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SUMMARY: We have investigated the effects of Compton broadening due to
electron-photon scattering in hot stellar atmospheres. A purely electron-photon
scattering media is assumed to have plane parallel geometry with an input radia-
tion field localized on one side of the slab. The method is based on the discrete
space theory of radiative transfer for the intensity of emitted radiation. The solu-
tion is developed to study the importance of scattering of radiation by free electrons
in high temperature stellar atmospheres which produces a brodening and shift in
spectral lines because of the Compton effect and the Doppler effect arising from
mass and thermal motions of scattering electrons. It is noticed that the Comp-
tonized spectrum depends on three parameters: the optical depth of the medium,
the temperature of the thermal electrons and the viewing angle. We also showed
that the Compton effect produces red shift and asymmetry in the line. These two
effects increase as the optical depth increases. It is also noticed that the emergent
specific intensities become completely asymmetric for higher optical depths.
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1. INTRODUCTION

Electron scattering appears to have consider-
able influence through Compton broadening on for-
mation of spectral lines in objects such as the outer
layers of hot stars, AGN’s, Seyfert galaxies etc. Elec-
tron scattering contributes not only to the opac-
ity of high temperature stellar atmospheres but also
produces broadening and asymmetry in the spectral
lines of such stars. The redistribution of photons in
the line is due to Doppler motion of the electrons and
the Compton effect in the scattering process. Many
authors made attempts to solve the transfer equa-
tion for two level system accounting for noncoherent
electron scattering with various approximations. In
the following section, we shall briefly refere to some
of the relevant papers.

1.1. Impact on spectral lines

Theoretical calculations of the profile of spec-
tral lines broadened by scattering by free electrons
is a difficult problem. Munch (1948, 1950) investi-
gated the broadening of spectral lines due to thermal
motions and has found this effect in a Wolf-Rayet
stars atmospheres. However, Compton shifts have
been neglected. Chandrasekhar (1948) examined the
shifts due to Compton scattering but neglected the
Doppler shifts and used a Taylor series expansion (to
the first term). Peraiah (1990), Peraiah and Vargh-
ese (1991) extended this work to the spherically sym-
metric geometry by including the second derivative
of a Taylor series. Dirac was the first to study Comp-
ton scattering and he found that thermal motions
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produced a non-Doppler blue shift larger than the
Compton red shift. Therefore it would be interest-
ing to study how Compton scattering changes the
energy of a high frequency photon. Edmonds (1953)
derived the spectral redistribution function to the
second approximation. However, he solved the equa-
tion of transfer in plane parallel approximation using
the first approximation of the redistribution func-
tion. He found that non-Doppler blue shift due to
thermal motions is much larger than the Compton
red shift, for an optical depth less than one, which
is appropriate in a Wolf Rayet star. As this optical
depth is much less than what is actually found in
other objects, we would like to calculate the broad-
ening due to Compton scattering in a high optical
depth case and to include the second approximation
by adding the terms introduced by Edmonds (1954).

Auer and Mihalas (1968) carried out numer-
ical calculations of the profiles of broadened lines,
using the redistribution function found by Hummer
and Mihalas (1967). Zel’dovich et al (1972) consid-
ered nonlinear electron scattering effects to study the
evolution of frequency and angular distribution of
the radiation for a narrow line in an infinite medium.
Nagirnev and Vedmich (1976) developed a method
to study the formation of spectral lines under the
combined effects of resonant and electron scattering.
They proposed two methods to calculate the line pro-
files. The first method (based on two-dimensional
linear integral equation for the intensity of the emit-
ted radiation) is preferable when electron scattering
is comparatively unimportant, while the second one
(involves separating intensity into three parts, corre-
sponding to the continuum, electron scattering and
resonant scattering) is preferred in the opposite case.

