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ABSTRACT

The beamed radio emission from relativistic plasma (particles or bunches), constrained to move along the curved
trajectories, occurs in the direction of velocity. We have generalized the coherent curvature radiation model
to include the detailed geometry of the emission region in pulsar magnetosphere and deduced the polarization
state in terms of Stokes parameters. By considering both the uniform and modulated emissions, we have
simulated a few typical pulse profiles. The antisymmetric type of circular polarization survives only when there
is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the
polarization angle swing and sign reversal of circular polarization as a geometric property of the emission process.
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1. INTRODUCTION

Pulsars are highly magnetized with predominantly dipolar
field structure. The rotating magnetic field produces a strong
induced electric field that accelerates charged particles off
the surface of the star into a magnetosphere consisting of
predominantly dipolar magnetic field and corotating relativistic
pair plasma. Pulsar radio emission models assume that radiation
emitted tangentially to the field lines on which plasma is
moving. The polarization state of the emitted radiation is
more or less determined by the structure of magnetic field
at the emission spot. In the general framework of models in
which the radio power is curvature radiation emitted by charge
bunches constrained to follow field lines, the linear polarization
is intrinsic to the emission mechanism and is, furthermore,
a purely geometric property. Several pulsar researchers have
shown that the properties such as the polarization angle swing
can be explained within the framework of curvature radiation
(e.g., Radhakrishnan & Cooke 1969; Sturrock 1971; Ruderman
& Sutherland 1975; Lyne & Manchester 1988; Rankin 1990,
1993; Blaskiewicz et al. 1991).

The radio emission from particle bunches is highly polarized,
and the radiation received by a distant observer will be less
polarized due to the incoherent superposition of emissions from
different magnetic field lines (Gil & Rudnicki 1985). Gil (1986)
has argued for the connection between pulsar emission beams
and polarization modes and suggested that out of two orthogonal
polarization modes, one corresponds to core emission and the
other to the conal emissions. They are highly linearly polarized
and the observed depolarization is due to superposition of
modes at any instant (Gil 1987). By considering a charged
particle moving along the curved trajectory (circular) confined
to the xz-plane, Gil & Snakowski (1990a) have deduced the
polarization state of the emitted radiation and shown the creation
of antisymmetric circular polarization in curvature radiation.
By introducing a phase, as a propagation effect, the difference
between the components of radiation electric field in the
directions parallel and perpendicular to the plane of particle
trajectory, Gil & Snakowski (1990b) have developed a model to
explain the depolarization and polarization angle deviations in
subpulses and micropulses. Gil et al. (1993) have modeled the
single-pulse polarization characteristics of pulsar radiation and

demonstrated that the deviations of the single-pulse position
angle from the average are caused by both propagation and
geometrical effects. Mitra et al. (2009), by analyzing the strong
single pulses with highly polarized subpulses from a set of
pulsars, have given very conclusive arguments in favor of the
coherent curvature radiation mechanism as the pulsar radio
emission mechanism.

By analyzing the average pulse profiles, Radhakrishnan &
Rankin (1990) have identified two most probable types of
circular polarizations, namely, antisymmetric, where the circular
polarization changes sense near the core region, and symmetric,
where the circular polarization remains with same sense. They
found that antisymmetric circular polarization is correlated with
the polarization angle swing and speculate it to be a geometric
property of the emission mechanism. Han et al. (1998), by
considering the published mean profiles, found a correlation
between the sense of circular polarization and polarization angle
swing in conal double profiles and no significant correlation for
core components. Further, You & Han (2006) have reconfirmed
these investigations with larger data. However, Cordes et al.
(1978) were the first to point out an association between the
position angle of the linear polarization and the handedness of
the circular polarization.

There are two types of claims for the origin of circular po-
larization: intrinsic to the emission mechanism (e.g., Michel
1987; Gil & Snakowski 1990a, 1990b; Radhakrishnan & Rankin
1990; Gangadhara 1997) or generated by the propagation effects
(e.g., Cheng & Ruderman 1979). Cheng & Ruderman (1979)
have suggested that the expected asymmetry between the posi-
tively and negatively charged components of the magnetoactive
plasma in the far magnetosphere of pulsars will convert linear
polarization to circular polarization. Radhakrishnan & Rankin
(1990) have suggested that the propagation origin of antisym-
metric circular polarization is very unlikely but the symmetric
circular polarization appears to be possible. On the other hand,
Kazbegi et al. (1991, 1992) have argued that the cyclotron insta-
bility, rather than the propagation effect, is responsible for the
circular polarization of pulsars. Lyubarskii & Petrova (1999)
considered that the rotation of the magnetosphere gives rise to
wave mode coupling in the polarization-limiting region, which
can result in circular polarization in linearly polarized nor-
mal waves. Melrose & Luo (2004) discussed possible circular
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polarization induced by intrinsically relativistic effects of pul-
sar plasma. Melrose (2003) reviewed the properties of intrinsic
circular polarization and circular polarization due to cyclotron
absorption and presented a plausible explanation of circular
polarization in terms of propagation effects in an inhomoge-
neous birefringent plasma. In the multifrequency simultaneous
observations, we do find the variations in the single-pulse po-
larization, which may be attributed to the propagation effects
(Karastergiou et al. 2001, 2002, 2003).

The correlation between the antisymmetric circular polariza-
tion and the polarization angle swing is a geometric property
of the emission processes (Radhakrishnan & Rankin 1990). By
carefully modeling the polarization state of the radiation in terms
of Stokes parameters, it is possible to construct the geometry of
emission region at multifrequencies. So far, in the purview of
curvature radiation only the polarization angle has been mod-
eled (Radhakrishnan & Cooke 1969; Komesaroff 1970) and
attempted to be fit with the average radio profile data (e.g., Lyne
& Manchester 1988). Instead of circular trajectories, it is very
important to consider the actual dipolar magnetic field lines,
whose curvature radii vary as a function of altitude, as the ra-
dio emission in pulsars is expected to come from the range of
altitude (e.g., Gangadhara & Gupta 2001; Gupta & Gangadhara
2003; Krzeszowski et al. 2009). In this paper, we develop a three-
dimensional (3D) model for curvature radiation by relativistic
sources accelerated along the dipolar magnetic field lines. We
consider the actual dipolar magnetic field lines (not the circles)
in a slowly rotating (non-rotating) magnetosphere such that the
rotation effects can be ignored. The relativistic plasma (bunch,
i.e., a point-like huge charge) moving along the dipolar magnetic
field lines emits curvature radiation. We show that our model
reproduces the polarization angle swing of Radhakrishnan &
Cooke (1969), and predicts that the correlation of antisymmet-
ric circular polarization and polarization angle swing is a geo-
metric property of the emission process. Our model is aimed at
re-examining the intrinsic polarization properties of the vacuum
single-particle curvature radiation, and planned to consider the
propagation effects separately in the subsequent works. We de-
rive electric fields of the radiation field in Section 2 and construct
the Stokes parameters of the radiation field in Section 3. A few
model (simulated) profiles are presented in Section 4 depicting
the correlation between the antisymmetric circular polarization
and polarization angle swing in the different cases of viewing
geometry parameters.

