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Abstract. We present a liquid crystal method of correct.ing the phase 
of an aberrated wave--front using a spatial light modulator. A simple and 
efficient lab model has been demonstrated for wave-front correction. The 
crux of a wave--front correcting system in an adaptive optics system lies 
in the speed and the image quality that can be achieved. The speeds 
and the accuracy of wave-front representaLion using Zeruike polynomial!::! 
have been presented using a very fast method of computation. 

1 Introduction 

The possibility of compensating wave-front aberrations was first suggested by 
Babcock [11. The idea of compensation given by him was based on the electro
static forces acting on oil film. The design was that the refractive index changes 
on the oil film can compensate for the aberrations. Later on when the proposal 
of Hartmann was implemented by Shack and Platt [2], to make the first Shack 
Hartmann sensor, people thought of compensating the wave-front using oplics 
(deformable mirrors) rather than refractive index changes of materials. After the 
development of liquid crystals, the possibility of using the changing refractive 
index property for phase restoration applications has been explored. Most ap
plications where phase restorations become essential are human eye aberration 
corrections and atmospheric turbulence compensations. The use of Spatial LighL 
Modulator (8LM) as a wave-front corrector has been demonstrated earlier [3]. 
The advantage of using Liquid Crystal Spatial Light Modulator (LCSLM) is 
that it can be used as a wave-front sensor and corrector a'3 well [4]. Attempts 
are being made to retrieve phase from the diffraction pattern of an aperture ar
ray [51. Phase only corrections using 8LM have been done in the earlier sLudies 
[61. The attention on SLM is because of the various advantages it can offer which 
include high resolution, low cost and compactness. If it is possible to overcome 
some drawbacks like the need of monochromatic polarized light and relatively 
low response time, it is possible to achieve good results with this device. A sim
ple method for phase modulating unpolarized light with a double pass through 
a nematic liquid crystal was described earlier [7J. The broadband performance 
of a polarization-insensitive liquid crystal phase modulator has been proposed 
and its effects in adaptive system have been quantified [8]. More research on how 
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this device can be used with unpolarized broadband light can make LCSLMs the 
best choice for adaptive optics. 

Use of Zernike polynomials for describing aberrations of an optical system 
is well accepted. Since Zernike moments outperform any other moments in rep
resentation of images, they are the best for aberration quantificat.ion, if known 
how to use them correctly. The need for quantification of wave-front aberration 
requires us to compute the Zernike moments which weigh each of the Zernike 
polynomials. Many algorithms exist for computation of these moments. The 
mathematical complexity of the definition of the Zernike polynomials will not 
allow fast computation. Recurrence relationships have been developed by some 
authors like Prata, Kintner, and Belkasim for reducing the computational time 
[9-11]. Coefficient method and the q-recursive method also increased processing 
speeds to a great extent [12,13]. Each of these methods has their advantages 
and disadvantages. A hybrid method involving all the above methods has been 
developed to increase the speed of computations [14]. Very recently, I-Iosny pro
posed a fast and accurate method of computing Zernike moments [15]. This 
method minimizes the geometrical errors by a proper mapping of the image 
and the approximation errors are removed by using exact Zernike moments for 
reconstruction of the image using Zernike polynomials. 

