
Proc. Indian Acad. Sci. (Engg. Sci.), V()1. 3, P<lrt 1, March 1980, pp. 37-45. © Printed in India. 

Complete solution for a two· dimensional tanh-conductivity arc 
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Abstract. This paper is a sequel to an earlier work on the dynamics of a two-dimen­
sional tanh-conductivity arc. We present here a complete solution, based on the 
Galerkin technique, for the characteristic variation of current-vol tage through an 
arc. The present results are qualitatively very similar to those obtained in earlier theo­
retical and experimental studies. The solutions obtained are the modification of the 
basic equations, which ha, led to quantitative investigations of the present problem. 
The influence of various arc parameters on the arc fonnation is also discussed. 

Keywords. Arc; Galerkin method; tanh-conductivity. 

1. Introduction 

In recent years, a great deal of interest has been focussed on the advantages of the 
dynamics of arc ph€l1omena. Many investigators have tried to get an insight into 
the basic mechanism of arc discharges but most of them have chosen an ideal model 
for the sake of mathematical simplicity. In this paper we attempt to study the basic 
mechanism of arc discharges in a two-dimensional tanh-conductivity arc. Due to 
the inherent limitations of the numerical procedure, an earlier study (Ayyaswamy 
et al 1978) of a two-dimensional tanh-model arc lead to an incomplete solution of 
the current-voltage variation. Further study of the arc was necessitated by modify­
ing the basic equations governing the arc dynamics. We consider here a two-dimen­
sional planar arc between two planar electrodes. The mathematical formulation of 
tl1e model is very similar to that for the discharge lamps prosented by Waymouth 
(1971). With the knowledge gained ill our earlier work (Ayyas\vamy et al 1978) 
the basic equations are now modified. We also study the equal and unequal tempe­
ratures of the cathode and anode. The results obtained here are similar to those 
obtained in another experiment on arc discharge lamps (Waymouth 1971). 

2. Mathematical formulation of the problem 

We consider a simplified model of a planar arc between two planar electrodes. 
Figme 1 shows the geometry, boundary conditions and co-ordinate systems of the 
arc. In the absence of radiation and convection, the fundamental equation for the 
energy conservation in the arc is given by the Elenbass~Hener equation, 

V (k v T) = -lE, (1) 
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Figure 1. Arc geometry, boundary conditions and co-ordinate system. 

where k is the thermal conductivity; T is the temperature; J is the current and E is 
the electric field. Equation (1) is supplemented by Ohm's law: J = aE, where a is 
the electrical conductivity assumed to be a function expressed by a tanh-function 
proposed first by Whitman et al (1976). Further v xE=O i.e. E = -'Vc/>, where 
cf> is the electrostatic potential. We introduce the heat flux S as 

T 
SeT) = f k(r') dT'. (2) 

o 

With the definition of S, the electrical conductivity O'(S) is expressed as: 

(3) 

where 0'* and a are material constants. The basic equations are subjected to the 
following appropriate boundary conditions: 

x = ±L. S = Sw. acf>Jax = 0, (4) 

y = ±lJ2, S = SC,Q (x), cP = tPc,ao 

The total current through the arc is given by 

1= f J(ldA) 

(where dA is the cross-sectional area) .which can be represented after straightfon'Vard 
manipulation as: . 

1 = - t II [1 + tanh (II- S) (}! dx], (5) 
-1 (}y 
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where S is the non-dimensional quantity defined as S=(S-S*)/(S*-Sw). The other 
parameters are normalised as: 

x = x/L, Y = y/L, 

J = /[20'* (S*-Sw)]-.r, 

~ = c,b[2 (S*--Sw)/O'*]-t 

The basic non-dimensional equations are now read as: 

8~~ + 8~~ + [l+tanh (p,S)] [(~~/8x)a + (~~/8;)'J.] = 0, 
~x~ ~Y· 

~~ + ~~ + ",,[I-tanh (p.S)] [8~ ~~ + ~t 8~] = 0, 
~X9 By- 8x 8x 8y 8)' 

and the corresponding boundary conditions are: 

x = ±I, S = -1, (8~/8x) = 0, 

y = ±b, B = Be,a (x), ~ = ;;;C,(l' 

(6) 

(7) 

(8) 

Equations (6) and (7) are solved, though not completely, with boundary conditions 
(8). But, the current-voltage variation in a certain range of the discharges is not 
fully obtained (Ayyaswamy et aI1978). 