2. ELECTRIC FIELD OF CURVATURE RADIATION

Consider a magnetosphere having dipole magnetic field with
an axis m̂ inclined by an angle α with respect to the rotation
axis Ω̂ (see Figure 1). We assume that the magnetosphere
is stationary or slowly rotating such that the rotation effects
are negligible. The relativistic pair plasma, generated by the
induced electric field followed by pair creation, is constrained
to move along the curved dipolar magnetic field lines. The
high brightness temperature of the pulsar indicates coherency
of the pulsar radiation, which in turn forces one to postulate the
existence of charged bunches. The formation of bunches in the
form of solitons has been proposed (e.g., Cheng & Ruderman
1979; Melikidze & Patarya 1980, 1984) and questioned (e.g.,
Melrose 1992). Gil et al. (2004) have generalized the soliton
model by including formation and propagation of the coherent
radiation in the magnetospheric plasma along magnetic field
lines. Their results strongly support coherent curvature radiation
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Figure 1. Geometry for the calculation of radiation field at P, which is at a
distance R from the source S. The magnetic axis m̂ is inclined with respect to
rotation axis Ω̂ by α. The sight line n̂ impact angle with respect to m̂ is σ . The
gray curves represent the dipolar magnetic field lines plotted with re = 100
and azimuthal (φ) increment of 30◦ for each field line, chosen rotation phase
φ′ = 0. The source position vector is r, velocity is v, and acceleration is a. NS
is the neutron star and C is an arbitrary field line.

(A color version of this figure is available in the online journal.)

by the spark-associated solitons as a plausible mechanism of
pulsar radio emission. Following these views, we assume that
the plasma in the form of bunches moves along the open field
lines of the pulsar magnetosphere.

Consider the source S moving along the magnetic field
line C and experiencing acceleration (a) in the direction of
curvature vector of the field line. We assume the source to be
a bunch, which is nothing more than a point-like huge charge.
In Cartesian coordinates, the position vector of a bunch moving
along the dipolar magnetic field line is given by (see Equation (2)
in Gangadhara 2004, hereafter G04)

r = re sin2 θ{cos θ cos φ′ sin α

+ sin θ (cos α cos φ cos φ′ − sin φ sin φ′),
cos φ′ sin θ sin φ + sin φ′(cos θ sin α + cos α cos φ sin θ ),

cos α cos θ − cos φ sin α sin θ}, (1)

where re is the field line constant, and the angles θ and φ are the
magnetic colatitude and azimuth, respectively. Next, φ′ is the
rotation phase and α is the inclination angle of the magnetic axis.
Equation (1) describes the dipolar magnetic field lines presented
in Figure 1. Then the velocity of the bunch is given by

v = d r
dt

=
(

∂ r
∂θ

) (
∂θ

∂t

)
=

(
∂θ

∂t

)
b, (2)

where b = ∂ r/∂θ is the magnetic field line tangent. Consider
the magnetic axis

m̂ = {sin α cos φ′, sin α sin φ′, cos α}. (3)

Due to curvature in the field lines, the plasma bunch, a point-
like huge charge, collectively radiates relativistically beamed
radiation in the direction of velocity v. The velocity v is parallel
to the tangent b of the field line. To receive the beamed emission,
the observer’s line of sight (n̂) must align with v within the
beaming angle 1/γ, where γ is the Lorentz factor of the bunch.
In other words, a distant observer at P receives beamed emission
only when n̂ · v̂ = cos τ ∼ 1 for τ ≈ 1/γ, where v̂ = v/|v|.



No. 1, 2010 CIRCULAR POLARIZATION IN PULSARS 31

Let s be the arc length of the field line. Then, ds = |b|dθ,

where |b| = (re/
√

2) sin θ
√

5 + 3 cos(2θ ), and the magnitude
of velocity v = ds/dt = κc, where the parameter κ specifies
the speed of bunch as a fraction of the speed of light c. Hence,
we have

v = κcb̂, (4)

where

b̂ = b/|b|
= {cos τ cos φ′ sin α + sin τ (cos α cos φ cos φ′ − sin φ sin φ′),

cos φ′ sin τ sin φ + sin φ′(cos τ sin α + cos α cos φ sin τ ),

cos α cos τ − cos φ sin α sin τ }, (5)

and τ is the angle between m̂ and b̂. In terms of the polar angle
θ, the angle τ is given by

tan τ = sin τ

cos τ
= 3 sin(2θ )

1 + 3 cos(2θ )
, (6)

where

cos τ = b̂ · m̂ = 1 + 3 cos(2θ )√
10 + 6 cos(2θ )

,

sin τ = (m̂ × b̂) · êφ = 3 sin(2θ )√
10 + 6 cos(2θ )

,

and

êφ = {− cos α sin φ cos φ′ − cos φ sin φ′, cos φ cos φ′

− cos α sin φ sin φ′, sin α sin φ} (7)

is the bi-normal to the field line. We solve Equation (6) for θ,
and obtain

cos(2θ ) = 1

3
(cos τ

√
8 + cos2 τ − sin2 τ ). (8)

Hence, from Equation (4) it is clear that to receive the radiation
emitted in the direction of tangent b̂, the sight line n̂ must line
up with it. So, by solving n̂ · b̂ = 1 or n̂× b̂ = 0, we can identify
the tangent b̂, which aligns with n̂, and hence find the field line
curvature and the coordinates (θ, φ) of the emission spot (see
Equations (4), (9), and (11) in G04). Next, the acceleration of
the bunch is given by

a = ∂v

∂t
= (κ c)2

|b|
∂b̂

∂θ
= (κ c)2k, (9)

where k = (1/|b|)∂b̂/∂θ is the curvature (normal) of the field
line. Then the radius of curvature of the field line is given by

ρ = 1

|k| =
[

2 − 8

3{3 + cos(2θ )}
]

|b|. (10)

Therefore, using k = k̂/ρ, we can write

a = (κ c)2

ρ
k̂, (11)

where

k̂ = {(cos α cos φ cos φ′−sin φ sin φ′) cos τ − cos φ′ sin α sin τ,

(cos φ′ sin φ + cos α cos φ sin φ′) cos τ − sin α sin φ′ sin τ,

− cos φ sin α cos τ − cos α sin τ }. (12)

The relativistic bunch, i.e., point-like huge charge, q collectively
emits curvature radiation as it accelerates along the curved
trajectory C (see Figure 1). Then the electric field of the radiation
at the observation point P is given by (Jackson 1975):

E(r, t) = q

c

[
n̂ × [(n̂ − β) × β̇]

R ξ 3

]
ret

, (13)

where ξ = 1−β · n̂, R is the distance from the radiating region
to the observer, β = v/c is the velocity, and β̇ = a/c is the
acceleration of the bunch.

The radiation emitted by a relativistic bunch has a broad
spectrum, and it can be estimated by taking the Fourier trans-
formation of the electric field of radiation:

E(r, ω) = 1√
2π

∫ +∞

−∞
E(r, t)ei ωtdt. (14)

In Equation (13), ret means evaluated at the retarded time
t ′ + R(t ′)/c = t. By changing the variable of integration from t
to t ′, we obtain

E(r, ω) = 1√
2π

q

c

∫ +∞

−∞

n̂ × [(n̂ − β) × β̇]

R ξ 2
eiω{t ′+R(t ′)/c}dt ′,

(15)
where we have used dt = ξ dt ′. When the observation point
is far away from the region of space where the acceleration
occurs, the propagation vector or the sight line n̂ can be taken
to be constant in time. Furthermore, the distance R(t ′) can be
approximated as R(t ′) ≈ R0 − n̂ · r(t ′), where R0 is the distance
between the origin O and the observation point P, and r(t ′) is
the position of the bunch relative to O.