In general, interactions between electron
Doppler frequency shifts and thermally broadened
spectral lines can cause observable broadening of
lines in spectra of the hottest stars. Recent papers
by Hillier (1991) and Hamann et al. (1992) demon-
strate the effect in theoretical spectra of Wolf-Rayet
stars. Scattering of free electrons has to be treated
as noncoherent when the spectrum contains narrow
spectral lines. In that case the width of line can
be smaller than the electron Doppler width. This
aspect of the problem was studied by Rybicki and
Hummer (1994) who investigated the importance of
noncoherent continuum scattering for the formation
and broadening of spectral lines. Rangarajan et al.
(1991) obtained the solutions for parametrized mod-
els with both partial and complete redistribution in
the line. Some basic aspects were discussed by Pera-
iah and Srinivasa Rao (1993) in the context of Comp-
ton broadening due to electron scattering. Madej
(1994) studied Compton scattering on white dwarf
model atmospheres in detail and found that pure
hydrogen models with a temperature of 105 K show
depression in the X-ray continuum. In a later paper
Madej (1998) computed the effects of Compton scat-
tering for a model corresponding to the parameters
of DA white dwarf HZ43 and noticed large differences
between Compton and Thompson scattering models.

In Section 2, we present the relevant equa-
tions for Compton broadening along with the trans-

fer equation in plane parallel geometry. In Section
3, we present some of the important steps for ob-
taining the solution of the transfer equation. Result
and discussion are in Section 4. Conclusions and the
Appendix are in the next two sections.

2. SOLUTION OF THE EQUATION
OF TRANSFER WITH
COMPTON BROADENING

The optical depth within the atmosphere is
given by:

dτ = −NeσedZ (1)

where dZ is the length, Ne is the electron density,
and σe is the Thompson cross-section given by

σe =
8π

3
e4

m2c4
(2)

where e is the electron charge, m is its mass and c
is the velocity of light. The emission coefficient for
Compton scattering by electrons in thermal motion
is given by Edmonds (1954):

j(ν, τ, µ) = Neσe

∫
dω′

3
4
(1 + cos2 Θ)·

·
∫ ∞

0

dν′I(ν′, τ, µ′)ψ(ν, Θ, ν′) (3)

where primed quantities refer to the incident radia-
tion, unprimed to the scattered radiation and

µ = cos θ. (4)

Further, µ1 = µ and µ2 = µ′, ν is the frequency of
the radiation, dω′ increment of the solid angle about
the direction of the incident radiation whose inten-
sity is I(ν′, τ, µ′), and the angle of scattering Θ, is
given by:

cosΘ = µ1µ2 +
[
(1− µ2

1)(1− µ2
2)

] 1
2

cos(ϕ− ϕ′). (5)

The spectral distribution function for scat-
tered radiation to the second approximation is given
(Edmonds 1954) as:

ψ(ν, Θ, ν′) =
mc

4π

[
4πmkT (1− cos Θ)

]−1
2

1
ν′

[
1− 3

2

(
ν′ − ν

ν

)]
exp

{ −mc2

4kT
(
1− cosΘ

)
[
ν′ − ν

ν
− hν′

mc2

(
1− cosΘ

)]2[
1 +

ν′ − ν

ν

]−1}
. (6)

Here k is Boltzmann’s constant and h is Planck’s
constant. For convenience we shall define the follow-
ing:
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Let us express the frequencies in the form of Ed-
monds (1953)

α =
[
mc2

4kT

] 1
2
(

ν − ν0

ν0

)[
1 +

ν − ν0

ν0

] 1
2

= −
[
mc2

4kT

] 1
2
(

λ′ − λ0

λ0

)[
1− 1

2

(
λ′ − λ0

λ0

)]
(7)

α′ =
[
mc2

4kT

] 1
2
(

ν′ − ν0

ν0

)[
1 +

ν′ − ν0

ν0

] 1
2

=
[
mc2

4kT

] 1
2
(

λ′ − λ0

λ0

)[
1 +

1
2

(
λ′ − λ0

λ0

)]
(8)

where λ and λ0 are the wavelengths corresponding to
ν and fixed frequency ν0 respectively. By introducing

x =
ν − ν0

∆
(9)

and

x′ =
ν′ − ν0

∆
(10)