This paper details the generation and correction of Zernike aberrations im
posed on an image using two SLMs. We present the production of different 
Zernike aberrations using the LC2002 Holoeye SLM. Wave-front correction is 
achieved by imposing phase corrections on the second SLM which is a Mead
owlark Optics Hex127 SLM. Both the SLMs were characterized in terms of their 
nonlinearity and phase retardance for best performance. The phase compatibil
ity of the SLMs is checked and is presented here. To obtain the real time closed 
loop wave-front correction, one needs to quantify the aberration. For the quan
tification of aberrations, we need to read the image and the aberrations involved 
in terms of the Zernike moments. "Ve present the results of the calculation of 
Zernike moments. If the aberrations were to be represented by the derivatives 
of Zernike polynomials, some prior knowledge of the aberrations becomes very 
important for the correCtion of the aberrations. If one tries to correct a lower 
order aberration using higher orders, absurd results will be obtained. It is very 
important to have an idea of the number of orders of Zernike polynomials to be 
used for representing aberrations. To obtain exact Zernike moments, iterations 
have to be performed, which will make it difficult to estimate the timescales of 
computations. If the speeds are not an issue, it is possible to use Zernike poly
nomials instead of their derivatives for the reconstruction of an aberration. \Ve 
have suggested the number of orders of Zernike polynomials that must be used 
for aberration representation. Experiments were performed and the images were 
captured before and after the correction for comparison. A complete study of the 
effect of various aberrations and the images as they look after the imposition 
of Zernike aberrations has been presented. The extent of correction has been 
quantified and the results have been presented. 
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2 Theory 

2.1 Calculation of Zernike Moments 

Zernike polynomials are continuous orthogonal circular polynomials defined over 
the unit disk. Since they forma complete set of orthogonal polynomials, any 2D 
function can be represented as a proper linear combination of this basi::; set.. The 
Zernike polynomials are defined as, 

Even Zernike Polynomials: 

Z:(p,¢) = R';:(p) cos(m¢) 

Odd Zernike Polynomials: 

where 

where 

also, 

Z;:"(p, ¢) = R";,m(p) sin(m¢) 
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The recurrence relations used. for computation of factorial terms are modified 
for computational ease, 



Spatial Light Modulator for 'Wave-Front Correction 321 

n 
D(n,k) = n _ kD(n -1, k) when n,# k 

1 
D(n, k) = k,D(n, k - 1) when n = k 

D(O,O) = 1 and D(n, 0) = 1 (8) 

The parameters V, Band D defined in (4), (7) and (8) are calculated 
beforehand since they do not depend on the aberration function. 

The geometric moments are calculated using 

N N 

G~ = ~~ln(i)lm(j)f(xi,Yj) (9) 
i=l j=l 

where, 

I (i) = _1_[U;,-+1 - U,!",+1] 
n n + 1 z+l % 

1 (J') = _1_[U!1+1 - U:,,+l] 
m m + 1 3+1 J 

(10) 

where, 

u' _ ---.:2(:,....i -_1 ),=-,---N 
~- NV2 (11) 

Since the parameter I does not depend on the function I(x, y), it is stored in 
a vector form to improve speed. 

2.2 Calculation of PSNR and Strehl ratios 

For the evaluation of the image quality, we ca.lculated the Peak Signal to Noise 
Ratio (PSNR) which is related to the Root Mean Squared (RMS) error by the 
relation, 

2b -1 
PSNR = 10 x log RMS2 

for an b-bit image. Comparison was done between equi-sized images. 

(12) 

The ratio of the intensity at the Gaussian image point in the presence of 
aberration to the intensity that would be obtained if no aberration were present is 
called the Strehl ratio. Strehl ratio (8. R) is ca.lculated using the Zernike moments 
of the image. 

(13) 
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Fig. 1. The experimental set up for wave-front correction 

3 Experimental setup 

The layout of the experiment is shown in figure 1. SLMl is an electrically ad
dresse<i LC2002 model from HoloEye Photonics. It consists of a twisted nematic 
LC panel (Sony LC- XOI6AL-6) with an active area of 26.6 x 20.0mm2 having 
832 x 624 pixels. Image parameters like brightness and contrast settings can be 
controlled using the driver software over a range from 0-2.5.5 (grayscales). 8LM2 
is a Meadowlark Optics Hex 127 SLM with 127 hexagonal pixels. The size of each 
of the pixels is Imm. Pixels are arranged such that the effective area of the SLM 
forms a circular shape. We used a 15m W He-Ne laser operating at 632.8nm. 
The output of the laser is spatially filtered using a Newport 3-axis spatial filter 
mount setup. The filter consists of a 40X beam expander and a 5J1. pinhole. GP 
is a Glan polarizer and PI, P2 are linear sheet polarizers. Ll is a doublet of focal 
length 20crn and L2, L3 are triplets of focal length 12.5crn and the reimaging 
lens L4 is a doublet of focal length 25 cm. SLM2 is at the image plane of the 
SLM!. 

