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Introduction. The study of transfer of radiation is an 

essential part in the stellar atmospheric research. The complex physical 

processes that occur in stellar atmospheres do not permit us to obtain the 

solution of radiative transfer equation easily. Various people working 

with the problems of stellar atmospheres have developed different techni­

ques depending on their needs and tastes. Among the most notable methods 

of solving the equation of radiative transfer is the one based on the 

principles of invariant imbedding due to Ambartzumian (1943) and Chandra­

sekhar (1950). These principles are a special case of the interaction 

principle and the star product (Redheffer 1962 and Preisendorfer 1965) 

Which we shall describe later. The interaction principle and the star 

product algorithm are general and applicable to any inhomogeneous media 

in curved geometries. In general the following steps are taken in 

obtaining the solution. 

1 We divide the medium into a number of 'cells' whose tpickness 

is defined by T which is less than a critical thickness (Tcrit). The 

critical thickness is determined on the basis of the physical characteris­

tics of the medium. 

2 The integration of the transfer equation is performed on the 

cell' which is a two-dimensional grid bounded by ~n.rn+ilX~j~'llj~ 
3 We compare these discrete equations with the canonical 

equations of the interaction principle and obtain the transmission and 

reflection operators of the cell. 

4 Lastly, we combine all the cells by star algorithm and obtain 

the radiation field. 

~ We can divide the medium into shells whose thickness are 

larger than 't' crit but integration is done only on 'cell' and star 

algorithm is used to obtain the transmission and reflection of the 

compoaite 'cell' or shell. 
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In this article. we describe the basic theory and give two 

examples where it has been applied. We also give necessary details of the 

formulae and procedures so that users need not refer to the articles cited 

here for details. 
We shall divide the article into following sectional 

A Discrete Space Theory 

I. Interaction principle 

II. Star product 

III. Calculation of radiation field at internal points. 

:B Application 

I. Integration of monochromatic radiative transfer equation 

and derivation of r & t operators for the 'cell'. 

II. Flux conservation and temperature correction in the poly­

chromatic case. 

III. Line formation in expanding media. 

A Discrete Space Theory. 

A.I Interaction Principle. The interaction principle relates the 

incident and emergent radiation field from a medium of given optical 

thickness. In figure 1. we have shown a shell of optical thickness T with 

incident and emergent intensities. We assume that specific intensities 
+ -Un ~ Un+l are incident at the boundaries nand n+l respectively of the 

shell with optical thickness T. The symbols with signa + and - represent 

specific intensities of the rays travelling in opposite directions. 

Figure 1. Schematic diagram showing the interaction principle. 
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If ~ represents the cosine of the angle made by a ray relative 

tothe common normal to the statification in the direction in which n 
increases. That is 

U+· {U (~) : O<~_<1} n n 

and U-· {U (-~): O<~_<1} n n 

U+ represents the specific intensity of the ray travelling in the direc-n _ 

tion ~ and Un represents the specific intensity of the ray travelling in 

the opposite direction. We select a finite set of values of ~(~j:1~j~m; 

O<~1 <~2 <~3 ····~m !1). Or 

are m - dimensional vectors on Euclidean space. 

The incident intensity vectors are 

+ -
Un and Un+1 

The emergent intensity vectors are 

U~ and U:+1 

The~ergent radiation field will have the contributions from 
+ -the internal sources say, ~ (n+1, n) and ~ (n, n+1) corresponding to the 

+ -output intensity vectors Un+1 and Un respectively. 

We assume certain linear operators which reflect and transmit 

the incident radiation namely, t (n+1,n), r(n,n+1), t(n,n+1) and r(n+l,n). 