Since bunches move with velocity κc along the dipolar field
lines, over the incremental time dt the distance (arc length)
covered is ds = κ c dt = |b|dθ. Therefore, we have

t = 1

κ c

∫
|b|dθ = re√

2κ c

∫
sin θ

√
5 + 3 cos(2θ ) dθ. (16)

By choosing t = 0 at θ = 0, we obtain

t = re

12κc
[12 +

√
3 log(14 + 8

√
3) − 3

√
10 + 6 cos(2θ ) cos(θ )

− 2
√

3 log(
√

6 cos(θ ) +
√

5 + 3 cos(2θ ))]. (17)

By assuming κ ∼ 1, in Figure 2, we plotted t as a function of θ
for different re. It shows time t increases much faster at larger
re than at lower. This is due to the fact that for a given range of
θ the arc length of the field line becomes larger at higher re.

Then Equation (15) becomes

E(r, ω) ≈ q eiωR0/c

√
2πR0κc2

∫ +∞

−∞
|b| n̂ × [(n̂ − β) × β̇]

ξ 2
eiω{t−n̂.r/c}dθ,

(18)
where the expression for t is given by Equation (17). Note that
the prime on the time variable t has been omitted for brevity. The
integration limits have been extended to ±∞ for mathematical
convenience, as the integrand vanishes for |θ − θ0| > 1/γ. At
any rotation phase φ′, there exists a magnetic colatitude θ0 and
a magnetic azimuth φ0 at which the field line tangent b̂ exactly
aligns with n̂, i.e., b̂0 · n̂ = 1 and τ = Γ, where Γ is the half-
opening angle of the pulsar emission beam centered on m̂. The
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Figure 2. Time t plotted as a function of magnetic colatitude θ of the bunch for
different values of field line constant re. The normalization parameter P is the
pulsar period. Given κ = 1.

expressions for θ0 and φ0 are given in G04 (see Equations (9)
and (11)).

The polarization state of the emitted radiation can be deter-
mined using E(ω) with the known r(t), β, and β̇. Since the
integral in Equation (18) has to be computed over the path of
the particle, the line of sight n̂ can be chosen without loss of
generality, to lie in the xz-plane:

n̂ = (sin ζ, 0, cos ζ ), (19)

where ζ = α + σ is the angle between n̂ and Ω̂, and σ is the
closest impact angle of n̂ with respect to m̂.

Let

A = 1

κc
|b| n̂ × [(n̂ − β) × β̇]

ξ 2
. (20)

By substituting for acceleration β̇ = a/c from Equation (9), we
can reduce it to

A = {Ax, Ay, Az} = n̂ × [(n̂ − β) × N]

ξ 2
, (21)

where N = κ ∂b̂/∂θ= ∂β/∂θ. Using the expression β = v/c
from Equation (4) and series expanding A in powers of θ about
θ0 we obtain

Ax = Ax0 + Ax1(θ − θ0) + Ax2(θ − θ0)2 + Ax3(θ − θ0)3

+ O[(θ − θ0)4],

Ay = Ay0 + Ay1(θ − θ0) + Ay2(θ − θ0)2 + Ay3(θ − θ0)3

+ O[(θ − θ0)4],

Az = Az0 + Az1(θ − θ0) + Az2(θ − θ0)2 + Az3(θ − θ0)3

+ O[(θ − θ0)4], (22)

where Axi, Ayi and Azi with i = 0, 1, 2, 3 are the series expan-
sion coefficients, and their expressions are given in Appendix A.

The scalar product between n̂ and r is given by

n̂ · r = re sin2 θ [cos α(cos θ cos ζ + cos φ cos φ′ sin θ sin ζ )

− cos ζ cos φ sin α sin θ + sin ζ (cos θ cos φ′ sin α

− sin θ sin φ sin φ′)]. (23)

Next, substituting the expressions of t and n̂ · r into the argument
of the exponential in Equation (18), and series expanding in
powers of θ about θ0 we obtain

ω

(
t − n̂ · r

c

)
= c0 + c1(θ − θ0) + c2(θ − θ0)2

+ c3(θ − θ0)3 + O[(θ − θ0)4], (24)

where c0, c1, c2, and c3 are the series expansion coefficients,
and their expressions are given in Appendix A.

Now, by substituting the expressions of Equations (22)
and (24) into Equation (18), we obtain the components of
E(ω) = {Ex(ω), Ey(ω), Ez(ω)} :

Ex(ω) = E0

∫ +∞

−∞
(Ax0 + Ax1 μ + Ax2 μ2

+ Ax3μ
3)ei(c1 μ+c2 μ2+c3 μ3)dμ,

Ey(ω) = E0

∫ +∞

−∞
(Ay0 + Ay1 μ + Ay2 μ2

+ Ay3 μ3)ei(c1 μ+c2 μ2+c3 μ3)dμ,

Ez(ω) = E0

∫ +∞

−∞
(Az0 + Az1 μ + Az2 μ2

+ Az3 μ3)ei(c1 μ+c2 μ2+c3 μ3)dμ, (25)

where μ = θ − θ0 and

E0 = q√
2πR0c

ei[(ωR0/c)+c0].

Now by substituting the integral solutions S0, S1, S2, and S3,
given in Appendix B, into Equation (25) we obtain

Ex(ω) = E0(Ax0S0 + Ax1S1 + Ax2S2 + Ax3S3),

Ey(ω) = E0(Ay0S0 + Ay1S1 + Ay2S2 + Ay3S3),

Ez(ω) = E0(Az0S0 + Az1S1 + Az2S2 + Az3S3). (26)

To find the polarization angle of radiation field E, we need
to specify two reference directions perpendicular to the sight
line n̂. One could be the projected spin axis on the plane of the
sky: ε̂‖ = (− cos ζ, 0, sin ζ ), and then the other direction is
specified by ε̂⊥ = ε̂‖ × n̂ = ŷ, where ŷ is a unit vector parallel
to the y-axis. Then the components of E in the directions ε̂‖ and
ε̂⊥ are given by

E‖ = ε̂‖ · E = − cos ζ Ex + sin ζ Ez,

E⊥ = ε̂⊥ · E = Ey. (27)

At any rotation phase φ′, the observer receives the radiation
from all those field lines whose tangents lie within the angle
1/γ with respect to the sight line n̂. Let η be the angle between
the b̂ and n̂, then cos η = b̂ · n̂, and the maximum value of η

is 1/γ. Therefore, at φ = φ0 we solve cos(1/γ ) = b̂ · n̂ for τ,
and find the allowed range (Γ − 1/γ ) � τ � (Γ + 1/γ ) of τ
or −1/γ � η � 1/γ of η, which in turn allows one to find the
range of θ with the help of Equation (8). Next, for any given
η within its range, we find φ by solving cos η = b̂ · n̂. It gives
(φ0 − δφ) � φ � (φ0 + δφ), where

cos(δφ) = sin Γ[cos(1/γ ) csc(Γ + η) − cos Γ cot(Γ + η)]

(cos ζ sin α − cos α cos φ′ sin ζ )2 + sin2 ζ sin2 φ′ .