The object was placed before SLMI and the CCD was placed on the image 
plane of the object. SLM 1 was used for the projection of the aberration, the 
Zernike polynomials in our case. SLM2 was used for phase correction. 

4 Results 

4.1 Computational experiments 

Zernike Moments were calculated for different 2-D discretely continuous and 
bounded functions and the image.') were reconstructed using the Zernike poly
nomials. The original and the reconstructed images are shown in figure 2. Re
construction of Lena image has been shown in figure 3. The PSNR has been 
calculated for reconstructed images using different number of Zernike moments 
and has been plotted in figures 4 and 5. 
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Fig. 2. 64x64 'E' image used fo!' reconstruction. Image quality improves by increasing 
the number of Zernike moments (a) original (b) 20 orders (c) 30 orders (d) 40 orders. 

The speed at which we computed Zernike moments for 7 orders is nearly 
7/J,s. Speeds a.chieved for a 64x64 image is precisely given in ta.ble 1 and are also 
plotted in figure 6. 

In understanding the phase disturbed images of low resolution, especially for 
astronomical applications; we took random images of 36 degrees of freedom, i.e. 
36 phase values and reconstructed those using Zernike moments as shown in fig
ure 7. In figure 8, we plotted the image quality (normalized PSNR) as a function 
of the number of orders of Zernike polynomials used for the reconstruction. The 
optimum value of Zernike orders to be used for image reconstruction depends on 
two factors, the accuracy of representation that the application demands and the 
speed at which the processing has to be done. This graph suggests that for low 

I L 
(a) (b) 

Fig. 3. 64x64 Lena's Image (a) Original (b) Mathematically reconstructed using 44 
orders of Zernike polynomials. 
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Lena Image 64 by 64 PSNR :alculalions 
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Fig. 4. The PSNR calculations of a 64x64 image of Lena. 

E image 64 by 64 PSNR calculations 
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Fig. 5. The PSNR calculations of a 64 x 64 'E' imagea. 
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Fig. 6. Processing time for a grayscale 64 x 64 image. 

(a) (b) 

Fig. 7. Random phase image reconstruction using Zernikes (a) Original phase image 
generated using MATLAB. Reconstruction using (b) 15 orders (c) 20 'orders (d) 25 
orders of Zernikes. 

resolution imag(.><:; like this one, using less number of orders ca.n give ver.Y good 
results unlike for Lena's image, where using 45 orders is also not satisfactory. 

4.2 Experiments with SLM 

Characterization of the 8LMs is very important for optimal performance of the 
device. Both the 8LMs used in the experiment were characterized and the com
patibility of the 8LMs for image projection and correction has been understood. 
8LM response at various parameters would help to locate an optimum range of 
operation. 
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Fig. 8. Image quality with the number of orders for a random phase image. 

Zernike Orders Earlier Reported [15] Speeds Obtained Improvement. 
tl(ms) t2(ms) tl/t2 

10 15 0.89 16.85 
20 63 6.90 9.13 
30 140 28.50 4.91 
40 256 82.30 3.11 
50 546 187.10 2.92 
60 1062 393.60 2.70 

Table 1. Processing speed improvement for a 64x64 image 

The LC 2002 SLM has been characterized quite well earlier [16]. At bright
ness, b and contrast, c of 200, 128 respectively, maximum linearity of phase 
retardation has been shown. With this combination of brightness and contrast, 
a linear polarization angle, e of 300 gives maximuIIl width of grayscales where 
the retardance is linear. A set of plane images have been projected on the SLM 
and the total intensity was captured on the CCD. Here, plane images a.re the 
images with the same grayscale value assigned to all the pixels. The average 
grayscale value of the output images have been calculated for individual input 
plane images and were plotted. Figure 9 shows the behavior of the SLM. 

