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Induced supersolidity in a mixture of normal and hard-core bosons
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We present a scenario where a supersolid is induced in one of the components of a mixture of two species
bosonic atoms where there are no long-range interactions. We study a system of normal and hard-core boson
mixture with only the former possessing long-range interactions. We consider three cases: the first where the
total density is commensurate and the other two where it is incommensurate to the lattice. By suitable choices
of the densities of normal and hard-core bosons and the interaction strengths between them, we predict that the
charge density wave and the supersolid orders can be induced in the hard-core species as a result of the

competing interatomic interactions.
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I. INTRODUCTION

The hallmark of the supersolid (SS) phase is the coexist-
ence of the superfluid and the charge density wave (CDW);
i.e., solid orders.! This phase has not been observed unam-
biguously in experiments. However, in recent years several
theoretical predictions of this phase have been made in dif-
ferent lattice systems.?> Though the claim of the observation
of this phase by Kim et al.® could not be verified,” the search
for the supersolid phase has become an active area of re-
search.

The pioneering observation of the superfluid (SF) to Mott
insulator (MI) transition in an optical lattice using cold
bosonic atoms,® which had been predicted by Jaksch et al.’
based on an earlier work by Fisher et al.,'” has opened up
several directions in the field of ultracold atoms. The possi-
bility of tuning the interatomic interactions in the optical
lattice makes this system ideal for obtaining exotic phases of
ultracold atoms with long-range interactions.*!' The obser-
vation of BEC in *°Cr atoms which have large magnetic
dipole moments'?> and recent experiments on two species
Bose mixtures by the LENS group'*!'% provide hope for the
realization of mixtures of dipolar atoms in optical lattices.
These developments in combination with the advancing re-
search in optical lattice systems could lead to the observation
of the supersolid phase in the future.

Theoretical studies of the possible existence of the super-
solid phase in a single species as well as mixtures of bosonic
atoms and Bose-Fermi mixtures have attracted much
attention.>>!3-17 Mixtures of ultracold atoms are of great in-
terest because of the various competing interactions between
the atoms that lead to many exotic phases. In this context, we
have considered a mixture of two species bosonic atoms with
one species consisting of normal and the other hard-core
bosonic atoms. For the latter species, a single lattice site can
be occupied by no more than one atom. This mixture can
therefore be considered equivalent to a system of Bose-
Fermi (spinless) atoms only in one dimension. We assume
that the normal bosonic species exhibits long range interac-
tions, but the interatomic interactions in the hard-core spe-
cies are limited only to onsite interactions. The model Hamil-
tonian for such a system can be written as
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Here a; and b,, respectively, are the bosonic annihilation op-
erators for atoms of a (normal) and b (hard-core) bosons
localized on-site i, n’=a]a; and n’=b] b, represent its number
operators, and ¢ and 7* are the hopping amplitudes between
the nearest neighbors (ij). U* and (V) are the on-site (near-
est neighbor) intraspecies repulsive interactions for the nor-
mal atoms. We have taken only the nearest neighbor interac-
tions because the dipole-dipole interaction potential varies as
1/73, where r is the distance between the dipoles. The inter-
species (between normal and hard-core bosons) interaction is
given by U’ The hopping amplitudes (*,”) and interaction
parameters (U4, V¢, U) are related to depth of the optical
potential, recoil energy, and the scattering lengths.>!'® The
ratio U*/U® as well as U?/V* can be varied over a wide
range of values experimentally.'®?° In this work we consider
t*=t"=t=1 which set all parameters dimensionless.