(28)
Hence by knowing the ranges of θ and φ at any given φ′, we can
estimate the contributions to E from all those field lines, whose
tangents lie within the angle 1/γ with respect to n̂. In Figure 3,
we have plotted those regions at three phases: φ′ = −30◦, 0◦,
and 30◦ using α = 10◦, β = 5◦, and γ = 400. Note that at
the center of each region, b̂ exactly aligns with the sight line,
i.e., b̂ · n̂ = 1. Further, in Figure 4, we have plotted them for
−180◦ � φ′ � 180◦ with a step of 5◦ between the successive
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Figure 3. Beaming regions specifying the range of magnetic colatitude θ and azimuth φ at the three selected phases φ′ = −30◦, 0◦, and 30◦. The center of each
region gives the values of φ0 and θ0. Given α = 10◦, β = 5◦, and γ = 400.
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Figure 4. Beaming regions specifying the range of magnetic colatitude θ and
azimuth φ. They are plotted for the full range of phase: −180◦ � φ′ � 180◦
with a step of 5◦. The center of each region gives the values of φ0 and θ0. Given
α = 10◦, β = 5◦, and γ = 400.

regions. We observe that the range of θ stays nearly constant
(or decreasing negligibly) whereas that of φ gets narrower with
respect to the increasing |φ′|.

3. POLARIZATION OF RADIATION FIELD

To understand the pulsar radio emission, we must model all
the Stokes parameters (I, Q, U, and V—a set of parameters
used to specify the phase and polarization of radiation), and
compare with observations. They have been found to offer a very
convenient method for establishing the association between the
polarization state of observed radiation and the geometry of the
emitting region. They are defined as follows:

I = E‖E∗
‖ + E⊥E∗

⊥, Q = E‖E∗
‖ − E⊥E∗

⊥,

U = 2 Re[E∗
‖E⊥], V = 2 Im[E∗

‖E⊥]. (29)

The parameter I defines the total intensity, Q and U jointly define
the linear polarization and its position angle, and V describes
the circular polarization.

3.1. Addition of Stokes Parameters

Let WI be the energy radiated coherently per unit solid angle
per unit frequency interval per particle bunch (Jackson 1975),
then

d2WI

dω dΩ
= c R2

0

2π
|E(ω)|2. (30)

Since the Stokes parameter I = E‖E‖∗ + E⊥E⊥∗ = E · E∗ =
|E|2, we can rewrite Equation (30) as

I = |E|2 = 2π

c R2
0

d2WI

dω dΩ
. (31)

Similarly, we can express Q, U, and V as

Q = 2π

c R2
0

d2WQ

dω dΩ
,

U = 2π

c R2
0

d2WU

dω dΩ
,

V = 2π

c R2
0

d2WV

dω dΩ
. (32)

The net emission, which the observer receives along n̂, will have
contributions from the neighboring field lines, whose tangents
are within the angle 1/γ with respect to n̂. Hence the radiation
received at any given phase is the net contribution from a small
tube of field lines having an angular width of about 2/γ. Thus,
the radiation in the direction of n̂ should be integrated over a
solid angle dΩ = sin θ dθ dφ. We choose limits on the angles
φ and θ such that the integration over them will cover the solid
angular region (beaming region) of radial width 1/γ around n̂.
Since θ and φ are orthogonal, choosing them as the variables of
integration is justified. We assume that (1) the width of bunch
η0 is much smaller than the wavelength λ of the radio waves,
so that the radiation emitted by a bunch is coherent, and (2) the
bunches, within the beaming region, are closely spaced, so that
the net emission becomes smooth and continuous.

Consider a bunch having γ ∼ 400 emitting radio waves at
frequency ν = 600 MHz at an altitude of about 400 km. Note
that these values are close to those estimated in G04 in the
case of PSR B0329+54. Then the angular width of the beaming
region corresponding to 2/γ is ∼0.◦3, which corresponds to a
width of ∼ 2 km at an altitude of 400 km. For coherence to
be effective the bunch width w0 < λ. Therefore, we choose
w0 < 50 cm for λ ∼ 50 cm. Since these values of w0 are much
smaller than the width of the beaming region (∼ 2 km), the
Stokes parameters can be integrated as continuous functions of
θ and φ.

Let Is be the resultant Stokes intensity parameter then

Is =
∫

I dΩ

=
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

I sin θ dθ dφ, (33)

where θ0 and φ0 are the magnetic colatitude and azimuth of the
sight line n̂. Similarly, for other Stokes parameters, we have

Qs =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

Q sin θ dθ dφ,
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Figure 5. Simulated pulse profiles: in panels (a) and (b) intensity (Is), linear polarization (Ls), and circular polarization (Vs), and in lower panels (c) and (d) the
corresponding polarization angle (ψs) curves are plotted. Chosen P = 1 s and γ = 400. Note that profiles are normalized with the peak intensity.

(A color version of this figure is available in the online journal.)

Us =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

U sin θ dθ dφ,

Vs =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

V sin θ dθ dφ. (34)

Then the linear polarization is given by

Ls =
√

Q2
s + U 2

s , (35)

and the corresponding polarization angle is

ψs = 1

2
tan−1

(
Us

Qs

)
. (36)

4. SIMULATION OF PULSE PROFILES

The emission in spin-powered pulsars is mostly of non-
thermal origin. If the radiation field E from different sources
does not bear any phase relation then they are expected to
be incoherently superposed on the observation point. On the
other hand, if there is a phase relation then they are coherently
superposed. From the observational point of view both cases are
important.

By considering the relativistic pair plasma with γ = 400
accelerated along the dipolar field lines of a pulsar with period
P = 1 s, we computed the polarization parameters and plotted
them in Figure 5. It shows a stronger emission near the
meridional plane, where the beaming region is broader (see
Figure 3) and the radius of curvature ρ goes to a minimum.
The profile of linear polarization Ls resembles the intensity
profile, except for its lower magnitude due to the incoherent
addition. To describe the behaviors of circular polarization
Vs and polarization angle ψs, we define the symbols: “−/+,”
transition of the right hand circular to left hand circular; “+/−,”
left hand circular to right hand circular; “cw,” clockwise rotation
of the polarization angle; and “ccw” counterclockwise rotation.

Since the circular polarization Vs changes sign as −/+ or
+/− as the sight line cuts across the field line, the net circular
polarization goes to zero in a uniform emission due to the

addition with opposite signs. The polarization angle swings
reproduced in Figure 5 are consistent with the rotating vector
model of Radhakrishnan & Cooke (1969). In the case of positive
sight line impact parameter (σ = 5◦), the polarization angle
swing is ccw as the slope dψs/dφ′ > 0 while in the negative
case (σ = −5◦), it is cw as dψs/dφ′ < 0.

4.1. Modulation of Radio Emission

Pulsar radio emission is believed to come from mostly open
magnetic field lines, whose foot points define the polar cap.
The shape of pulsar profiles indicates that the entire polar cap
does not radiate; only some selected regions radiate, which
may be organized into a central core emission and coaxial
conal emissions, which has an overwhelming support from
observations (e.g., Rankin 1990, 1993). Hence, the radiating
region above the polar is believed to have a central column of
emission (core) and a few coaxial conal regions of emission
(cones; e.g., Gil & Krawczyk 1997; Gangadhara & Gupta 2001;
Gupta & Gangadhara 2003; Dyks et al. 2004).

