer equation.

2 Line formation in magnetically turbulent media

2.1 Historical context

It is now well established that 99% of the solar photospheric volume is filled
with magnetic fields that are hidden from direct measurements. What actually
has been measured so far through Zeeman effect (that diagnoses only strong
kG fields), constitutes just 1% accounting for the deterministic part of the
total field. The enigmatic nature of the hidden field (which is proposed to be
turbulent) is still an unsolved problem in solar physics.

Turbulence causes formation of eddies of different length scales. The av-
erage eddy size leqay is called the ‘correlation length’. Magnetic fields in the
stellar atmosphere become turbulent as the field lines get tangled up by the
turbulent fluid motion (under the frozen-in condition : gas pressure larger than
the magnetic pressure). The photon mean free path lphoton (= 1/k, Where &,
is absorption coeflicient) defines the radiative transfer length scale. When
Iohoton >>> leady the effects of turbulence in non-scattering problems can be
included by averaging the Zeeman line absorption matrix over a probabil-
ity density function (PDF) of the random magnetic field. This is called the
micro-turbulent limit, which is widely used in line formation theory. The form
of Zeeman line transfer equation in the micro-turbulent limit was first written
by Stenflo (1971). The effect of micro-turbulent magnetic field on Zeeman line
absorption matrix was first studied by Dolginov & Pavlov (1972), and Domke
& Pavlov (1979), which was revisited in greater detail by Frisch et al. (2005).

The extension of micro-turbulence to absorbing-scattering media involves
averaging over both the absorption matrix and the scattering phase matrix.
Here we confine our attention to the averaging over the weak field Hanle phase
matrix. Such a calculation was first presented by Stenflo (1982) who proposed
turbulent Hanle effect as a diagnostic tool to determine the solar hidden fields.
His simplified approach (based on single scattering) gave a lower limit of 10G
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for this general turbulent field. Through a realistic 1D radiative transfer mod-
eling of the scattering polarization in Sr1 4607 A line, Faurobert et al. (2001)
estimated this photospheric general field to be less than 20 G. The recent work
of Trujillo Bueno et al. (2006) based on 3D radiative transfer modeling of the
solar atmosphere shows that the photospheric turbulent fields could be in the
range of 60-130 G. All these authors use a micro-turbulent magnetic field dis-
tributed according to an angularly isotropic PDF, with constant given mean
field By, or an exponential field strength distribution.

The macro-turbulent limit (lphoton << leady) consists of performing an
averaging of the emergent specific intensity I, over a PDF. A deterministic
field radiative transfer problem is first solved for each realization of the mag-
netic field in a macro-structure. The emergent solution is then averaged to
obtain the mean solution. Multi-component models to represent unresolved
macro-structures were introduced by Stenflo (1971, 1994).

The general regime of meso-turbulence (Iphoton & leaqy) requires the so-
lution of ‘stochastic polarized transfer equation with random coefficients’.
For the Zeeman effect, an exact solution method was first given by Landi
Degl’Innocenti (1994). A more sophisticated version of this theory was pro-
posed by Frisch et al. (2006). A qualitatively similar approach was taken by
Carroll & Staude (2006, and references therein). The general theory of line
transfer for a meso-turbulent Hanle scattering problem was developed recently
by Frisch (2006). A numerical method to solve this newly formulated transfer
equation is given in Frisch et al. (2009, see also Anusha et al. 2009).

2.2 Stochastic line radiative transfer in an absorbing medium
Theoretical formulation :

In this section we restrict ourselves to the simpler case of Stokes vector
(I = (I,Q,U,V)T) transfer equation in a truly absorbing medium (LTE).
We consider the specific case of Zeeman line formation in a 1D semi-infinite
constant property media with a linear variation of the source vector (the
Milne-Eddington model). We model random magnetic field B(s) by a KAP
(Kubo-Anderson Process). A KAP is a step-wise stationary Markov process.
The idea of using KAP is to describe the atmosphere in terms of several eddies
(see left panel of Fig. 1) having lengths distributed according to a Poisson’s
law with a given density v (number of jumps/unit optical depth). We assume
that in each eddy (say s;_1 < s < s;) the magnetic field remains constant
(B(s) = B;), and it takes values according to a chosen PDF, denoted P(B).