Eqs. (7) and (8) for α and α′ become

α =
x√
2

[
1 +

√
2x

(
kT

mc2

)] 1
2

(11)

α′ =
x′√
2

[
1 +

√
2x′

(
kT

mc2

)] 1
2

, (12)

where ∆ is Doppler width (∆ =
ν0v

c
, v being the

mean thermal velocity), T is the temperature of the
gas, and νs being the frequencies. I(α, r, µ) is the
specific intensity of the radiation at the radial point
r, the radius vector, making an angle cos−1 µ with
the ray. Ne is the electron density, σe is the Thom-
son scattering coefficient equal to 6.625×10−25 cm−2.
The quantity Φ(α, µ;α′, µ′) is the scattering function
given by Peraiah and Srinivasa Rao (1993). In terms
of these variables, the emission coefficient j(α, τ, µ)
is given by

j(α, τ, µ) = Neσe

∫
dω′

4π

3
4 (1 + cos Θ)

[π(1− cosΘ)]
1
2

∫ ∞

−∞
dα′I(α′, τ, µ′)

[
1− 3

2

(
4kT

mc2

) 1
2

(α′ − α)
]
×

exp
{
− (α′ − α)2

(1− cosΘ)
+ 2

(
mc2

4kT

) 1
2 hν0

mc2
(α′ − α)

}
(13)

2.1. The equations of radiative transfer

The equation of radiative transfer in plane
parallel geometry can be written as:

µ
∂I(α, τ, µ)

∂τ
= I(α, τ, µ)− j(α, τ, µ)

Neσe
(14)

The second term on RHS of Eq. (14) is the source
function and we shall simplify the emission coeffi-
cient j so that a simple solution of the Eq. (14) can
be found. We shall perform the integration over the
azimuthal angle ϕ (refer to Eq. (5)). The trigono-
metric functions involving the angle Θ are simplified
and finally we obtain:

j(α, τ, µ) =
3

16π
Neσe

∫ ∫
dµ′dα′I(α′, τ, µ′)Ys

[
1− 3

2

(
4kT

mc2

) 1
2

(α′ − α)
]

exp
{

(α′ − α)
(

mc2

4kT

) 1
2 hν0

mc2
− (α′ − α)2

}
, (15)

where:

Ys = 2 + 3M1 +
27
8

(
2M2

1 + M2
2

)
+

+
91
24

(
2M3

1 + 3M1M
2
2

)
+

+
217
48

(
2M4

1 + 6M1M
2
2 +

3
4
M4

2

)
, (16)

with:
M1 = µ1µ2 (17)

and

M2 =
[(

1− µ2
1

)(
1− µ2

2

)] 1
2

. (18)

Eq. (14) can now be written as:

µ
dI(α, τ, µ)

dτ
= I(α′, τ, µ′)− S(α, τ, µ), (19)

where the source function is:

S(α, τ, µ) =
∫ ∞

−∞
dα′

∫ +1

−1

Φ(α, µ; α′, µ′)I(α′, τ, µ′)dµ′ (20)

and the quantity Φ(α, µ;α′, µ′) is a scattering func-
tion:

Φ(α, µ; α′, µ′) =
3

16π
Ys

[
1− 3

2

(
4kT

mc2

) 1
2

(α′ − α)
]

exp
{
− (α′ − α)2 − hν0

mc2
(α′ − α)

(
mc2

KT

) 1
2
}

. (21)

Computed source functions are plotted
against τ for both cases and shown in Fig. 4.
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3. METHOD OF OBTAINING
THE SOLUTION OF THE
TRANSFER EQUATION

The solution of radiative transfer Eq. (19) is
developed by using discrete space theory of radiative
transfer, following the procedure given in Peraiah
and Wehrse (1978) or Wehrse and Peraiah (1979).
In general, the following teps are carried out for ob-
taining the solution of the transfer equation:
(i) We divide the medium into a number of ”cells”
whose thickness is less than or equal to the critical
(τcrit). The critical thickness is determined on the
basis of physical characteristics of the medium. τcrit
provides the stability and uniqueness of the solution.
(ii) Now, the integration of the transfer equa-
tion is performed on the ”cell”, which is a ra-
dius - angle -frequency grid bounded by [rn, rn+1]×
[µj− 1

2
, µj+ 1

2
]× [xi, xi+1], where µj+ 1

2
=

∑j
k=1 Ck, j =

1, 2 . . . , J , where Ck are the weights of Gauss Leg-
endre formulae, and for frequency discretization
the discrete points xi and weights ai are used:
∫ +∞
−∞ Φ(x)f(x)dx ≈

I∑

i=−I

aif(xi),
I∑

i=−I

ai = 1.