Meadowlark Hex127 SLM has nonlinearity as shown in the figure 10. It is 
possible to give either integer or half integer values of voltages to the different 
pixels of the Hex127 SLM, which will limit the number of gray scales that can be 
used. For example, if the voltage can be used from 3.5-7V, then we can expect 
a 3-bit gray scaling. So, a maximum range has been chosen for the SLM to give 
maximum phase change. This SLM i'~ mostly nonlinear except in the range 3.5-9 
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Fig. 9. Nonlinearity of the LC2002 SLM at b = 200, c = 128, e = 300. 

V. This voltage corresponds to a phase change of nearly 1-2.5 radians. 

The maximum phase shift that LC2002 SLM can offer 1.25 radians. This 
phase retardance can be corrected using the Meadowlark 8LM since it offers 
a maximum phase difference of 1.5 radians. The images were preprocessed for 
best performance and phase matching of the 8LMs using inverse transformation. 

The aberrated and the corrected image are shown in figure 11 for a portion of 
the resolution chart image. The Strehl ratios have been computed and presented 
in the table 2. 

The bar plot in figure 12 shows the improvement of the image quality after 
the correction. 

Aberration strehl ratio 
Zernike polynomial aberrated image Corrected image 

(1,1) 0.5037 0.9795 
(2,0) 0.1513 0.5977 
(2,2) 0.3485 0.8979 
(3,1) 0.2059 0.8358 
(3,3) 0.3225 0.8719 
(4,0) 0.4749 0.9914 
(4,2) 0.3096 0.9038 

Table 2. Processing speed improvement for a 61x64 image 
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Fig. 10. The nonlinearity of Meadowlark Hex127 SLM. 

5 Conclusions and Discussions 

We detailed the generation and correction of Zernike aberrations imposed on an 
image using two 8LMs. The possibility of using 8LMs for phase corrections in 
an adaptive optics system has been highlighted. It is also possible to convert 
an amplitude and phase modulating 8LM into a phase only 8LM and thereby 
improve the phase modulation depth. The importance of the characterization of 
the 8LMs for their nonlinearity and phase retardance has been stressed. Both the 
8LMs used in the experiment were characterized and are operated at optimum 
performance levels. The aberrations imposed on the images could be corrected 
to a great extent. The performance of the Meadowlark Optics Hex127 8LM as 
a wave-front corrector has been exemplified. The Strehl ratios were calculated 
and the improvement in the image quality has been quantified. 

A fast method for the calculation of the Zernike moments suggested by Hosny 
has been confirmed [15]. Using this method and making further improvement 
in the algorithm, we have shown additional enhancement in quality and speed 
of the reconstructed image. The use of Zernike polynomials directly for phase 
restoration in an adaptive optics system has been suggested. vVe have also indi
cated the number of orders of polynomials required for reconstructing a phase 
image. The speeds at which the reconstruction can be done has been tabulated 
and plotted for various cases. Different applications can use these results for 
analysis of the aberrations. The accuracy of phase reconstruction depends on 
the number of Zernike polynomials used. Detailed analysis of the number of or
ders crucial for reconstruction process has been done and we conclude that for 
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Fig. 11. Aberrated and corrected images of a port.ion of the fe;;olut.ion chart. image. 
(a) Image without aberration (b) Aberration using zg (c) Corrected image. 
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Fig. 12. Comparison of PSNR before and after correction using resolut.ion chart. images. 

low resolution image reeonstrudion, less number of orders may be used for quick 
processing. For adaptive optics applkat.ions ill astronomy, where the sensing; is 
done at low resolution, we suggest using 1,15 orders of Zernike moments. 

The highly reliable phase correcting abillty of the SLM can make the device 
a very good wave-front corrector in closed loop adaptive optics systems. 
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