The mean Stokes vector I is calculated by averaging over the length distri-
bution of the eddies, and P(B). A KAP is thus characterized by a correlation
length (1/v) and a PDF, the selection of which is guided by the structure
that is being modeled. The transfer equation for the particular case of the
rays propagating outwards along the surface normal is written as
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Fig. 1. Left panel: A typical Kubo-Anderson process B(s) with density v (mean
correlation length is 1/v). Right panel : Three different field strength PDF's are used.
The rms fluctuation (full width) A =6 G and mean field yo = Bo/Ap = 2.9.

j_fc:(quﬁ)(I—S), (1)

where & is the Zeeman line absorption matrix, S is the source vector given
by S(7.) = (Co + C17.)U with U = (1000)T, 7. being the continuum optical
depth, and 8 = k¢/k. with k¢ and k. being frequency integrated line and
continuum opacity. Following Landi Degl’Innocenti & Landolfi (2004), the
formal solution of Eq. (1) at 7. = 0 is

I(0) = [COE +Cy /0 b O(O,Tc)ch] U, (2)

where O(O,TC) is the evolution operator. We are actually interested in the
calculation of the mean emergent Stokes vector (I(0))xap defined as

(1(0))ap = [COE +G /0 T1000,7)) a dn] U. 3)

We recall that the notation (...)xap means that we need to perform two
averages, one over the length distribution of the eddies and the other over
a PDF. The first averaging can be analytically performed, as we consider
a simple Milne-Eddington atmospheric model. The averaging over the PDF
is performed in general numerically (analytical averaging is possible in the
micro-turbulent regime - see Frisch et al. 2005).

Following Brissaud & Frisch (1974), we establish a convolution type in-
tegral equation for (O(0,7.))kap that is solved by a Laplace transform
method to obtain (I(0))kap- We prefer to calculate the residual Stokes vector
7(0) = [I.(0) — I(0)]/C4, where the continuum intensity I.(0) = (Co + C1)U.
After averaging over all the realizations of the random fields we obtain

-1
<r(0)>KAP = (1 + V)Rmacro (1:_%@) |:E+ VRmacro (1:_%4%>:| U, (4)



Recent Developments in Polarized Line Formation in Magnetic Fields 5

for an arbitrary value of v. Here Rmacro(AP) = <A43[E + )\93]_1>, with X\ a
scalar. The macro and micro turbulent limits can be recovered by setting
v =0 and oo respectively in Eq. (4).

Numerical results on turbulent Zeeman effect :

We illustrate the sensitivity of (r(0))xar = ((rr),{rq), {rv),{rv))’ to the
choice of the PDFs. The model used has a damping parameter a = 0, line
strength § = 10, and correlation length 1/v = 1/5. Further the line has
a wavelength around 5000 A, a Landé factor of 3 and a Doppler width of
1.5Kms~1.

In the solar atmosphere, both the field strength and its orientation fluc-
tuate. Hence we need a PDF that can represent the combined fluctuations.
We propose such ‘composite PDFs’, generally guided by the nature of field
distribution in solar atmospheric structures. Examples of such PDFs are:

(p+1) [ Pv(y,ap)pupdus dxs dy,
27 Ce*|y|kp%d,u3 dxp dy.

P(y,ps, xs) dus dxp dy = (5)

Here 6 and xp are the random field orientation with respect to the atmo-
spheric normal, and C' is the normalization constant. Py (y,ag) is the Voigt
function (that now depends on the non-dimensional field strength y and mag-
netic damping parameter ag), and e~vl" is the stretched exponential (SE) dis-
tribution with k being the stretching parameter. The angular fluctuations are
taken care by a cosine power law term pf, where p = |y|/y; with y, = B;/Ap,
and B, is the transition field strength between isotropic (in the weak field
regime), and peaked (in the strong field regime) distribution. Such composite
PDFs are expected to describe the general behavior of observed solar mag-
netic field to some degree of realism - a large volume filled by weak isotropic
fields, and a very small volume filled by strong well directed fields.