(iii) By using the interaction principle described in
Peraiah and Grant (1973, hereafter PG73), we ob-
tain the reflection and transmission operators over
the ”cell”.
(iv) Finally, we combine all the cells by the star al-
gorithm described in PG73, and obtain the radiation
field.

So, now, we can write the discrete equivalent
of Eq. (19):

Mm

(
I+

i,n+1 − I+
i,n

)
+ τn+ 1

2
I+

i,n+ 1
2

=

=
1
2
τn+ 1

2[
Φ++

i,i′,n+ 1
2
a++

i′,n+ 1
2
CI+

ı′,n+ 1
2
Φ+−

i,i′,n+ 1
2
a+−

i′,n+ 1
2
CI−

ı′,n+ 1
2

]

(22)

Mm

(
I−i,n+1 − I−i,n

)
+ τn+ 1

2
I−

i,n+ 1
2

=

=
1
2
τn+ 1

2[
Φ−+

i,i′,n+ 1
2
a−+

i′,n+ 1
2
CI+

ı′,n+ 1
2
Φ−−

i,i′,n+ 1
2
a−−

i′,n+ 1
2
CI−

ı′,n+ 1
2

]

(23)

where:

Φ++
i,i′,n+ 1

2
= Φ(αi, +µ1; α′i,+µ2);

Φ−−
i,i′,n+ 1

2
= Φ(αi,−µ1; α′i,−µ2). (24)

Similarly, Φ−+,Φ−− are defined as:

Φ+−
i,i′,n+ 1

2
= Φ(αi,+µ1; α′i,−µ2);

Φ−+
i,i′,n+ 1

2
= Φ(αi,−µ1; α′i, +µ2) (25)

and:

S±
n+ 1

2
= (εΦ±

i,i′,n+ 1
2
)Bn+ 1

2
δ′kk, (26)

where ε is the probability per each scattering that a
photon will be destroyed by collisional de-excitation,
and B is the Planck function. Furthermore:

Mm = µjkδjk, (27)

c = cjkδjk (28)

µ and C being the root and weight of the angle
quadrature. Eqs. (22) and (23) can be combined
for all the frequency points in line and discrete equa-
tions can be written as:

Mm

(
I+

n+1 − I+
n

)
+ τn+ 1

2
I+

n+ 1
2

=

=
1
2
τn+ 1

2

[
Φ++W++I+ + Φ+−W+−I−

]

n+ 1
2

(29)

Mm

(
I−n+1 − I−n

)
+ τn+ 1

2
I−

n+ 1
2

=

=
1
2
τn+ 1

2

[
Φ−+W−+I+ + Φ−−W−−I−

]

n+ 1
2

,

(30)

where:

I+
n+ 1

2
=

[
I1I2I3 . . . Ii

]T

n+ 1
2

, (31)

and

Wk = ai cj ; ai =
AiΦi∑l

ı′=l AiΦi′
, (32)

k = j + (i− 1)m, 1 ≤ k ≤ K = ml (33)

where m= total number of angle points, i= running
index of frequency points, j= running index of the
angle points, I= total number of frequency points.
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M =




Mm

Mm

. . .
Mm




and

c =




c
c

. . .
c.


 (34)
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Fig. 4. Variation of source functions against the
optical depth τ = τmax=100, 500, 1000.

Eq. (19) is integrated following the lines of
PG73. The intermediate matrices I, r and t and
internal sources Σs are given in Appendix and the
numerical evaluation is the same as in Wehrse and
Peraiah (1978). All the calculations are done in a
plane parallel atmosphere.