4.1.1. Modulating Function

It is well known that the components of a pulsar profile
can be decomposed into individual Gaussians by fitting one
with each of the subpulse component. For example, the compo-
nents in the pulse profile of PSR 1706−16 and PSR 2351+61
are fitted with appropriate Gaussians by Kramer et al. (1994).
When the line of sight crosses the emission region, it en-
counters a pattern in intensity due to Gaussian modulation
in the azimuthal direction. Because of the Gaussian modula-
tion in the azimuthal direction, the intensity becomes nonuni-
form in the polar directions too. These arguments indicate that a
Gaussian-like intensity modulation exists in the polar directions
too. So, we assume that the emission region of a pulse compo-
nent has an intensity modulation in both azimuthal directions.
Hence, we define a modulation function f for a pulse component
as

f (θ, φ) = f0 exp

[
−

(
φ − φp

σφ

)2
]

, (37)
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Figure 6. Simulated pulse profiles. Given P = 1 s and γ = 400, σφ = 0.1, φp = 0◦, and f0 = 1 are used for the modulating Gaussian.

(A color version of this figure is available in the online journal.)
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where φp is the peak location of the Gaussian function and f0 is
the amplitude. If wφ is the full width at half-maximum (FWHM),
then σφ = wφ/(2

√
ln 2).

Taking into account the modulation, Equations (33)–(34) can
be written as

Is =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

f I sin θ dθ dφ

Qs =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

f Q sin θ dθ dφ,

Us =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

f U sin θ dθ dφ,

Vs =
∫ θ0+δθ

θ0−δθ

∫ φ0+δφ

φ0−δφ

f V sin θ dθ dφ. (38)

Using a Gaussian with peak located at the meridional plane
(φ′ = 0◦), we have computed the pulse profiles in the two
cases of impact parameter (σ ) and inclination angles (α) and
plotted in Figures 6 and 7. We observe that the profile in
the case of negative σ is broader than the positive case. This
difference is due to the projection of the emission region onto
the equatorial plane of the pulsar. In the case of positive σ,
the polarization angle χs swing is ccw and the sign change of
Vs is −/+ with respect to φ′, while in the case of negative σ
the χs swing is cw and the sign change of Vs is +/ − . Hence,
we find that the polarization angle swing is correlated with the
circular polarization sign reversal. This correlation is invariant
with respect the stellar spin directions.

The mean pulsar profiles are often found to consist of an
odd number of multi-components or subpulses. Many works on
pulsar profiles (e.g., Rankin 1990, 1993; Mitra & Deshpande
1999) propose that the pulsar emission beam has a nested
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(A color version of this figure is available in the online journal.)

conal structure. To investigate the polarization of subpulses in
such profiles, we have reproduced a five-component profile by
considering three Gaussians in Figure 8, and five Gaussians in
Figures 9 and 10. The central component is presumed to be a
core, and the other components are symmetrically located on
either side of the core forming the cones. We find across each
component that circular polarization changes the sign and is
correlated with the polarization angle swing. We also observe
that the circular polarization of the outermost components is
weaker compared to that of inner ones, which is quite clear
in the case of large inclination angles. This is due to the
fact that the sight line crosses the field lines in the almost
edge-on position in the case of outermost components. The
small distortions in the polarization angle curve are due to
modulation.

5. DISCUSSION

Observed pulsar radio luminosities together with the small
source size imply extraordinarily high brightness temperatures,
i.e., as high as 1031 K. The incoherent sum of a single-particle
curvature radiation is not enough to explain the very high
brightness temperature of pulsar radio emission; therefore, one
is forced to postulate the existence of charged bunches. To
avoid implausibly high particle densities and energies, coherent
radiation processes are invoked. Pacini & Rees (1970) and
Sturrock (1971) among others were quick to point out that the
observed coherence may be due to bunching of particles in the
emission region of the magnetosphere. The problem of bunch
formation has been known for many decades, and it has already
been addressed by many authors (e.g., Karpman et al. 1975;
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(A color version of this figure is available in the online journal.)

Ruderman & Sutherland 1975; Cox 1979; Asseo et al. 1990; Gil
et al. 2004). The natural mechanism for the formation of charged
bunches was first proposed by Karpman et al. (1975). They have
argued that the modulational instability in the turbulent plasma
generates charged solitons, provided that species of different
charges have different masses. One should mention here that to
explain coherent radio emission we do not necessarily need
stable solitons but only large-scale (as compared with the
Langmuir wavelength) charge density fluctuations. Gil et al.
(2004) generalized the soliton model by including formation
and propagation of the coherent radiation in the magnetospheric
plasma. However, it is not easy to form such charge bunches (see
Melrose 1992 for a review). Further, Michel (1991) has pointed
out that the pair-production discharge mechanism originally
applied to pulsars by Sturrock automatically produces dense
bunches that can produce coherence at radio frequencies with
sufficient intensity to simulate pulsar action. If the bunches of
plasma particles with sizes much smaller than a wavelength of
radiation exist then the net radiation field E(ω) ≈ N Eo(ω),
where N is the number of charges present in the bunch. Hence,
the total radiation field due to a bunch of particles is equal to
the vector sum of the fields radiated by each charge.

In the general framework of models including ours, in which
the radio power is curvature radiation emitted by charge bunches
constrained to follow the field lines, the linear polarization is
intrinsic to the emission mechanism and is, furthermore, a purely
geometric property. In this direction, the recently achieved
observational results and the model predications based on them
by Mitra et al. (2009) become very relevant. They find that
the polarization angle of linear polarization in subpulses follow
closely the mean polarization angle curve at the corresponding
profile components and argue that their findings favor coherent
curvature radiation over maser mechanism as the observed
emission.

In an actual case, it is the combination of both incoherent
and coherent superpositions determining the polarization state
of the observed emission. Though the emissions from a single
bunch is highly polarized, the radiation received by a distant
observer will be less polarized, as the radiation from many

bunches is incoherently superposed (Gil & Rudnicki 1985).
Also, the degree of polarization is found to depend on the
time resolution chosen in the observation (Gangadhara et al.
1999). Circular polarization is generally strongest in the central
regions of a profile, but is by no means confined to these
regions. It has been detected from conal components of many
pulsars, for example, conal-double pulsars, and found to be
highly correlated with the polarization angle swing (You &
Han 2006). In most of the cases, the sense reversal of circular
polarization is nearly independent of frequency, suggesting that
the circular polarization does not arise from propagation or
plasma effects (Michel 1987; Radhakrishnan & Rankin 1990).
Radhakrishnan & Rankin (1990) have argued that the circular
polarization is intrinsically antisymmetric type and correlated
with the polarization angle swing. The antisymmetric circular
polarization of curvature radiation becomes significant if there
are gradients in the emissivity over angular scales comparable
with the emission cone of single charge. Their results are
consistent with the predictions of our model (Figures 6–10) and
strongly suggest that the correlation of antisymmetric circular
polarization with the polarization angle swing is a geometric
property of emission mechanism. Since our model deals with
the steady flow of relativistic plasma bunches along dipolar
field lines, it is relevent only for average profiles, and reflects
the results which are more of geometric dependent. We have
not considered any fluctuations or instability in the plasma flow.
Hence, it cannot reproduce the behaviors of single pulses.