For illustrations we choose By = 500G and 50 G. The (rg,u,v) computed
using these composite PDFs are shown in Fig. 2 for u = 0.1. We use asym-
metric Voigt and SE functions (Sampoorna et al. 2008) with a mean field
yo = 2.9, to represent the fluctuations only in the field strength. The width
Ap (rms fluctuation) of the PDF is found to be 6 G by an analysis of the solar
magnetogram data (see Stenflo & Holzreuter 2003). vg, which represents Ap
converted to Zeeman shift in Doppler width units, is 0.0084 for this choice
of Ag. As yp < 1, the (ry) profiles remain insensitive to the turbulent field
related parameters (not shown here). For y; = 8 the PDF becomes more and
more anisotropic (larger contribution from wings), resulting in larger degree
of linear polarization. For y, = 80, a situation opposite to the above prevails,
causing (rq,u) to decrease considerably (solid and dashed lines). (ry) is very
small in magnitude as it is generated purely by magneto-optic effects. The
sensitivity of {ry) to y; is similar to that of (rg) but weaker.
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Fig. 2. Effect of choice of the composite PDFs. Larger the transition field strength y;
smaller is the polarization, as the composite PDF's become more and more isotropic.

2.3 Stochastic radiative transfer equation in a scattering medium

Theoretical formulation:

In this section we address a more involved case of polarized line scattering
in a stochastic medium. We restrict our attention to the so called complete
frequency redistribution (CRD : meaning complete non-coherence during scat-
tering process within a line profile), and ignore the continuum contribution.

The polarized radiative transfer equation for the Hanle effect :

The relevant transfer equation in standard form is (see Nagendra et al. 1998):

oI(t,z,m)
%7

where I = (I,Q,U)T and the Stokes source vector S is defined as

= ¢(z)[I(r,z,n) — S(1,n)], (6)

+oo dn’ R
S(rm) =G +(1=¢) [ da’ § T Pun,n’s B’ ). (7)
—0o0

Here € is the thermalization parameter, G(7) = €B,,U with U = (1,0,0)"
and B,, the Planck function, and Py(n,n’; B) is the Hanle phase matrix.
The non-axisymmetry of the radiation is built into the Stokes vector form of
the transfer equation. It is advantageous to work with the ‘reduced form’ of
Eq. (6) that is obtained through the expansion of I and S in the form:

Li(r,z,m) =Y T8 (,n)IE (r,z,m);  Si(r,m) =Y T4 (6,m)S5 (1), (8)
KQ KQ

where 1 = 0,1,2. The ‘reduced intensity’ Ig is now independent of the az-
imuth angle of the radiation field (axi-symmetric). Notice that the reduced
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source vector Sg is even angle independent! By substituting Eq. (8) in to
Eq. (6), we can derive a standard form of the transfer equation for the 6-
component reduced intensity vector Z :

OZ(t,x,
y (1,2, 1)

20— o) [, 0) — ST, )

where the 6-component reduced source vector is now written as

A +OO +1 A
S(r)=6(r) + N(B)/ dzg [ dp' (@)@ (W) ZL(r,z,i).  (10)

—0o0 -1

The matrix N(B) contains B dependence coming from the Hanle effect, and
W (u) describes angular dependence coming from the Hanle phase matrix. For
details on this expansion procedure and the definition of ch etc., we refer to
Frisch (2007). In the presence of a random magnetic field of finite correlation
length Eq. (9) becomes a stochastic Hanle transfer equation. To solve such an
equation we need to first specify the model for the random field.