The solution of ~ obtained by Ayyaswamy et al (1978) shows that ~ remains 
almost constant with respect to x. The solution of ~ allows us to assume ~ to be 
a constant with respect to x. Consequently the assumption modifies the basic 
equations and can be read as (the bar is omitted hereafter): 

and 

(8aS/~xa) + (~2S!8y2) + [l+tanh (pS)1 (8c,b!8Y)! = 0, 

J = - t (~c,b/8Y) f~l [1+tanh (p.S)] dx. 

(9) 

(10) 

To solve equation (9) together with (10) and the boundary conditions (8), we intro­
duce the new variables u(x, y) for Sex, y) as: 

sex, y) = u(x, y) + F(x, y), (11) 

where F(x, y) = Ulx)+I] (Y~b) - [1a(x)+l] (Y 2bb) - 1, (12) 

Ic(x) and Ia(x) are respectively cathode and anode temperature parameters defined 
as 

(13) 
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where Ii andJi. are numerical constants. Equations (9) and (10), with the help of 
(11) can be rewritten as: 

and 1= -t(84)/8Y) J~l {I +tanh[l'(u+F)J}dx, (1S) 

and the boundary conditions are 

x=±l, tl =0, (16) 

y=±b, u=o, 

(Ju 
- (O,y)=O. 
8x 

To solve the above equations for the prescribed arc parameters, with the homo­
geneous boundary conditions, we adopt the Galerkin procedure (Finlayson 1972); 
u is expanded into an approximating series of polynomials viz.: 

(17) 

where t=y/b. The number of terms in the series has to determine the accuracy of 
percentage to be imposed on the obtained results. Using the expanded expression 
(17) in (14), we form the integral 

Since we now require the residuals to be orthogonal to each term ill the approximat­
ing series, we make Imnp=O, which gives a set of mxnxp equations. Initially, we 
consider a series with four terms but, whenever necessary, we consider the series with 
eight terms. In the case of unequal electrode temperatures, a series of eight terms is 
considered. The iteration on the Galerkin coefficients Allinp is continued until the 
condition 

(19) 

is satisfied. The results obtained by the procedure described above agree well with 
the experimental results on electric discharge lamps (Waymouth 1971). To check 
the present results for a few cases, we consider more terms in the series, but they do 
not show a very significant variation from the results obtained with the series of 
eight terms. After obtaining satisfactory values of the Galerkin coefficients Am,., we 
calculate the heat flux potential and the arc shape from the expression of S. We 
also obtain the net heat transfer to the walls as well as to the electrodes from the 
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arc. The dimensionless heat transfer rates to the wall Qw and to the electrodes 
Qa. c are computed respectively from the following expressions: 

"1 
Qw = - b J -1 «()S/~X)X=l dt, (20) 

Q a,e = ± f~l (ljb) (8S/8t)t=fl dx, (21) 

where Qa and Qc represent the heat transfer to the anode and to the cathode respec­
tivelyand have been made dimensionless by £(S",,-S .. ). 

3. Discussion 

Figure 2 shows the dimensionless current-voltage variation for the different aspect 
ratios b and for the case of electrodes having equal and unequal temperatures. 
The figure clearly shows that it is necessary to operate with the hot electrodes for 
an arc to be formed between the two electrodes. In the case of comparatively 
cold electrodes, the current-voltage variation exhibits three distinct phases. In the 
initial stage, where the current is very small (part AB: only curve 5 is marked), 
the current increases with the voltage, but does not have any significant effect on the 
electrodes. The current remains almost unchanged. This characterisation is con­
tinued until the whole electrodes are heated and are at a high voltage. Consequently 
in this range, the arc is not fully formed. The range described above is widened with 
the increase of the distances between the electrodes and consequently more voltage is 
required to form the arc. For a fixed arc geometry with prescribed electrode tempe­
ratures, it is necessary to input a sufficient voltage/current to arrive at a new region 
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(part CD) for which an arc is formed b\!twCCl1 th(: two planar clcctroJcs. The cur­
rent ill this region varies linearly 'with the v()ltag~.. Bet ween the abO\ e t \\0 distinct 
ranges (AD and CD) there is a transition range (part BC) \\ hose existence depends 
mainly on the electrode temperatures. In this region. the clllTt!nt-vollage yuriation 
shows an opposite tendency. In the case of the hotter electrodes this region does 
Ilot exist or may exist only insignilkl!ntly. Howc\ cr. fur I he ~'\)!d d.:\.'1 rodes. part BC 
will exist between the electrodes. Tile ekdrolk~ di~tal1c.: ha~ ahu a role in the 
formation of the BC part of the curve. 