Then we can write the output intensities in terms of the transmitted and 

reflected input intensities together with the internal sources as 

+ + - + Un+1 t(n+1,n) un+r(n.n+l) un+1 + E (n+l,n) 

= r(n+1.n) u!+t(n,n+1) u~+l + ~-(n,n+1) 
+ The introduction of the internal sQurce terms namely,~ ~+l,n) 

e.nd ~- (n,n+1) was due to Grant and Huut (1969a). The relationship given by 

equation (1) is called the Interaction Principle. Equation (1) can also 

be written concisely as 
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where 

~ (n+1,n)r(n,n+1)1 
5 (n,n+1)= 

r(n+1,n)t(n,n+1)_ 

A.II Star Products 

284 

(3) 

If there is another shell with boundaries (n+1,n+2) adjacent 

to (n,n+1), interaction principle for this shell can be written as 

~+ J ~+ J 
Un+2 Un+1 

_ as (n+1,n+2) _ +~(n+1,n+2) 

Un+1 Un+2 - -

(4) 

where 5(n+1,n+2) is similarly defined as in equation (3). If we combine 

the two shells (n,n+1) and (n+1,n+2) then the interaction principle for 

the combined shell is written as, (for the thickness is arbitrarily defin~ 

~~J ·S(n.~2) [J +E(n.~2) 
Redheffer (1962) calls 5(n,n+2) the star product of the two 5-matrices 

5(n,n+1) and 5(n+1,n+2) written as 

( 5) 

5 (n,n+2)=5(n,n+1)*5(n+1,n+2) (6) 

Equation(5)is obtained by eliminating U!+1 and U~+1 from equations(2)and(4~ 
We can write r & t operators for the composite shell as 

t(n+2,n)=t(n+2,n+l)~-r(n,n+l)r(n+2,n+liJ-lt(n+1,n) 
t(n,n+2)·t(n,n+1) [!-r(n+2 ,n+1)rCn,n+1[1-1t (n+l,n+2) 

r(n+2,n)=r(n+l,n)+t(n,n+1)r(n+2,n+l)~-r(n,n+1)r(n+2,n+1[J-1x 

and 

t(n+1,n) 

r(n,n+2)-r (n+l,n+2)+t(n+2 ,n+1)r (n,n+l) [!-r(n+2,n+l) x 

r(n,n+1[J-lt(n+l,n+2) 

~(n.n+2)mA(n,n+l;n+2)t(n.n+l)+A'(n;n+l,n+2)E(n+1,n+2) 

where I is the identity matrix and 
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A (n,n+l;n+2)" h(n+2.n+1) I}.-r(n.n+l)r(n+2.n+1)]-1 J 
t(n,n+1)r(n+2,n+1) [!-r(n,n+1)r(n+2,n+li}-1 I 

b t(n+2,n+l)r(n,n+1) I1-r(n+2,n+l)r(lItn-li21-J 
A' (n;n+l, n+2)= (9) 

o t(n,n+l)I}.-r(n+2,n+1)r(n,n+lf]-1 

~ (n+l,n+2J 
and E(n,n+1)m _ 

E (n,n+1) 

Similarly E(n+1,n+2) is defined. 

If we write S (a) to designate the shell a then 

S(a.*a) .. s(a.)*S (a) 

(10) 

(11) 

where a*a denote the region obtained by putting the two shells a and S 
together. If the shells are homogeneous and plane parallel then 

a*a -a*a (12) 

In general star multification is non-commutative. However, star multipli­

cation is associative. If we have to add several layers a,a,y •••• 

then sUa*(a*y)* ... )] =sUa*a)*y* •• J etc. (13) 

If the medium is homogenous and very thick then we can use what 

is known as 'doubling method' (see van de Hulst 1965). For example, 
S(2Pd)=S(2P-1d)*S(2P-ld),(p=1.2,3 ••• ) (14) 

which means that we can generate the S-matrix for a layer of thickness 2Pd 

in p cycles starting with Sed) rather than in 2P cycles of adding the 

S(d)' s one by one. If palO. then only a fraction 10/210 .. 10-2 of the 
10 computational work is needed to add 2 layers of thickness d. 

A.III Calculation of Radiation Field at Internal Points. 