Representation of random (stochastic) magnetic field :

In the case of line transfer with pure absorption, the photons do not change
the direction. Therefore it is easy to represent the randomness of the field by
a Markov process. However in scattering problems, the photons change the
direction randomly (multiple scattering). Hence defining the field randomness
(both in the strength and orientation), together with the random walk of
the photons in a consistent manner is a difficult task. The difficulty is the
following : Suppose the magnetic field is a Markov process (meaning, future
depends only on the present and is independent of the past), taken to be along
the atmospheric normal. In this case the radiation field Z at a point r on a
line-of-sight (LOS) in the direction n depends on magnetic field values below
and above the point r along n. As a result the joint process {B(r); Z(r)} is
not a Markov process and hence the stochastic transfer problem cannot be
solved by the standard Fokker-Planck techniques (Brissaud & Frisch 1974).
A way out of this situation is to assume that B is random in time domain.
Such an approach was used by Frisch & Frisch (1976) for random velocities
with a finite correlation length. Again we use KAP to model the magnetic
field randomness, but defined with respect to time. Thus, Z should also be
time-dependent (i.e., solution of a time-dependent transfer equation). Now
the joint process {B(t); Z(t)} becomes a Markov process, and hence one can
apply the standard techniques of solving the stochastic differential equation.

Transfer equation for the conditional mean Stokes parameters:

We are interested in calculating the 6-component mean Stokes parameters
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(I5) = //P(B,I;t)zgdzgdzg ... d72 éB, (11)

where P(B,T;t) is the probability density of the joint process {B(t); Z(¢)}. It
is a priori not known, because Z itself depends on random field B and Z has to
be obtained from a solution of the stochastic transfer equation. To overcome
this implicit nature of the problem we can work with an intermediate quantity
called “conditional mean Stokes vector” with components

1

The conditional mean Stokes vector satisfies a time-dependent transfer equa-
tion (Frisch 2006). Here B plays the role of an additional independent variable
of the problem. In particular we look for stationary solution Z(r,z, u|B) only,
which can be obtained by setting t — oo in the time-dependent transfer equa-
tion. The stationary solution satisfies the following transfer equation :

pECBIE) o) (2(r,2,41B) - S(r1B)
+ V[I(T,m, u|B) — / Z(r,z,u|B")P(B') d3B']. (13)

The conditional source and mean intensity vectors respectively are:

S(r|B) = g(r) + N(B)J(7|B), (14)

+oo +1 R
geiB)= [ 5[ @ WI(ra,uB) duds. (15)

The mean Stokes vector is now given by

(T)(r,a, ) = / P(B)Z(r,,|B) & B. (16)

Clearly, the use of conditional mean Stokes vector cleverly avoided an explicit
knowledge of P(B,Z;t). Applying the above averaging to Eq. (13), we obtain
the transfer equation for (Z)(r, z, u) as

u%(ﬂ(ﬂw,u) = (@) [(T)(1, 2, 1) = (S)(7)]. (17)

It is not possible to write an integral equation for {(S)(7) (except in the micro-
turbulent limit). We first calculate S(7|B) and then average it over P(B).

By substituting the formal solution of Eq. (13) into Eq. (15) (see Frisch et
al. 2009, for details) we obtain an integral equation for S(7|B) as

8(7|B) = G(r) + N(B)A[S], (18)

where A[S] and £ operator are defined as
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T A~
A[S] = / d'r'{E(T —75v)8(7'|B) +
0

[L(r —7'50) = L(r = 7';v)] /P(B’)S(T’|B') d3B’}, (19)

R +oo 1 1 . .
L(rsv) = / / 2 F (e F O @) dud. (20)

A polarized approximate lambda iteration method can be devised to solve
Eq. (18) (see Frisch et al. 2009, for details).

Numerical results on turbulent Hanle effect :

Here we present some results on the turbulence effects in a Hanle scattering
media. The atomic and atmospheric models are defined by a set of parameters
(T, a,e€,B,,) where T is the optical thickness of the slab. In all the calcula-
tions we assume a normal Zeeman triplet, an electric-dipole transition and
no depolarizing collisions. For the magnetic field, the free parameters are the
Hanle efficiency factor I's = egyB/(2mcAy) in standard notation; the polar
angles (g, xB); the density v of jumping points; and the PDF P(B).

