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ABSTRACT

Shack Hartmann Sensor (SHS) is inflicted with
significant background noise that deteriorates the
wave-front reconstruction accuracy. In this paper,
a simple method to remove the back ground noise
with the use of Zernike polynomials is suggested.
The images corresponding to individual array
points of the SHS at the detector, placed at the
focal plane are independently reconstructed using
Zernike polynomials by the calculation of Zernike
moments. Appropriate thresholding is applied on
the images. It is shown with computational
experiments that using Zernike Reconstructor
along with usual thresholding improves the
centroiding accuracy when compared to direct
thresholding. A study was performed at different
Signal to Noise ratio by changing the number of
Zernike orders used for reconstruction. The
analysis helps us in setting upper and lower
bounds in the application of this denoising
procedure.

Keywords : Shack Hartmann sensor, background
noise, Zernike Reconstructor.

1. INTRODUCTION

There are a wide range of applications where
wave-front sensing is essential like adaptive optics,
lens testing and ophthalmology [1]. A Shack
Hartmann Sensor (SHS) measures the shape of the
wave-front incident on it [2]. It is made up of
lenses arranged in a two dimensional array that
directs the light towards the focal plane. A
detector placed at the focal plane of the lenslet
array records the position of the spots. The spots
by and large maintain a Gaussian structure. The
signatures of the distortions in the wave-fronts are
seen by the sensor as local shifts in the focal spots
depending on the local slopes across individual
apertures [3]. The wave-front sensors generally
operate in real-time and the position of the
fluctuating spot is estimated at a frequency equal

to the rate of fluctuations using centroiding
techniques [4]. The shape of the wave-front is then
evaluated from the measured shifts of the spots [5-
8].

The problem of estimating the centroid of an
incoherently imaged point with a detector array is
analyzed in the literature [9]. The effects of this on
a wave-front reconstruction formed by a Shack–
Hartmann sensor are described. Generally, the
wave-fronts falling on the sensor carry along with
them additive noise which cannot be distinguished
most times from the actual signal. There are many
methods of minimizing the effects of noise like
thresholding, noise filtering by linear, median and
adaptive filters. In applications where the Signal to
Noise Ratio (SNR) is small, noise minimization
becomes important. At low SNR, some of the
above mention methods of noise minimization fail.
They even do not take the advantage of the fact
that in this case the spot pattern is generally
Gaussian.

Zernike polynomials are a set of continuous
orthogonal circular polynomials defined over the
unit disk. Since they form a complete set of
orthogonal polynomials, any 2D function can be
represented as a proper linear combination of this
basis set [10]. Zernike polynomials are used in
many applications such as pattern recognition,
image representation, aberration production and
wave-front sensing [11-12]. Zernike polynomials
are known for their ease of production and
representation of Seidel aberrations using lower
order Zernike polynomials. There are many
recursive algorithms for easy computation of
Zernike moments of two dimensional image
functions [12]. In this paper, calculation of the
Zernike moments is done using a fast and accurate
method implemented by Hosny that minimizes the
geometric errors by a proper image mapping and
removes approximation errors by the exact
calculation of Zernike moments [13]. Noise is
generally a higher order feature compared to the
signal. The reconstruction of the images using
lower order Zernike moments will minimize the
noise amplitude compared to the signal. This



method may fail if the spatial extent of noise
becomes significantly comparable to the signal
length scales, in this case, the spot size. By
applying a suitable noise threshold over the
images, it is also possible to eliminate the effects
of background noise. In the case of the Shack
Hartmann spots, the signal features are similar to
noise features for small spots and hence more care
has to be taken so that the signal strength is not
reduced. This is the major reason why regular
noise removal algorithms fail in this case.

The performance of the proposed method is a
function of the SNR, the number of Zernike
moments used for image reconstruction and
threshold. A detailed analysis of the centroiding
accuracy to the sensitivity of SNR, optimum
number of Zernike moments and threshold limit is
presented. Optimization of these parameters will
allow us to place limits over the performance of
the sensor in the presence of noise. Taking the
advantage of the fact that the spot maintains a
Gaussian shape, it is shown using computational
experiments that the noise can be efficiently
removed even at low signal levels.

2. BACKGROUND

Zernike polynomials are well known basis for
image processing and image representation
applications. The finer details of the images are
represented using higher orders of Zernike
moments and the broad features need computation
of lesser number of moments.