We expect the reflection and transmission operators to be 

non-negative. This condition will be satisfied only when the optical 

thickness of the shell is less than certain value called the 'critical 

size' or Tcrit (this will be discussed in section B). If the optical 

thickness T of the shell in question is larger than the T crit then we can 

divide the shell into several subshells whose't is less than the 'tcrit 

and then use star algorithm to calculate combined response from the sub­

shells whose total thickness is T. If, for example we need the radiation 

field at some internal points in the atmosphere, we shall have to divide 

the entire medium into as many shells as we need and calculate the radia­

tion field at these points. Let us divide the medium into N shells. One 

can write down the interaction principle for each shell and solve the 

whole system of equations (see Grant and Hunt 1968). 
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In figure 2, we show the atmosphere in which we calculate the 

internal radiation field. The atmosphere is divided into N shells with a 
+ -and b as the inner and outer radii. The solution Un+1 and Un (for any 

shell between shell 1 and shell N) are obtained from the relationa 

+ - + 
Un+1 a r(I,n+1)Un+l+Vn+~ 

(15) 

U~ m ~(n,n+l)U~+l+V~+; 
with the boundary condition U;+1DU-(a). 

Figure 2. Schematic diagram showing the diffuse radiation. 

(n~ 
Diffuse radiation field 

b 

u-1 

. + -The quantities r(l,n+l),v ~ and v ~ are celculated (with the initial 
~2+ n"'2 

conditions r(I,l)-O and,vI • U (b» ~y computing recursively 

2 
r (l.n+1)~r(n.n+l)+t(n+1,n)r(l,n)[!-r(n+1.n)r(l,niJ-1t(n,n+1) 
'+ A + + _ 
v +l-t(n+l.n)v 1+I (n+l.n)+R ~I (n,n+1) 

n: 2 n-'2 n"'2 
- ~ + -
v~ ar(n+l,n)V l+T ~I (n,n+1) 
""2 u-2 u~ 
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Where 

~(n+l.n)-t(n+l,n) [!.-r(l,n)r(n+l.n~:rl ) 

;(n+l.~) .. r(n+l,n) [!-r(1,n)r(n+l.nU-1 ) 
R ~= t(n+l,n)r(l,n) 
It 2 

T ...1- [!-r(n+l.n)r(l.nil-1 
n"'2 

and 

t<n.n+l)=T ~t(n.n+l) 
It 2 

To calculate the radiation field at the interruipoints we 

proceed as follows. 

1 Divide the medium into a number of shells (say N) with N+l 

boundaries. 

287 

(17) 

(18) 

2 Start calculating the two pairs of reflection and transmission 

operators r(n+l.~.r(n.n+l),t(n+l.n) and t(n.n+l) in each shell (if the 

optical thickness in each shell is larger than Tcrit. then apply star 

algorithm or use doubling procedure if the medium is homogeneous). 
+ + 3 With the boundary condition that r(l,l)-O and v t-U (a) +and 

~he r & t operators mentioned in 2 compute recursively r(l.n+l). V-I and 

t(n,n+l) given in equations (16) to (18) from shell I to shell N (i.e. from b 

to a in fig 2 ). 

4 Next we shall sweep back from a to 'b (see fig 2) calculating 

the radiation field given in equation(1~with the boundary condition U~l-

,. 
~. We have to retain the operators r(l,n+l). t(n.n+l). 

+ -v~and vn+i for each shell that are calculated in the steps 2 and 3 abo~ 

until we start calculating the radiation field from •• (The storage of these 

operators will not increase the virtual memory of the machine required for 

computations. The operators can be stored on a 1II8gnetic disc and can be 

recalled whenever necessary). 

If the surface at a is reflecting. we can write 
- + 

UN+l-rGUN+l 

where rG is the reflection operator. For a totally reflecting surface 

Therefore. we have 
+ 1l :1-1 + uN+l-~-r(l.N+l)rqj vN+! (20) 
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:rom. which one can calculate U;+l from equation 0-9}. Rest of the calcula .. 

:ions follow equation(15) • 

B Applications 
B.1 Integration of Radiative Transfer Equation over 'cell' 

As the solution of the radiative transfer equation in plane 

?arallel approximation can be obtained as a special case of the solution 

La spherically symmetric transfer equation we shall try to obtain the 

solution in the latter case. The equation of radiative transfer in 

spherical symmetry is written (see Peraiah and Grant. 1973) 