Fig. 3a shows the dependence of linear polarization on the correlation
length. An isotropic angular distribution with an exponential field strength
distribution is used. Since the PDF is azimuthally symmetric, (U) = 0. Fur-
ther, as we consider scattering in weak fields Stokes (I) remains insensitive to
the changes in the free parameters of B, and hence not shown.

For optically thin (T" < 1) and thick (T' > 1) lines the (Q)/{I) profiles
can be explained well in terms of micro-turbulence. For intermediate values of
T, the (Q)/(I) profiles sensitively depend on v. The micro limit is reached for
v = 10 itself, because v occurs in an exponential term (see Eq. (20)). In Frisch
et al. (2009) it is shown that single scattering is a good approximation for both
optically thin, and very thick slabs. In the former the number of scatterings
are too small (1-2). In the later the photons may suffer a large number of
scatterings inside the slab, but it is the last few ones near the free boundary
that contribute to the emergent polarization. In other words polarization is
a surface phenomenon. It can be shown that just 4-5 scatterings suffice to
reach the final value of {(Q)/{I) in very thick slabs. For slabs of intermediate
thickness a full-scale solution of the transfer equation is essential, as the single
scattering approximation breaks down. The accuracy of the single scattering
approximation progressively improves as one goes from Rayleigh scattering
to deterministic field Hanle scattering, and finally to micro-turbulent Hanle
scattering. As the single scattering approximation does not depend on v, the
emergent (Q))/(I) for optically thin and very thick slabs also do not depend
on v. The same thing cannot be said of the lines with intermediate thickness
(say T = 10), where correlation length effects become important.

In Fig. 3b we compare the micro-turbulent (@)/{I)} computed using two
different field strength distributions with an isotropic angular distribution. A
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large difference is seen in the line core region, because the exponential PDF
is strongly peaked in the weak field region, compared to the Voigt PDF.

In Fig. 3¢ we present (Q)/{I) computed with composite PDFs given in
Eq. (5) with the asymmetric Voigt function. As the transition field strength
y¢ (between the isotropic and peaked angular distribution) increases, larger
domains of the field strength PDF become isotropic. This results in a decrease
in (Q)/(I), finally reaching isotropic distribution for large values of y; (= 80).
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Fig. 3. Effect of turbulence in a Hanle scattering media. Model parameters:
(a,€,Byy) = (1073,107%,1). (a) shows the influence of correlation length. (b) and
(c) show the effects of different PDF's. The field parameter I, = geAp/(2mcAuw) =
1.588 when g =3, Ap = 6G and A, = 10® s7 1. In (b) the angular distribution is
isotropic, whereas field strength PDF are different. For (c) we use a composite PDF
with a coupling between angular and field strength distribution.

3 Scattering polarization in arbitrary strength magnetic
fields - the Hanle-Zeeman effect

3.1 Historical context

The solar atmosphere with its magnetically active regions harbor a whole
range of field strengths (milligauss to kilogauss fields). Hence we need a general
form of the radiative transfer equation that is valid in this entire range. Such
a transfer equation was formulated by Stenflo (1994).

Until recent years, polarized line transfer equation in the presence of de-
terministic magnetic fields has been solved in two extreme limits, namely, true
absorption in strong fields (Zeeman line transfer in LTE) neglecting the scat-
tering effects, and resonance scattering in weak fields (Hanle line transfer in
NLTE) neglecting Zeeman absorption. In a correct treatment of NLTE line



Recent Developments in Polarized Line Formation in Magnetic Fields 11

formation in arbitrary strength magnetic fields, one has to take into account
the ‘Zeeman absorption matrix’ and ‘scattering redistribution matrix (RM)’
together. The latter describes the correlations in frequency, angle and po-
larization between the incoming and outgoing photons in a scattering event.
In the early years Hanle RM for weak fields was used in the line transfer
computations (Faurobert-Scholl 1991; Nagendra et al. 1998; Manso Sainz &
Trujillo-Bueno 1999). In these papers a hybrid approximation for RM was
used, where the frequency correlation part was assumed to be CRD, and
the angular correlation to be the Hanle phase matrix (Stenflo 1978; Landi
Degl’Innocenti & Landi Degl’Innocenti 1988). However partial frequency re-
distribution (PRD) is a better description of the frequency correlation. Such
PRD computations retaining the hybrid approximation were performed by
Faurobert-Scholl (1991) and Nagendra et al. (1999).