By adopting the antenna mechanism, Buschauer & Benford
(1976) have derived a new formalism for the relativistic curva-
ture radiation. However, the treatment given does not include
the detailed geometry of dipolar field lines and the estimation
of polarization, particularly circular, as we have considered in
our model. Since radiation from many bunches is superposed on
any given pulse longitude, the circular polarization of different
signs and magnitudes is added. The result of such an addition
could be the reason for the diversities in the observed circular
polarization. Since our model was aimed at analyzing the in-
trinsic polarization properties of coherent radiation, we plan to
consider the propagation effects separately in subsequent works.
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We speculate that the propagation origin of antisymmetric cir-
cular polarization is very unlikely but the symmetric circular
polarization may be possible.

6. CONCLUSION

By taking into account of a detailed geometry of dipolar
magnetic field lines, we have derived the polarization state of
the coherent curvature radiation due to relativistic plasma in the
pulsar magnetosphere and drawn the following conclusions:

1. We do confirm the previous results of Gil & Snakowski
(1990a, 1990b) and Gil et al. (1993) that coherent curvature
radiation has basically antisymmetric type of circular polar-
ization. Though the emission from a single bunch is highly
polarized, the net emission from many bunches within the
beaming region is less polarized due to the incoherent su-
perposition of radiation fields.

2. Based on the Stokes parameters of the curvature radiation,
we have deduced the polarization angle swing, i.e., the
rotating vector model.

3. Based on the coherent curvature radiation, we have achieved
for the first time the result that the antisymmetric type
of circular polarization is correlated with the polarization
angle swing, and such correlations have been indeed found
in the profiles of many pulsars.

4. The addition of circular polarization with different signs
and magnitudes at any given phase could be responsible for
the wide diversity in circular polarization across the pulse.
It is consistent with earlier results (e.g., Gil et al. 1993,
1995).

I thank J. L. Han and J. M. Rankin for illuminating discus-
sions.

APPENDIX A

A.1. The Series Expansion Coefficients of Equation (22)

Ax0 = cos ζ (d3Nx(θ0) + d2Nz(θ0))

d2
1

, (A1)

Ax1 = cos ζ (d1 (d9 − f1) − 2d3d4Nx (θ0) − 2d2d4Nz (θ0))

d3
1

, (A2)

Ax2 =
(
d13d

2
1 − 4d4d12d1 − 2d7d8

)
cos ζ

2d4
1

, (A3)

Ax3 =
(
d3

1 (d11 − 3 (f4 + f5) − f6) − 2 (d6d8 + 3d4d13) d2
1 + d14

)
cos ζ

6d5
1

, (A4)

Ay0 = d1Ny(θ0) − e1βy (θ0)

d2
1

, (A5)

Ay1 = d2
1N ′

y (θ0) − d1e4βy (θ0) + e5Ny (θ0) + e1e2

d3
1

, (A6)

Ay2 = d1
(
e10 − 2d1d4N

′
y (θ0)

)
+ d1(2d2

4 − d1d5)Ny (θ0) + e9βy (θ0)

2d4
1

, (A7)

Ay3 = d1
(
3d1(d1d5 − 4d2

4 − 2d7)N ′
y(θ0) + d1e13 + 3e14

) − d1e11Ny (θ0) + e12βy (θ0)

6d5
1

, (A8)

Az0 = sin ζ (−d3Nx(θ0) − d2Nz(θ0))

d2
1

, (A9)

Az1 = sin ζ (d1(−d3N
′
x(θ0) − d2N

′
z(θ0) + f1) + 2d4(d3Nx(θ0) + d2Nz(θ0)))

d3
1

, (A10)
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Az2 = (d1(4d4(d9 − f1) + d1(−d10 + f2 + 2f3) + 2d5d8) − 6d2
4d8) sin ζ

2d4
1

, (A11)

Az3 = (f7 + d3
1 (f6 − d11 + 3(f4 + f5)) + 2d2

1 (d6d8 + 3d4d10 − 3d4(f2 + 2f3))) sin ζ

6d5
1

, (A12)

where

d1 = sin ζ βx(θ0) + cos ζ βz(θ0) − 1, (A13)

d2 = sin ζ − βx (θ0) , (A14)

d3 = βz (θ0) − cos ζ , (A15)

d4 = sin ζ β ′
x (θ0) + cos ζ β ′

z (θ0) , (A16)

d5 = sin ζ β ′′
x (θ0) + cos ζ β ′′

z (θ0) , (A17)

d6 = sin ζ β(3)
x (θ0) + cos ζ β(3)

z (θ0) , (A18)

d7 = d1d5 − 3d2
4 , (A19)

d8 = d3Nx (θ0) + d2Nz (θ0) , (A20)

d9 = d3N
′
x (θ0) + d2N

′
z (θ0) , (A21)

d10 = d3N
′′
x (θ0) + d2N

′′
z (θ0) , (A22)

d11 = d3Nx
(3) (θ0) + d2Nz

(3) (θ0) , (A23)

d12 = d9 − Nz (θ0) β ′
x (θ0) + Nx (θ0) β ′

z (θ0) , (A24)

d13 = d10 − 2N ′
z (θ0) β ′

x (θ0) + 2N ′
x (θ0) β ′

z (θ0) − Nz (θ0) β ′′
x (θ0) + Nx (θ0) β ′′

z (θ0) , (A25)

d14 = 18d1d4d5d8 − 24d8d
3
4 − 6d1d7d12, (A26)

e1 = sin ζ Nx (θ0) + cos ζ Nz (θ0) , (A27)
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e2 = 2d4βy (θ0) − d1β
′
y (θ0) , (A28)

e3 = d1β
′
x (θ0) − 2d4βx (θ0) , (A29)

e4 = sin ζ N ′
x (θ0) + cos ζ N ′

z (θ0) , (A30)

e5 = d1 cos ζ β ′
z (θ0) − 2d4 cos ζ βz (θ0) + 2d4 + e3 sin(ζ ), (A31)

e6 = sin ζ N ′′
x (θ0) + cos ζ N ′′

z (θ0) , (A32)

e7 = sin ζ Nx
(3)(θ0) + cos ζ Nz

(3)(θ0), (A33)

e8 = d1Ny
(3) (θ0) − e1βy

(3) (θ0) , (A34)

e9 = 4d1d4e4 − 6d2
4e1 + d1 (2d5e1 − d1e6) , (A35)

e10 = d1
(
d1N

′′
y (θ0) − e1β

′′
y (θ0)

)
+ (4d4e1 − 2d1e4) β ′

y (θ0) , (A36)

e11 = 24d3
4 + 6d4 (d7 − 2d1d5) + d2

1d6, (A37)

e12 = 24d3
4e1 + 6d1d4 (d1e6 − 3d5e1) + d1

(−d2
1e7 + 2d6d1e1 + 6d7e4

)
, (A38)

e13 = (6d4e1 − 3d1e4) β ′′
y (θ0) − 3d1d4N

′′
y (θ0) + d1e8, (A39)

e14 = (2d7e1 + d1 (4d4e4 − d1e6)) β ′
y (θ0) , (A40)

f1 = Nz (θ0) β ′
x (θ0) − Nx (θ0) β ′

z (θ0) , (A41)

f2 = Nz (θ0) β ′′
x (θ0) − Nx (θ0) β ′′

z (θ0) , (A42)

f3 = N ′
z (θ0) β ′

x (θ0) − N ′
x (θ0) β ′

z (θ0) , (A43)

f4 = N ′
z (θ0) β ′′

x (θ0) − N ′
x (θ0) β ′′

z (θ0) , (A44)
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f5 = N ′′
z (θ0) β ′

x (θ0) − N ′′
x (θ0) β ′

z (θ0) , (A45)

f6 = Nz (θ0) βx
(3) (θ0) − Nx (θ0) βz

(3) (θ0) , (A46)

f7 = 24d3
4d8 − 6d1 (d7 (f1 − d9) + 3d4d5d8) . (A47)