,. a8r {r21(r,\I>}+ ~ ~ (l-i)I(r.W)+a(r)1(r,\.I) 
r 

.a(r){[J-W(riJb(r)~w(r)~l(r'II'II')I(rtll')1(r'II')dll' } 
where w(r) is the albedo for single scattering, b(r) represents the 

sources inside the medium, r is the radius. II is the cosine of the angle 

made by the ray with the radius vector a(r) is the absorption coefficient, 

1(r.lI) is the specific intensity of the ray and p(r,II,II') is the phase 

function. The phase function is normalised such that 
+1 

~ J p (r,II.)! )dll'''l 
-1 

and p(r,II,II' )~O and -l~\.I.J.I' ~1 

if we write 

U(r.II)-4Hr21(r.lI) 

B(r) "'4nr2b(r) 

Equation (2~can be rewritten as 

8u(r.u) 1 81] 2 " 
~~ a (1-11 )u(r,lIu +a(r)u(r,y) -
a(r) {[J-w(rffB(r)~(r) f -t1(r,lI. II' )u(r,\.I'")d]J'} 

for outward going rays and 

au(r,-II) 1 a I"i 2 5] 
-ll ar - r apI..P-II )u(r,""l! +cr(r)u(r.41) 

(22) 

a(r){I1-III(rtlB(r)~(r) r~(r'-II'II' )u(r.lI" )dlJ' } (24) 

" -1 
for inward gOing rays and we choose the discrete points of II to lie between 
o and 1. 

We integrate the equations(23)and~4)on the 'cell' whose 
boundaries are defined by 

~n·rn+ilxb-Js~~ 
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a two dimensional grid (Carlson 1963, Lathrop and Carlson 1967). 

First consider the angle integration. The choice of the set 

of {Pj~} ia dictated by convenience. We have utilised the roots Pj and 

their corresponding weights cj of the Gauss - Legendre quadrature formula 

of order J in the interval lle IE, ~. 

and put 

By writi~ 

putting ll~ = 0 we define 

(25) 

we obtain 

-++ + +- -:1 
E(p (r)jj,cj~j,(r)+p (r)jj,cjPj,(r)~ (26) 

+ -where uj(r) = u(r,llj) ,uj (r) = u(r,-llj)' 

-++ -+ 
p (r)jj'- p(r,llj,llj')'P (r)jj'" p(r.-llj,llj')' etc. 

+ - by interpolation 
u~ .. ~ 

+ - 1 +-
u~ - ~ - 2 (u1+u1) 

~±(rJ ± u~(r) 
u (r) = i 

- ~(r) 

(27) 

(28) 

(29) 

and making use of equations (27), (28) and (29), the equation (26) can be 

rewritten for all the angles in matrix form. This is given by 

alter) 1 ~+ + - - ~ + M - + - A u (r)+A u (r) + a(r)u (r) _ 3r r - - ~ ~ " 

-a(r)[n-lll(r[J t(r)+ ~CL)(r)~-++(r) : t(r>+{-(r) ~ ~-(r~J(30) 
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Similarly equation~4)can be written as 

_~ _!G.+u-(r)+A-u+(r)l+a(r)u-(r) 
_ ar r t; - - :J -

Eo(r){(l-w(r)}B-(r)~w(r)(p-+(r):~+(r)+p--(r)cu-(r» (3~ 
where c and ~ are diagonal matrices with elements ~jOjj] and EJOjj ~ 

+ - + -respectively. ~ and ~ are source vectors and ~ and ~ are matrices 

of dimension JxJ called curvature scattering matrices. They are described 

in Appendix I. These matrices should satisfy the identity 

where 
U+"'I1+6: ) _n _ n 

and variables subscripted with ~~ such as U:~, ~n~' wn~ are averages 

over the cell whose radial boundaries are rn and rn~' We define Arn~c 

rn+l-rn, Tn+i5-0n+i5 Arn~ andPotJ.rn~/ rn~ where rn~ is a suitable mean 

radius such as (r +r +1)/2 n 0 + _ 
The quantities Un~ and Un~ are replaced by 

+ 1 + + - 1 - -
U ~=-2(U +l+U ) and U .iL"-2(U +U +1) 
_n~ _0 _n _n~.n .0 

(35) 

which is nothing but the 'diamond' difference scheme. We substitute 

equations(3~into equations(33)and(34)and rearrange the input and output 

intensities in the form of the interaction principle. Comparing these 

equations with those given in (l},we obtain the transmission and reflection 

operators. These ara given in Appendix II. 