A derivation of RM with a proper treatment of PRD dates back to Omont
et al. (1973). A correct form of the RM suitable for radiative transfer compu-
tation had to wait until the work of Bommier (1997a,b). The laboratory frame
RMs for weak fields were written in a factorized form taking frequency and
polarization correlations properly into account through appropriate branching
ratios. Such factorization takes place in the two dimensional (z,2') frequency
space. This domain based RMs were used in transfer computation by Nagen-
dra et al. (2002), who used a time consuming perturbation method.

To diagnose the solar magnetic fields of arbitrary strength we need RMs
that are valid in the entire field strength regime (milligauss to kilogauss).
We call such a scattering matrix as Hanle-Zeeman RM. A QED theory of
scattering in arbitrary fields was given by Bommier (1997b). The classical
analogue of the same is presented in Bommier & Stenflo (1999). In these
papers the RM was derived in the rest frame of the atom. The corresponding
laboratory frame expressions which are essential for line transfer computations
were derived in Sampoorna et al. (2007a). It was shown in Sampoorna et al.
(2007b) that for the specific case of J = 0 — 1 — 0 transition the classical and
quantum theories give exactly identical RMs. These RMs were later included
by Sampoorna et al. (2008b) in line transfer computations using a simple
perturbative approach. No high speed iterative methods (like the one based
on approximate lambda operator) has so far been developed to solve this
problem, which remains a challenge to numerical radiative transfer.

3.2 Theoretical formulation

The transfer equation for the Stokes vector (I,Q,U,V)T in a magnetically
absorbing and scattering medium is given by

wdI(r,2,n) )01 = (B+1E)I(r,z,n)—[(rE+e®)B,,U+Sscat (1, 2,m)], (21)

where the scattering integral is defined as

!

oo > 1o (] dn !
Sscat(T,2,M) = R(z,n;z',n'; B)I(1,2',n') o dz', (22)



12 Nagendra et al.

in standard notation. Here r = 1/ is the ratio of continuum to the line center
opacity. The Hanle-Zeeman redistribution matrix R is the heart of the prob-
lem. It represents PRD in line scattering, namely an appropriately weighted
combination of frequency coherent and frequency non-coherent (respectively
Hummer’s type II and III) scattering. The weighting factors are the branch-
ing ratios which contain the physics of various types of collisions (Domke &
Hubeny 1988; Nagendra 1994; Bommier 1997b) in polarized line formation
theory. It is worthwhile to note that elastic collisions (denoted by I'g) are re-
sponsible for destroying the frequency correlation between the incoming and
outgoing photons, while the depolarizing collisions D) cause destruction of
the atomic alignment and orientation. As in Nagendra et al. (2002) we solve
Egs. (21) and (22) using a perturbation method (see Sampoorna et al. 2008b)

To illustrate the nature of the RM we perform a single scattering exper-
iment in which an unpolarized monochromatic ray is incident on the atom,
and undergoes a 90° scattering. The magnetic field is chosen to be parallel
to the scattered ray, so that there is maximum impact of the Hanle effect on
line scattering. Fig. 4 shows the scattered Stokes profiles in (z,z') space for a
stronger field of vg = gv1, /Avp = 3. The contour plot below exhibits the 2D
domain structure in the (z,z') space. This figure illustrates the interesting
case of Rayleigh scattering in strong fields. In a 90° scattering event only two
o-components are scattered. In the logI profile they are displaced on both
sides of the line center and are well separated because the Zeeman shift is 3
Doppler width. Far from the line center and Zeeman components, scattering
is Rayleigh like and hence the linear polarization of scattered ray is 100%
(see along the first diagonal of the @)/I panel in Fig. 4). Also at line center
(far from the Zeeman component), Rayleigh scattering applies and hence the
scattered radiation is again 100% but with opposite sign (see Bommier 1997b,
Sect. 6). U/I = 0 for two reasons: (i) the field is strong enough to cause Hanle
saturation (no rotation of the polarization plane); (ii) the choice of geometry,
namely magnetic field along the LOS. Further for the same reasons, V/I is
large, and reaches a maximum of unity at the position of Zeeman components.