4. RESULT AND DISCUSSION

The problem of radiative transfer in an at-
mosphere of free electrons is solved using the afore-
mentioned procedure. In the solution, the account
is taken of noncoherent character of electron-photon
scattering due to Doppler shifts arising from ther-
mal motions associated with kinetic temperature T
which is constant throughout the atmosphere, and
broadening due to Compton scattering for different
optical depths. We have considered the tempera-
ture T = 1 × 104 K for two different optical depths
τmax=102, 103 to study the effect of Compton broad-
ening due to electron-photon scattering. We have
also shown in Fig. 1 the variation of scattering func-
tion Φ for two different temperatures T = 1× 104 K
and T = 1×107 K. Since we are using discrete space
theory of radiative transfer, in general, we divide the
medium into N=100 plane parallel layers of equal
thickness. The layer N=100 corresponds to τ = τmax,
and layer N=1 represents τ = 0. We have chosen two
angle points on the Gauss-Legendre quadrature (0,1)
and along with normalized frequency points αi from
-4 to +4 with corresponding trapezoidal weights. We
have given incident radiation at τ = τmax and no ra-
diation is incident at τ = 0. This can be written in
the following form:

I−
(

µj , αi, τ = τmax

)
= 1 ; I+

(
µj , αi, τ = 0

)
= 0.

Fig. 1 shows the behavior of the scattering
function Φ with respect to the scattered frequency
α′ for different temperatures T = 1×104, represented
by solid line, and T = 1 × 107 by dashed line. It is
easily seen that the probability that a photon emit-
ted at α=-4 with reappears at α=0 is considerably
higher than that if emitted at α=+4. However, in
the case where the photons are emitted either at α=-
4 or α=+4, their probability of reappearing at α=+4
and α=-4, respectively, is extremely small. The pho-
tons emitted at α=0 would appear at α=±4 more
strongly, although at α=-4 the probability is slightly
higher than at α=+4. This happens because of the
fact that the contribution comes from diffuse radi-
ation field from the layers bounded by τ = 0 and
τ = τmax.

Figs. 2 and 3 show the plot of I− against the
original frequency α. The figures also show τ = τmin

at 1, 10 and τ = τmax at 102, 103 for two different
viewing angles of µs respectively. We can see that
the dashed curve for Doppler and the continuous
curve for Doppler+Compton (Doppler+Compton,
hereafter (D+C)) differ considerably.

Fig. 2 (a, b, c, d) shows Doppler effect which
is symmetric with respect to the central frequency
at α = 0 for smaller and larger optical depth, τ = 1
and τ = 100, respectively (in some cases, in particu-
lar those shown in Fig. 3(a, c), the symmetry is not
seen due to numerical instability with the method
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and it can be avoided by considering larger num-
ber of layers, angles and frequency points). When
the Compton scattering is introduced, the asymme-
try and the red shift from the central frequency are
seen in the intensity profile of Figs. 2 and 3. That
means that Comptomization can cause significant
rise of gas temperature particularly at small opti-
cal depths, and also excess heating of the outer lay-
ers can cause interaction between photons of high
thermal energies coming from hot layers and the gas
which was initially cooler than the radiation. In such
situation hotter photons lose energy during scatter-
ing, whereas electrons get hotter.

In the case of higher optical depth, Figs. 3 (a),
3(c) show some red shift of the line and increase at
higher frequencies. This happens because of the fact
that the gas temperature and photon energies are
small compared to the electron mass and repeated
Compton scattering. Thus, one can conclude that
for τ > 1, the Compton scattering produces more
broadening and increases asymmetry.