The Shack Hartmann spot pattern superimposed
by a uniform background noise was simulated.
These simulated images were used for the
statistical analysis of the proposed method. The
spot pattern images were reconstructed using
Zernike polynomials.

2.1 Simulation of the spot pattern

The Simulation of the spot pattern at the focal
plane of SHS was performed in two steps as
detailed below:

 A 2D Gaussian intensity pattern was
simulated with an image size of 64×64
square pixels. The centre of the spot was
positioned at a known position on the image.
The shifts were measured with respect to the
image centre. The assumption of a Gaussian
image spot is more appropriate in the case of
larger spots since they satisfy the minimum
distance condition to represent a Gaussian

spot better. The simulation has control over
the spot size, SNR, the shift of the spot and
image size. Throughout the paper, the spot
size was maintained to be 6 pixels across the
diameter of the spot. Spot size is defined as
the distance over which the intensity falls off
to 1/e value of the maximum intensity.

 A 2D spatially uniform noise was then
superimposed on the simulated spot whose
spatial intensity distribution function
followed Gaussian statistics.

Sample spot pattern images with different SNR
are shown in Fig. 1.

Fig. 1. Spot pattern images with SNR (a) 0.3 (b)
0.5 (c) 0.7 and (d) 0.9

2.2 Proposed Method-Zernike Reconstructor
(Z.R) + Thresholding (Th)

The proposed noise removal method is a two
step process involving the reconstruction of
images using Zernike polynomials and the
application of classical image thresholding
algorithm. The spot pattern image with SNR=0.3
reconstructed using Zernike moments is shown in
Fig. 2.

Fig. 2. Images reconstructed using Zernike
Polynomials (a) original image (b) Reconstructed

using 25 orders (c) 30 orders (d) 35 orders

During the thresholding process, individual
pixels are marked as target pixels if their pixel
value is greater than the threshold and pixels with
pixel values below the threshold are forced to take
the lowest pixel value. Applying thresholding
(80% of the peak value) to the noise image
directly and the reconstructed images shown in
Fig. 2(b), 2(c), 2(d) have a different effect and are
shown in Fig. 3.



Fig. 3. Thresholding (a) original image (b) 25
orders (c) 30 orders (d) 35orders

2.3 Centroiding Algorithms

The centroiding methods used in this paper
include normalized Centre of Gravity (CoG) and
Iteratively Weighted Centre of Gravity (IWCoG).
The CoG method uses the averaging formula,
which is the ratio of sum of products of position
coordinate and intensity at that point to the total
intensity. Weighted CoG method uses additional
information that the spot has a Gaussian spread
and weights the intensity function with a Gaussian
intensity distribution, effectively fitting a Gaussian
to the spot. In IWCoG method, the position of the
Gaussian centre and the spread are iteratively
corrected to go closer to the actual position of the
centroid [4].

These techniques have their advantages and
disadvantages. CoG method has advantage over
other techniques in the absence of noise. In the
presence of background noise the performance of
CoG method is degraded. If the background noise
is uniform and the number of pixels under
observation (image size) is large then statistically,
the centroid of the noise will be closer to the
image centre and not close to the actual centroid at
low SNR. The IWCoG method has an advantage
that it can detect the centroid position more
accurately even in the presence of noise, but at the
cost of increased computational time and iteration
convergence problems. If the shape of the spot is
not retained as a near Gaussian due to the addition
of background noise, IWCoG fails to accurately
locate the centroid, in which case noise
minimization becomes critical.

2.4 Average Centroid Estimation Error

The performance of the centroiding algorithms
was analysed using the percentage centroid
estimation error (CEE) defined as shown below:

100
)) 2*2*





S

(y(x
CEE

cc cc yx

(1)

where (xc, yc) represents the position of the actual
centroid (known since the spot position is
controlled by the simulation), and (xc*, yc*) is the

centroid position estimated using the algorithms. S
is the amplitude of shift of the spot from the image
centre (also known from simulation). Since the
added noise is a statistical quantity, average
centroid estimation is calculated which is an
average of many realizations of the centroid
estimation error for a particular case. In the
subsequent sections, average centroid estimation
error is the mean of 100 realizations of the
centroid estimation error.