II. METHOD OF STUDY

We identify various ground states phases of the model (1),
by calculating (i) the single particle excitation gap G for
species a=a,b defined as the difference between the ener-
gies needed to add and remove one atom of species «; i.e.,

GZ:EL(Na-i- l’Nb)+EL(Na_ liNb)_ZEL(NmNb)’ (2)

GY = E(N,N,+ 1) + E,(N,,N,— 1) = 2E;(N,,N,), (3)

and (ii) the on-site number density defined by
(ni’)= <'//LNaNb|”ia | 'szNaN[)' 4)

Here N, and N, corresponds to total number of a and b
bosons in the ground state |’/’LNaNb> of a system of length L
with the ground-state energy E;(N,,N,). The former is used
to distinguish the gapless superfluid phase from the Mott
insulator or the charge-density wave phase, both having fi-
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nite gap in their energy spectrum. In the one-dimension sys-
tems the appearance of the SF phase is indicated by G}
— 0 for L— . However, for a finite system G7 is finite, and
we must extrapolate to the L— o limit, which is best done by
the finite size scaling of the gap.?!?? In the critical region,
Gy=L""f(L/ &%), where & is the correlation length for spe-
cies @ which diverges in the SF phase. Thus plots of LG}
versus the nearest-neighbor interaction for different values of
L coalesce in the SF phase. On the other hand, when this
trend does not follow, then the system is considered to be in
the gapped, either a MI or a CDW phase, which is further
distinguished from each other via the CDW order parameter
defined as

1
Ocpwll) = ZE v, (I = oDl ) (5)

The existence of the solid order is verified from the finite
value of Ogpy(L— ) and also from the finite density struc-
ture factor,

N
S(k) = VLY, e nn)), (6)
ij
at k=
We have employed the finite size density matrix renor-
malization group (FS-DMRG) method with open-boundary
conditions to determine the ground state. This method has
proved to be one of the most powerful techniques for study-
ing one-dimensional (1D) systems.??* In addition to this
method, the quantum Monte Carlo method with periodic
boundary conditions has been successfully applied to such
systems. Both these methods are capable of treating a large
number of lattice sites in one-dimensional systems. For the
normal species, we have taken the maximum occupation per
site as 4 and the weights of the states neglected in the density
matrix of the left and right blocks are less than 107°. The
occupation cutoff is based on previous DMRG results.?l> Tt
has been shown that the values of important physical quan-
tities change very little when the occupation cutoff is in-
creased beyond four.

III. RESULTS AND DISCUSSION

The charge-density wave phase in Bose systems is pos-
sible when the density of bosons are commensurate with the
underlying lattice. For example, the earlier studies of the
one-dimensional single species extended Bose-Hubbard
model have shown the existence of the CDW phase for p
=1/2 and 1.2"? Later this study was extended in the case of
two species extended Bose-Hubbard model, where the solid
order is achieved for p“=p’=1/2 by suitably varying the
strengths of the nearest-neighbor interactions.?® Supersolid
phase is then possible only moving away from these com-
mensurate densities.>>

The recent study of a two species Bose mixture in a one-
dimensional lattice shows that phase separation occurs if the
ratio U“?/U® is larger than unity.?® In order to avoid this
condition, we consider U%= U= and study the effect of V¢
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FIG. 1. (Color online) (a) Single particle energy gap Gj for
normal bosons as a function of 1/L for different V* showing finite
gap in the thermodynamic limit. (b) O¢,y,(L) versus 1/L for differ-
ent V* showing the onset of CDW order for V*> V.~ 1.0. (c) and
(d) Structure function S(k) for V=0.2 and 1.2 respectively.

on the ground state of model (1) for three possible combina-
tions of densities; (i) p*=p®=1/2, (ii) p?=1/2 and p’=1/4,
and (iii)p?=3/4 and p’=1/2. In the first case, the total den-
sity of the system, i.e., p=p,+p,, iS commensurate, but in
other two cases it is not. In all the above three cases we have
taken U=6, which is very large compared to the nearest
neighbor tunneling amplitude r=1.