Fig. 4 (a, b, c) shows the variation of source
function against the optical depth τ , and reveals that
larger fraction of radiation is redistributed across the
medium with scattering. The source function for dif-
ferent optical depths τmax =100, 500, and 1000, is
shown, the dashed line is for Doppler and solid line
for Doppler with Compton (D+C). It can be noticed
that the source functions are almost parallel to each
other in the interior of the atmosphere and, as the op-
tical depth increases, the large differences are seen in
all the three cases. One can observe that the source
function is increasing towards the interior of the at-
mosphere from τ = τmin to τ = τmax. This is due
to the fact that no radiation is incident at τ = 0;
when the incident radiation is given at τ = τmax,
the radiation is redistributed in the atmosphere. It
can be also noticed that the radiation increases as
the optical depth increases. We also observe that
the combined source function values (D+C) are less
than the Doppler source function values.

5. CONCLUSIONS

We have investigated the Compton broaden-
ing due to electron-photon scattering in a hot stellar
atmosphere in a plane parallel medium using the dis-
crete space theory of radiative transfer and noticed
that the Compton effect increases asymmetry in the
line. This also increases when the optical depth in-
creases. We would like to extend the above work to
the case of a spherically symmetric atmospheres to
study Compton broadening effects on spectral lines.
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APPENDIX

The transmission and reflection operators are
given by:

t(n + 1, n) = G+−[
∆+A + g+−g−+

]
(35)

t(n, n + 1) = G−+
[
A−D + g−+g+−]

(36)

r(n + 1, n) = G−+g−+
[
I + ∆+A

]
(37)

r(n, n + 1) = G+−g+−[
I + ∆−D

]
, (38)

where I is the unit matrix, and cell operators are:

Σ+
n+ 1

2
= G+−

[
∆+S+

n+ 1
2

+ g+−∆−S−
n+ 1

2

]
τn+ 1

2
(39)
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Σ−
n+ 1

2
= G−+

[
∆−S−

n+ 1
2

+ g−+∆+S+
n+ 1

2

]
τn+ 1

2
, (40)

where:

G+− =
[
I − g+−g−+

]−1

(41)

G−+ =
[
I − g−+g+−

]−1

(42)

g+− =
1
2
τn+ 1

2
∆+Y − (43)

g−+ =
1
2
τn+ 1

2
∆−Y + (44)

D = M − τn+ 1
2
Z− (45)

A = M − τn+ 1
2
Z+ (46)

∆+ =
[
M +

1
2
τn+ 1

2
Z+

]−1

(47)

∆− =
[
M +

1
2
τn+ 1

2
Z−

]−1

(48)

Z+ = −1
2

(
Φ++W ++

)

n+ 1
2

(49)

Z− = −1
2

(
Φ−−W−−

)

n+ 1
2

(50)

Y + = −1
2

(
Φ−+W

)

n+ 1
2

(51)

Y − = −1
2

(
Φ+−W +−

)

n+ 1
2

. (52)
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Originalni nauqni rad

U ovom radu bavili smo se ispiti-
vaǌem efekata Komptonovog xireǌa usled
rasejaǌa fotona na slobodnim elektronima
u atomosferama vrelih zvezda. Pretpostav-
ǉeno je da je geometrija sredine u kojoj se
dexava rasejaǌe planparalelna i da upadno
zraqeǌe dolazi sa jedne strane paralelnih
slojeva. Intenzitet emitovanog zraqeǌa je
dobijen primenom metoda koji se zasniva
na diskretizovanoj teoriji prenosa zraqeǌa.
Izvedena je i rexena jednaqina prenosa u
sluqaju rasejaǌa na slobodnim elektronima
u zvezdanim atmosferama na visokim tempera-

turama i analizirano dobijeno rexeǌe kako
bi se utvrdio znaqaj Komptonovog i Dople-
rovog efekta koji dovode do xireǌa i po-
maka spektralnih linija. Prime�eno je da
rezultuju�i ”Komptonovski” spektar zavisi
od tri parametra: optiqke dubine sredine,
temperature termalnih elektrona i ugla pos-
matraǌa. Tako�e je pokazano da Komptonov
efekat izaziva crveni pomak kao i asimetriju
linija. Ova dva efekta postaju znaqajniji
kako se pove�ava optiqka dubina sredine.
Za velike optiqke dubine izlazni intenzitet
zraqeǌa postaje potpuno asimetriqan.
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