2.5 Gaussian Spot

In this case it is possible to take the advantage
of the fact that the spot maintains a Gaussian
shape. Fig. 4 shows the case of partial noise
removal.

Fig. 4. Partially noise removal (a) Gaussian spot
(b) Noise imposed Gaussian spot, SNR=0.2 (c)
Spot pattern reconstructed using 44 orders of
Zernike polynomials (d) 60% Thresholding.

The minor features in Fig. 4(d) are a resultant of
the significant features in the reconstructed spot,
Fig. 4(c). Although these minor features are
significantly large, they do not bear a Gaussian
shape. Pattern recognition algorithms can be used
to eliminate these features. The next question
arises as to how to recognize whether the images
are partially or fully noise free. This can be done
by measuring their correlation with a standard
Gaussian spot image. If the images contain these
minor features, the value of the correlation
coefficient is low (< 0.7).

3. SIMULATION RESULTS

3.1 Signal to Noise Ratio

The performance of the centroiding algorithms
depends strongly on the SNR. A comparison of
CoG and IWCoG algorithms at different SNR is
shown in Fig. 5.

The performance of the Zernike reconstructor
based noise removal algorithm method is a
function of the signal to noise ratio when applied
to different centroiding algorithms. The
comparison of the performance of the CoG



algorithm before and after the introduced noise
removal algorithm is shown in Fig. 6.

Fig. 5. Comparison of the performance of the
centroiding algorithms

Fig. 6. Comparison of the performance of CoG
method before and after noise removal algorithm

Fig. 6 suggests that the application of noise
removal algorithm has very significant effect on
the CoG algorithms at low SNR which otherwise
is an under performer. Above a SNR of 0.3, the
centroid estimation error reduces below 10%. The
same effect is not seen in the case of IWCoG. The
application of the noise removal algorithm is
shown in Fig. 7. As it is, the IWCoG method has
little CEE at SNR > 0.5 as shown in Fig. 5. The
extent of improvement in the performance of the
algorithm at SNR = 0.25 is greater than 5%.

Fig. 7. Comparison of the performance of
IWCoG method before and after noise removal

algorithm

3.2 Shift in spot

The CEE reduces in the case of higher shift in
the spots in the case of CoG and IWCoG in

general without applying the noise removal
algorithm. The behavior of the CoG algorithm
with ZR + Th for shifts of 0.5, 1, 1.5 pixels at
different SNR also follows a similar trend below a
SNR of 0.4. The bigger spot size has lesser error
as shown in Fig. 8. There is an interesting
phenomena observed repeatedly at SNR = 0.4,
where the curves with 0.5 and 1.0 pixel shift cross
each other.

Fig. 8. CoG algorithm performance (with
ZR+Th) at different shift amplitudes

3.3 Zernike Orders

The effect of using different number of Zernike
moments for reconstruction is shown in Fig. 2 and
Fig. 3. Increasing the number of Zernike moments
for image reconstruction makes the finer features
of the image more prominent. And hence the noise
which is a finer feature in our case stands out.
Making the finer features more prominent puts a
lower limit on the threshold for complete noise
removal, but this higher thresholding may lead to
signal loss too. Hence it is suggested to use less
number of Zernike orders for reconstruction and a
hence lower threshold for total noise removal.

3.3 Thresholding Limits

Fig. 9. Choice of threshold below SNR=0.5
maybe critical



Thresholding depends on the signal to noise
ratio. A lower limit on thresholding is dependent
on noise and the upper limit on thresholding is
dependent on the signal strength. The dependence
of the centroiding accuracy on the choice of
threshold is shown in Fig. 9. The choice of
threshold has no effect for SNR > 0.5.

4. CONCLUSIONS

The Zernike reconstructor along with suitable
thresholding on images of the Shack Hartmann
spot pattern can become a very effective tool for
close to complete noise removal. This method can
also be applied to cases where the signal to noise
ratio is small and the spatial extent of the noise is
much smaller compared to the signal. To avoid
IWCoG that leads to convergence problems, the
option of using CoG algorithm along with Zernike
reconstructor based noise removal algorithm may
be considered in wave-front sensing applications.
It is shown that the accuracy of centroiding
improves nearly 20 times while using CoG
algorithm in the presence of noise with SNR less
than 1. It is shown through computational
experiments that even at low amplitudes of shifts
this algorithm performs a good job. The limits on
the threshold value is analyzed and presented.
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