A. p?=pb=1/2

In this case for V“=0, the system is in the MI phase be-
cause the onsite intraspecies interactions, U“=6, UP=o, and
the interspecies interaction, U%=6 are all greater than U,
~3.4, the critical strength of the on-site interaction for the
SF-MI transition in the one-dimensional Bose-Hubbard
model for p=121226 The system continues to remain
gapped as V“ increases. The gap corresponding to lattice size
L for species a, GY is plotted for different values of V* in Fig.
1(a), which yields that G{_ >0 for V*>0. However, the
gapped phase at higher V“ is not a MI but a CDW, since
O¢py(L— ) is finite for V*> V¢~ 1.0. In Fig. 1(b) we have
plotted O¢.py(L) versus 1/L for different values of V. The
order parameter O¢,,,(L) goes to zero for small values of V*
and branches out for higher values indicating the onset of the
CDW phase. This has been further verified by calculating the
density structure factor S(k). For small values of V, S(k
=) vanishes. S(k=m) becomes finite after some critical
value of V which appears as a peak in the S(k) vs k plot. The
emergence of the peak is the signature of the CDW phase in
the system. In Fig. 1(c), we have plotted S(k) vs k for V
=0.2 which does not show a peak at k=1, however, it peaks
at V=1.2, as shown in Fig. 1(d). The appearance of the peak
for large values of V indicates the emergence of the CDW
phase. O%,,(L) also exhibits a similar behavior indicating
that both the normal and the hard-core bosons undergo a MI
to CDW transition. The dependence of this transition on V¢
for the normal bosons is expected on the basis of an earlier
work.”> However, it was not obvious that the hard-core
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FIG. 2. (Color online) The onsite number density for a and b
bosons are plotted against the site index i taking V“=5 for p¢
=1/2, p?=1/2. The black curve corresponds to {(n{) and the red

corresponds to <nf’). The node at the center is due to open boundary
condition.

bosons would also undergo a similar MI to CDW transition
as they lack long range interactions to exhibit density oscil-
lations.

The physical scenario when p®=p”=1/2 is the following:
when V?=0, the system is in the MI phase due to the strong
repulsion between the bosons. As V* increases, there is com-
petition between the interactions U’ and V* and hence an
atom of species a (normal bosons) cannot occupy the sites
next to another atom of the same species, thereby forming a
CDW phase. In addition, the atoms of the hard-core species
b cannot occupy a site where there is either a hard-core bo-
son or a normal boson because of the strong repulsive onsite
interaction, U“*. These physical conditions give rise to the
intermingled CDW phase where the nearest-neighbor sites
are occupied by atoms of different species as shown in Fig.
2. It is interesting to note that the presence of V is sufficient
to induce the solid order in the hard-core species in spite of
the absence of any long-range interaction between them.
This type of induction of the solid order makes the other
combinations of densities presented below very interesting.

B. p°=1/2 and p®=1/4

In this case the total boson density p=3/4, and it is not
commensurate with the lattice. In the present problem, since
we have not considered long-range interactions beyond the
nearest neighbors, the commensurate densities are integers or
half integers. In a normal two species bosonic mixture with
incommensurate density (e.g., p=3/4), there is no transition
from a SF to a gapped phase.?® However, such a transition
does occur, as shown below, in a normal—hard-core boson
mixture described by model (1). The finite size scaling of the
gap LG} is given in Fig. 3 shows a transition from the gap-
less SF phase to a gapped phase for the normal bosonic spe-
cies with critical value V“C~ 3.0. The hard-core species, how-
ever, remains in the SF phase showing no gap in the
excitation spectrum.

The calculation of the CDW order parameters given in
Fig. 4 for both the normal and the hard-core bosons show a
finite OZpyy in the limit L—o for V*>V{~3.0. Thus the
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FIG. 3. (Color online) Finite size scaling of gap LG} is plotted
as a function of V* for different system sizes for the case p“=1/2
and p’=1/4. The coalescence of the different curves for V*=3.0
for the normal species shows the transition from the gapless SF
phase to a gapped phase. (Inset) The coalescence of the different
curves for all the values of V for the hard-core species indicates the
existence of the SF phase.

gapped phase of the normal bosonic species is identified to
be the CDW phase while the gapless phase of hard-core
bosons is a supersolid since both the superfluid and the CDW
phases coexist. The CDW oscillations are similar to the case
of p,=p,=1/2 as given in Fig. 2.