These operators should be non negative and for this condition 

to be satisfied, we must have 
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+ ++--
~ .~-. ~ .~ ~O. See Appendix II. 

This can be achieved only if 

1 + 
Ilj± 2:PAjj 

'n~ ~,crit=tnfn ":"1.o1.--=---"",-L,++--1 
2(l-(jJn~PjjCj) 

(36) 

Generally. we take the critical step size to be approximately equal to 

,crit '" 21ll (37) 

For a 4 angle quadrature 'crit ... 14. Once we calculate the r &t operators 

corresponding to this optical depth. we can use star algorithm for obtain­

ing the radiation field for a shell of larger optical thickness. 

B.II Flux Conservation and Temperature correction. 

Flux Conservation. 

We must have the solution checked forfiux conservation. The 

system should neither create nor destroy energy and we must show that the 

solution obtained in the frame work of discrete space theory does con­

serve flux. (see Grant and Hunt 1969b and Peraiah and Grant 1973). The 

simplest case is that when we have purely acattering media. In this 

case we have (jJ -1. We solve the transfer equation as described in the 

previous section and obtain the operators 

r(n.n+1). r(n+l.n); t(n,n+l) and t(n+1.n) 

Then we should show that 

II t (n+l.n)+r(n+1.n)ll-l+O(ll,) 

where II. II means that we take the norm defined by 

mJ -1 I II All = j! ('DAD )jk ,k=l,2, .. J 

and 

D=2rrl.:! ~ 
As a consequence of condition(38) 

(1) ~f=l cj E~(n)+p;(n~ .. l}t=l,2, ... J 

This is due to scattering. And 

J +-
(2) j~lCj (Ajk-Ajk)-O.k-l,2 ••• J 

This is due to the nature of the curvature terms (see Appendix AI). 

(3$ 

(41) 

A more practical way of testing the system for flux conser-

vat ion is as follows. 
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We introduce some flux at the point a and calculate the fluxes 

that emerge out at a and b. (see £1g.2) Thus if F denotes flux, we must 

have 
F-(a) • P-(b) + F+(a) ( 42) 

+ -(Notice that we did not give any flux at b(Le)U1- Oh where P (b) is 

the flux emerging at r~b and F+(a) is the flux back scattered into 

the inner region. We give P- (a)-II.We present the quantitites F- (b) aud 

P+(a) iu the table and we can see that the equation(42) can be satisfied 

to within the machine accuracy (1 part in 109). 

Table 1 Global conservation for a conservative isotropically 

scattering shell illuminated isotropically on the inner boundary r-a. The 

columns give the total flux emerging from the shell at radii a and band 
+ - -verify the equation F (a)+P (b)-F (a)-n. Calculations are based on 8 

point Gauss-Legendre quadrature. A and B are the inner and outer radii 

of the shell. Notice that when B/A-l, the approximation becomes plane 

parallel. The results are taken from Peraiah and Grant (1973). 

't 2 5 10 

B/A P-(b)/2TI P+(al/2n F-(bl/2II F+(al/2n F~-(bl/2n P+(a)/2I 

1.00 0.19503 0.30497 .10383 .39617 0.05387 0.44163 

1.30 0.24617 0.25383 .13354 .36646 0.07550 .42450 

1.50 0.27325 0.22675 .15177 .34823 .08650 .41350 

1.7 0.29611 0.20389 .16881 .33119 .09716 .40284 

2.0 0.32439 0.17561 .19227 .30773 .11254 .38746 
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Figure 3. Angular distribution of the specific intensity from 
inside (n-100) to the outside (n-l) of a spherical atmosphere. 
Here ,-10, BfA=I.5, N=lOO, ~1.O, isotropic scattering. 
Taken from Peraiah and Grant (1973). 

I'OC---====U::;;;-====:::~~==U:+===J I- n=IOO 

O·005w.._--I-__ __L__-'-~_--'"----L---'-' 
-I 0 +1 

P 

Figure 4. Angular distribution of emergent intensity for L=5, 
w=1.O, isotropic scattering (1) BfA=2; (2) BfA=I.S; (3)BfA-l.3; 
(4) BfA=I.O. Taken from Peraiah and Grant (1973). 