3.3 Numerical results for the Hanle-Zeeman effect

Here we discuss line formation with the angle-averaged Hanle-Zeeman RM,
for the case of a medium that is self emitting and effectively thin (7" < 1).
Figure 5 shows the emergent profiles for ;4 = 0.11 and ¢ = 0°. The Hanle
strength parameter I'p is used as a free parameter. In panels (a) and (b) we
compare the solutions obtained by solving Eq. (6) (using scalar absorption co-
efficient) and Eq. (21) (using the Zeeman absorption matrix) respectively. For
weak fields I's < 10 (which corresponds to vg < 0.01), the solutions with and
without Zeeman absorption do not differ. This shows that in weak fields one
may neglect the contributions from the off-diagonal elements of the polarized
Zeeman absorption matrix (as done in the past : see e.g. Faurobert-Scholl 1991;
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Fig. 4. Stokes parameters vs. incident frequency z' and scattered frequency x,
in a 90° single scattering event involving a pencil of unpolarized incident radiation.
The model parameters are [a, v, O; €, I'n/Tr, DY /Ik] = [1072, 3, 90°; 0, 1, 0].
Such a model corresponds to an equal mix of both type II and III redistribution.
I'r denotes the radiative rate. V/I stays within the range (-1,+1), although we use
a z-scale (-3,43) in order to avoid overlapping of surface and contour plots.

Nagendra et al. 1998). For (I's > 10,vp > 0.01) there are considerable differ-
ences in the Q/I and U/I profiles between the two cases. The regime of field
strengths covered in this figure (2.5 - 250 G) is the domain which was studied
traditionally ignoring the anisotropic elements of the absorption matrix. From
the figure it is clear that one should not neglect the anisotropic absorption
in the transition regime of weak — hectogauss fields in the solar atmosphere,
where both Zeeman anisotropic absorption and Hanle anisotropic scattering
contribute significantly and simultaneously. The general form of transfer equa-
tion given in this paper takes care of this transition regime between weak to
hectogauss magnetic fields in the solar photosphere.

4 Conclusions

In this review we highlight three important developments in the polarized line
formation theory applied to the solar atmosphere. The first problem concerns
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(a) scalar absorption (b) matrix absorption
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Fig. 5. Comparison of the solutions computed using a scalar absorption coefficient
(panel a) and the full Zeeman absorption matrix (panel b), for p = 0.11 and ¢ =
0°. Model parameters: (T,a,e,r,I'n/I'r, DY) /IR) = (20,1072,107%,1077,1,0.5).
Magnetic field orientation: (g, xe) = (30°,0°). Line types: solid (I's = 1,v =
0.001); dotted (10,0.01); short-dashed (50, 0.05); dash-dotted (100, 0.1).

a revisit to the Zeeman line formation in turbulent fields. We show that finite
correlation length effects (meso-turbulence) are important for Zeeman lines.
In the second part we discuss Hanle transfer equation in turbulent fields,
and show that Hanle scattering is insensitive to the correlation length - and
therefore micro-turbulence is a good approximation. Both Zeeman absorption
and Hanle scattering sensitively depend on the choice of vector PDF - which
describes how magnetic field fluctuates in both strength and direction. The
third problem we address is the polarized line transfer with PRD, for arbitrary
strength deterministic magnetic fields. This problem could not be attempted
in the past as the relevant PRD redistribution matrices were not available.
Using our new derivation of this Hanle-Zeeman redistribution matrix, we now
solve the concerned transfer equation. We present a few interesting results.
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