C. p”=3/4 and p*=1/2

The phase transitions that we have obtained for this case
are in the reverse order compare to that of case (ii), i.e., the
normal species shows a transition from the SF to the super-
solid phase, its gap remain zero as shown in Fig. 5 and it
shows a finite CDW order parameter for V> V.~ 1.2 and
the hard-core species shows a transition from the SF to the
gapped CDW phase at the same critical point Vi~ 1.2. The
normal bosons have incommensurate density (i.e., p?=3/4)
which results in the supersolid phase for V*> V(.. However,
the density of the hard-core bosons is half and is commen-
surate, yielding the gapped CDW phase. It is interesting to
note that in the normal single species extended Bose-
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FIG. 4. O¢pw(L) versus 1/L for (a) normal and (b) hard-core
species for V“ ranging from 0.2 to 5.0 in steps of 0.4 is shown for
p?=1/2 and p’=1/4. It is clear from the scaling that the O¢,,
becomes finite for V¥=3.0 for both the species indicating the tran-
sition to the CDW phase.
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FIG. 5. (Color online) Scaling of gap LG; is plotted as a func-
tion of V* for different system sizes for p®=3/4 and p’=1/2. (a)
The coalescence of the different curves for all the values of V¢ for
the normal species shows that the system remains in the gapless SF
phase. (Inset) Shows the Gj plotted against 1/L for different V*
ranging from 1 to 5 in steps of 1 which shows that the gap vanishes
as L— . (b) The coalescence of the different curves for V¢=1.2
for the hard-core species indicates the transition from the SF to the
CDW phase.

Hubbard model (i.e., model 1 in the absence of hard-core
bosons), the supersolid phase is stable only for large U“ and
V@3 However, in the present case, the presence of the hard-
core bosons stabilizes the supersolid phase at much smaller
values of V“.

IV. CONCLUSION

We have considered a system of normal and hard-core
bosonic mixture with the normal species possessing long
range interactions. By taking three different sets of densities
of both the species, we have investigated the conditions that
give rise to the supersolid phase in either or both the species.
The main findings of this work is that by suitably tuning the
nearest-neighbor interaction strength V“, the solid order can
be stabilized in the normal bosonic species and it can also be
induced in the hard-core species as a result of the competi-
tion between the U?, U?, and V. This induction of the solid
order can lead to both the species being in the CDW and
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TABLE 1. Different phases.

Pa Pp Normal Hard-core
12 172 MI-CDW MI-CDW
12 1/4 SF-CDW SF-SS

3/4 12 SF-SS SF-CDW

more interestingly one species in the CDW phase and the
other in the supersolid phase depending on the choice of
densities. By keeping the onsite repulsion for the normal
species U?=6 and varying the nearest-neighbor interaction
strength of the hard-core species V¢, we obtain different in-
teresting quantum phases which are listed in Table I shown
above.

In recent experiments on dipolar atoms, it has been dem-
onstrated that the ratio between the on-site and the nearest-
neighbor interactions can be controlled by Feshbach
resonance.? In the present work, we take a fixed on-site
interaction and vary the nearest-neighbor interaction, which
is equivalent to the experimental situation where the ratio is
varied. In the experiment by LENS group,!>!* the interspe-
cies interactions in a K-Rb mixture has been manipulated
using Feshbach resonance. We are not certain whether there
is an other Feshbach resonance in such system to control the
intraspecies interaction. However, two separate Feshbach
resonances exist in a mixture of “Rb-3"Rb.2”28 Therefore,
this mixture of bosonic atoms could be experimentally used
to test the prediction we have made regarding induced super-
solidity by varying U“(intraspecies interaction) and
U (interspecies interaction). In addition, it is possible to
vary U? by changing the depth of the optical potential fol-
lowing Greiner et al.®
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