Figure 3 shows the variation of heat flux Pll;Clllilli distributj\lll with - aiong the 
central line (x=-...;O) and with x perrcndicular tn the central lim' i \. 'b--O). The figure 
shows that \vhenever the heat fluxes are negUii\l~ the arc is not rormed. In drder to 
have an arc, the fLrst criterion is tlwl the heal nux potential :-.hnuld he !)O:,ithe. The 
arc can have an insignificant fOnn:1lion, provilkd the It'mpl.'raturc parameters of the 
electrodes exceed one. Othcl'wi:.c, the arc bCl!ndary will not cover ::ny part of the 
surface of the electrode. We have considered the ri)!l,m!n~! lemp('!'ature parameters 
for our numerical calculation: 

(1) fi :=.1; 1·1. h 4·0, 

(2) ,f;. = 0'2, h "'-; 0·5, h 4·0. 

(3) II = O'S,}; = 1'1. b ,3-0. 

,---,----.;----;---,-, -.--,----r---;----.-----"..---. 
6.0 S liS v/b cr=o) 

5 '\'$ i' (9'/b"'O) 
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Figure 3. Temperature profile$ on arc. r is the pammeter of the curves l, ~. 3 
andS. 
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(4) 11 = 0'2'/2 = 1·5, b = 8·0, 

(5) h = 0'5'/2 = 0·2, b = 3'0, 

and the respective curves are 1, 2, 3, 4 and 5 in figure 2. In the case (5), no arc 
can be formed to cover any part of the electrodes. Cases (2)-(4) show that the arc 
surface if formed distinctly, will only touch the cathode. But in the case of (1), the arc 
surface will touch both the cathode and the anode. Figure 4 shows the variation 
ill the arc shape corresponding to the characteristic curves 1, 2, 3 and 5 given in 
figure 2. The arc shape is defined by the locus of the points for which 8=0. In 
the range in which the current contribution is small, or the electrodes are cold (i.e., 
the region AB), S is always negative which shows that no arc is present between 
the electrodes. In the case of high current or voltage, there is an arc formation. 
The thickness of the arc will be broadened with increasing current. It indicates 
that due to the high current input, the arc surface almost touches the walls. Thus, 
it is necessary to control the arc shape in order to make a full use of the arc for 
lighting purposes. When an external mechanism is used to control the arc shape, 
the arc will exhibit great brightness even though the input current is comparatively 
small. 

The variation of the heat transfer phenomena is shown in Figure 5. In the low 
current region, the electrodes always lose heat which are absorbed by the walls. The 
walls thus gain more and more heat with increase of the current and electrodes con­
tinue to lose that heat until the arc is formed. This happened in the branch curve 
AB. In the second branch of curves in figure 2, either the cathode or anode will 
lose the heat depending on the initial temperatures of the cathode and the anode. 
The low temperature' electrode will gain heat from the higher temperature electrode. 

In our calculation, we assume that the cathodes always have the higher tempe­
rature. So the walls and the anode will always absorb the heat. On the other 
hand if the cathode is colder than the anode, the cathode will absorb and the anode 
will lose the heat. But a different feature is observed as soon as the arc is formed. 
If a complete arc between the planar electrodes is formed, then both the walls 
and the electrodes will be heated by the arc. The heat transfer increases with the 
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FiglJre 4. Arc shape: x* versus Ytb. Tis the parameter of the curves 1, 2j 3 and 5. 
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Figure 5. Heat transfer to walls (x=±1) and electrodes (Ylb=±l). Tis the para­
meter of the curves 2, 3 and 5. 

current. At a high current, a dramatic feature of heat transfer will be exhibited 
i.e., the boundaries of the arc will attain the maximum volume and almost touch the 
walls and this explains the fact that heat transfer to walls will be of a high order. 
Similarly, at a high current, the electrodes will gain heat from the arc. 

4. Conclusion 

By using the Galerkin technique a complete solution for a system of nonlinear 
differential equation governing the arc phenomena between the two electrodes is 
obtained. The characteristic features of the current-voltage variation show a good 
agreement between theory and experiment. The classic behaviour of the arc, emerg­
ing from our theoretical study, is summarised as follows. Tn the case of cold elec­
trodes, a high current/voltage is necessary to form an arc between two electrodes, 
whereas high temperature electrodes require only a small current. , In the case of a 
high current, the arc boundaries almost touch the walls due to which the arc loses 
a large amount of heat to the walls. So it is necessary to develop a mechanism to 
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control the arc shape and due to this, a high intensity arc can be formed. Our ma­
thematical modelling of the arc phenomenon also concludes that the higher electrode 
distance requires a higher voltage to sustain the arc between the electrodes. In the 
case of a lower current, the walls gain heat always from the electrodes but there is 
a region in \vhich the hotter electrodes lose the heat to the walls and to the cold 
electrodes. As soon as the arc is formed, both the walls and the electrodes gain 
heat from the arc. 
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