The expression of β= {βx, βy, βz} and the derivatives β ′, β,′′ β (3), and β (4), which respectively represent the first, second, third, and
fourth order differentiations with respect to θ evaluated at θ0, are as follows:

β(θ0) = {κ(h1 sin(Γ(θ0)) + h3 cos(Γ(θ0))), κ(h2 sin(Γ(θ0)) + h4 cos(Γ(θ0))), κ(cos α cos(Γ(θ0)) − h5 sin(Γ(θ0)))}, (A48)

β ′(θ0) = {κΓ′(θ0)(h1 cos(Γ(θ0)) −h6 sin(Γ(θ0))), κΓ′(θ0)(h2 cos(Γ(θ0)) − h4 sin(Γ(θ0))), κΓ′(θ0)(−h5 cos(Γ(θ0)) − cos α sin(Γ(θ0)))},
(A49)

β ′′(θ0) = {κ(Γ′(θ0)2(h8 sin(Γ(θ0)) − cos φ′ (h9 sin(Γ(θ0)) + sin α cos(Γ(θ0)))) + Γ′′(θ0)(h1 cos(Γ(θ0)) − h6 sin(Γ(θ0)))),

κ(Γ′′(θ0)(h2 cos(Γ(θ0)) − h4 sin(Γ(θ0))) + Γ′(θ0)2(h2(− sin(Γ(θ0))) − h4 cos(Γ(θ0)))),

κ(Γ′(θ0)2(h5 sin(Γ(θ0)) − cos α cos(Γ(θ0))) − Γ′′(θ0)(h5 cos(Γ(θ0)) + cos α sin(Γ(θ0))))}, (A50)

β(3)(θ0) = {κ(Γ(3)(θ0)(h1 cos(Γ(θ0)) − h6 sin(Γ(θ0))) + Γ′(θ0)3(h6 sin(Γ(θ0) − h9 cos(Γ(θ0)) cos φ′) + h8 cos(Γ(θ0)))

− 3Γ′(θ0)Γ′′(θ0)(h1 sin(Γ(θ0)) + h3 cos(Γ(θ0)))), κ(Γ(3)(θ0)(h2 cos(Γ(θ0)) − h4 sin(Γ(θ0))) + Γ′(θ0)3(h4 sin(Γ(θ0))

− h2 cos(Γ(θ0))) − 3Γ′(θ0)Γ′′(θ0)(h2 sin(Γ(θ0)) + h4 cos(Γ(θ0)))), κ(−Γ(3)(θ0)(h5 cos(Γ(θ0)) + cos α sin(Γ(θ0)))

+ Γ′(θ0)3(h5 cos(Γ(θ0)) + cos α sin(Γ(θ0))) + 3Γ′(θ0)Γ′′(θ0)(h5 sin(Γ(θ0)) − cos α cos(Γ(θ0))))}, (A51)

β (4)(θ0) = {κ(h9 cos φ′ (sin(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4 − 4Γ(3)(θ0)Γ′(θ0)) + cos(Γ(θ0))(Γ(4)(θ0) − 6Γ′(θ0)2Γ′′(θ0)))

+ h8(sin(Γ(θ0))(3Γ′′(θ0)2 − Γ′(θ0)4 + 4Γ(3)(θ0)Γ′(θ0)) + cos(Γ(θ0))(6Γ′(θ0)2Γ′′(θ0) − Γ(4)(θ0))) + h6(sin(Γ(θ0))(6Γ′(θ0)2Γ′′(θ0)

− Γ(4)(θ0)) + cos(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4 − 4Γ(3)(θ0)Γ′(θ0)))), κ(h2 sin(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4 − 4Γ(3)(θ0)Γ′(θ0))

+ h2 cos(Γ(θ0))(Γ(4)(θ0) − 6Γ′(θ0)2Γ′′(θ0)) + h4(sin(Γ(θ0))(6Γ′(θ0)2Γ′′(θ0) − Γ(4)(θ0)) + cos(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4

− 4Γ(3)(θ0)Γ′(θ0)))), κ(cos α (sin(Γ(θ0))(6Γ′(θ0)2Γ′′(θ0) − Γ(4)(θ0)) + cos(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4 − 4Γ(3)(θ0)Γ′(θ0)))

− h5(sin(Γ(θ0))(−3Γ′′(θ0)2 + Γ′(θ0)4 − 4Γ(3)(θ0)Γ′(θ0)) + cos(Γ(θ0))(Γ(4)(θ0) − 6Γ′(θ0)2Γ′′(θ0))))}, (A52)

where

h1 = cos α cos φ cos φ′ − sin φ sin φ′, (A53)

h2 = cos α cos φ sin φ′ + sin φ cos φ′ , (A54)

h3 = sin α cos φ′, (A55)

h4 = sin α sin φ′, (A56)

h5 = sin α cos φ, (A57)

h6 = sin α cos φ′, (A58)



42 GANGADHARA Vol. 710

h7 = sin α sin φ′, (A59)

h8 = sin φ sin φ′, (A60)

h9 = cos α cos φ, (A61)

cos(Γ(θ0)) = 1 + 3 cos (2θ0)√
10 + 6 cos (2θ0)

, (A62)

sin(Γ(θ0)) = 3 sin (2θ0)√
10 + 6 cos (2θ0)

, (A63)

Γ (θ0) = tan−1

(
3 sin (2θ0)

1 + 3 cos (2θ0)

)
, (A64)

Γ′ (θ0) = 4

5 + 3 cos (2θ0)
+ 1, (A65)

Γ′′ (θ0) = 24 sin (2θ0)

(5 + 3 cos (2θ0)) 2
, (A66)

Γ(3) (θ0) = 24(10 cos(2θ0) − 3 cos(4θ0) + 9)

(5 + 3 cos (2θ0)) 3
, (A67)

Γ(4) (θ0) = 24(107 sin(2θ0) + 120 sin(4θ0) − 9 sin(6θ0))

(5 + 3 cos (2θ0)) 4
. (A68)

Note that φ′, which appears in the above equations, is just a variable for the rotation phase, and the prime (′) on it does not represent
any differentiation.
By having known the derivatives of β from Equations (A48)–(A52), we can define the derivatives N evaluated at θ0 :

N(θ0) = β ′(θ0), (A69)

N ′(θ0) = β ′′(θ0), (A70)

N ′′(θ0) = β(3)(θ0), (A71)

N (3)(θ0) = β (4)(θ0). (A72)

A.2. The Series Expansion Coefficients of Equation (24)

c0 = g1(2g3 sin3 (θ0) − 3g5 cos (θ0) + 2g2 +
√

3 (log(2) − 2 log (g4))), (A73)

c1 = 3g1(sin(θ0)(g3 sin(2θ0) + 2
√

10 + 6 cos(2θ0)) + κ cos(Γ0)(sin(θ0) − 3 sin(3θ0))), (A74)

c2 = 3g1 (g6 (1 + 3 cos (2θ0)) + 2κ cos (Γ0) (5 + 3 cos (2θ0)) (cos (θ0) − 9 cos (3θ0)))

4 (5 + 3 cos (2θ0))
, (A75)

c3 = 1

4
g1

(
−g3 cos (θ0) + g7 − 4

√
2 (28 sin (θ0) + 9 (5 sin (3θ0) + sin (5θ0)))

(5 + 3 cos (2θ0)) 3/2

)
, (A76)
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where

cos (Γ0) = sin α sin ζ cos φ′ + cos α cos ζ, (A77)

g1 = ω re

12cκ
, (A78)

g2 = 6 +
√

3 log(2 +
√

3), (A79)

g3 = 6κ(sin ζ (sin φ sin φ′ − cos α cos φ cos φ′ ) + sin α cos ζ cos φ ), (A80)

g4 =
√

6 cos (θ0) +
√

5 + 3 cos (2θ0), (A81)

g5 = 4κ cos (Γ0) sin2 (θ0) +
√

10 + 6 cos (2θ0), (A82)

g6 = 7g3 sin (θ0) + 3g3 sin (3θ0) + 8
√

10 + 6 cos (2θ0) cos (θ0) , (A83)

g7 = 9g3 cos (3θ0) − 2κ cos (Γ0) (sin (θ0) − 27 sin (3θ0)) . (A84)

APPENDIX B

B.1. To Find the Solution to the Integrals in Equation (25)

Consider the integral

S0 =
∫ +∞

−∞
ei(c1 μ+c2 μ2+c3 μ3

dμ. (B1)

By changing the variable of integration μ = (x/l) + m and defining the constants l = 3
√

c3 and m = −c2/(3c3), we obtain

∫ +∞

−∞
ei(c1 μ+c2 μ2+c3 μ3)dμ = U

∫ +∞

−∞
ei(z x+x3)dx, (B2)

where

z = 1
3
√

c3

(
c1 − c2

2

3c3

)
, U = 1

3
√

c3
e
i

c2
3c3

(
2c2

2
9c3

−c1)
.

For Im(z) = 0, we know

j0 =
∫ ∞

−∞
ei(zx+x3)dx = π

3
√

3

[(
1 −

√
z2

z

)
Ai

(
−

√
z2

3
√

3

)
+

(
1 +

√
z2

z

)
Ai

(√
z2

3
√

3

)]
, (B3)

where Ai(z) is an entire Airy function of z with no branch cut discontinuities, and

j1 =
∫ ∞

−∞
x ei(zx+x3)dx = −i

2π
3
√

32
Ai′

(
z

3
√

3

)
, (B4)

where Ai′(z) is the derivative of the Airy function Ai(z). Therefore, we have

S0 = Uj0. (B5)
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By differentiating Equation (B2) on both sides with respect to c1 we obtain

S1 =
∫ +∞

−∞
μei(c1 μ+c2 μ2+c3 μ3)dμ = U

3
√

c3

∫ +∞

−∞

⎛
⎝x − c2

3 3

√
c2

3

⎞
⎠ ei(z x+x3)dx = U

3
√

c3

⎛
⎝j1 − c2

3 3

√
c2

3

j0

⎞
⎠ . (B6)

Differentiation of Equation (B2) on both sides with respect to c2 gives

S2 =
∫ +∞

−∞
μ2ei(c1 μ+c2 μ2+c3 μ3)dμ = U

3c3

∫ +∞

−∞

(
2c2

2

3c3
− c1 − 2c2

3
√

c3
x

)
ei(z x+x3)dx = U

3c3

[(
2c2

2

3c3
− c1

)
j0 − 2c2

3
√

c3
j1

]
. (B7)

Next, by differentiating Equation (B2) on both sides with respect to c3 we obtain

S3 =
∫ +∞

−∞
μ3ei(c1 μ+c2 μ2+c3 μ3)dμ = U

9 3

√
c7

3

∫ +∞

−∞

⎛
⎝9c1c2c3 − 4c3

2 + i9c2
3

3 3

√
c2

3

+
(
4c2

2 − 3c1c3
)
x

⎞
⎠ ei(z x+x3)dx

= U

9 3

√
c7

3

⎡
⎣(

9c1c2c3 − 4c3
2 + i9c2

3

)
3 3

√
c2

3

j0 +
(
4c2

2 − 3c1c3
)
j1

⎤
⎦ . (B8)

REFERENCES

Asseo, E., Pelletier, G., & Sol, H. 1990, MNRAS, 247, 529
Blaskiewicz, M., Cordes, J. M., & Wasserman, I. 1991, ApJ, 370, 643
Buschauer, R., & Benford, G. 1976, MNRAS, 177, 109
Cheng, A. F., & Ruderman, M. A. 1979, ApJ, 229, 348
Cordes, J. M., Rankin, J. M., & Backer, D. C. 1978, ApJ, 223, 961
Cox, J. L., Jr. 1979, ApJ, 229, 734
Dyks, J., Rudak, B., & Harding, A. K. 2004, ApJ, 607, 939
Gangadhara, R. T. 1997, A&A, 327, 155
Gangadhara, R. T. 2004, ApJ, 609, 335 (G04)
Gangadhara, R. T., & Gupta, Y. 2001, ApJ, 555, 31
Gangadhara, R. T., Xilouris, K. M., von Hoensbroech, A., Kramer, M., Jessner,

A., & Wielebinski, R. 1999, A&A, 342, 474
Gil, J. A. 1986, ApJ, 309, 609
Gil, J. A. 1987, ApJ, 314, 629
Gil, J., Kijak, J., Maron, O., & Sendyk, M. 1995, A&A, 301, 177
Gil, J. A., Kijak, J., & Zycki, P. 1993, A&A, 272, 207
Gil, J. A., & Krawczyk, A. 1997, MNRAS, 285, 561
Gil, J. A., Lyubarsky, Y., & Melikidze, G. I. 2004, ApJ, 600, 872
Gil, J. A., & Rudnicki, W. 1985, A&A, 147, 184
Gil, J. A., & Snakowski, J. K. 1990a, A&A, 234, 237
Gil, J. A., & Snakowski, J. K. 1990b, A&A, 234, 269
Gupta, Y., & Gangadhara, R. T. 2003, ApJ, 584, 418
Han, J. L., Manchester, R. N., Xu, R. X., & Qiao, G. J. 1998, MNRAS, 300,

373
Jackson, J. D. 1975, Classical Electrodynamics (New York: Wiley)
Karastergiou, A., Johnston, S., & Kramer, M. 2003, A&A, 404, 325
Karastergiou, A., Kramer, M., Johnston, S., Lyne, A. G., Bhat, N. D. R., &

Gupta, Y. 2002, A&A, 391, 247
Karastergiou, A., et al. 2001, A&A, 379, 270
Karpman, V. I., Norman, C. A., ter Haar, D., & Tsitovich, V. N. 1975, Phys.

Scr., 11, 271

Kazbegi, A. Z., Machabeli, G. Z., & Melikidze, G. J. 1991, MNRAS, 253,
377

Kazbegi, A. Z., Machabeli, G. Z., & Melikidze, G. J. 1992, in Proc. IAU
Coll. 128, The Magnetosphere Structure and Emission Mechanism of Radio
Pulsars, ed. T. H. Hankins, J. M. Rankin, & J. A. Gil (Zielona Góra:
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