O.O!-:I.O:-------;Qo::':5:;-----~O 
p 
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In figure 3, we have presented the solution of the transfer 

equation and the emergent solution is given in figure 4, for the specified 

parameters. 
Temperature Correction 

The temperature correctionmr the discrete space theory had 

been worked out by Wehrse (1981). We shall outline his procedure here and 

those who are interested further may look into the above reference. We 

begin from the interaction principle given in equation(lh written for all 

the shells. Let us write 

(43) 

where! is a tridiagonal block matr:l..x and U and I: condition all the specific 

intensities and source vectors respectively from shellIto N. 

equation (43), we have 
UB A- II: 

From 

To calculate flux vector we multiply U by a matr:l..x G which contains the 

weight factors for interaction 

(1 ... \ld\l 

-1 

The total flux in a shell F~ot over all frequency points is 

(44 ) 

(45) 

(46) 

where gi are the integration weights and nf is the total number of fre­

quency points. Let the temperature stratification vector be T-~l,T2".T~t 
for which the total flux is conserved. We write, 

k 
1 k Y\: { -1 k al: i } 

~m~tot(: +AT)~i!lgi ~~ (~11 aT T) 

where R is the iteration number. The temperature correction vector is 

given by 

k { ~ -1 al:~ }-1 
A: .. i~igi(~! aT) AF 

nf -1 k 
A!~!-i~lgi(~~ ~i) 

(47) 

(49) 

This procedure has been successfully used by Wehrse (1981) for computing 

the models of M-super giant stars. 
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B.III Line Formation in Expanding Stellar Atmospheres. 

The problem of calculating the spectral lines in an expanding 

stellar atmosphere is considerably complicated because the physical proper­

ties of the medium are affected by the local conditions of the moving 

matter. If the velocity of expansion is small (say one or two mean thermal 

units) one can use the rest frame and simulate the spectral lines. In this 

frame we have to deal with a large angle-frequency mesh and the size of 

this mesh increases with the velocity of expansion because of Doppler 

effect. On the other hand in a comoving frame, one need not worry about 

the Doppler effect and can employ very high velocities, with a much 

smaller angle-frequency mesh. Therefore, we shall formulate the algorithm 

in a comoving frame and indicate how the same procedure can be utilised in 

a rest frame. 

The equation of radiative transfer for a Non LTE two level 

atom in the comoving frame in spherical symmetry is written as (see 

Peraiah 1980) 

2 
lJ aI(x,u ,r) + l::l:!...- aI(~rJ.!,r) .. K{x,r)SL(r)+K (r)S (r) 

ar r 1J. c c 
2 

- ~(x,r,'()+Kc(r)JI(x,lJ,r) + El-lJ2) V;r) + H :~(rJ ilI(~.~.r) 
2 

-lJ ilI(x,-lJ,r) _1-11 ilI(X-jJ,r)=K(x r)S (r)+K (r)S (r)- 'i(x r)+ and a r r alJ 'L c c ~, 

K (r)'I(x -lJ r)+{(l-l) W+i dV(r) }aI(x,-u,r) 
c :.J ' • r dr a x 

-1 Where I(x,lJ,r) is the specific intensity of the ray making angle cos lJ 

(51) 

with the radius vector r at the radial point r corresponding to frequency 

point x(-(v-vo)/~s, AS being some standard frequency interval in the line). 

VCr) is the velocity of the gases at rand K(x,r) and Kc(r) are the absorp­

tion coefficients per unit frequency interval in the line and continuum 

respectively. The quantities SL(r) and Scare the line and continuum source 

functions respectively and are given by 

SL(r) =- (1;&)[00+<» J (x.r)cjl(x)dx+e:B(r) (52) 

Sc .. p (r)B(r) (53) 

K(x. r) .. ~ (r)cjl (x) (54) 
where XL(r) is the line-centre absorption coefficient and cjl(x) is the 

normalised line profile. B(r) is the Planck function and p (r) is an 

unspecified parameter. & is the probablity per scattering that a photon 
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is lost from the line by collisional de-excitation of the excited states. 

J(x,r) is the mean intensity. 
We integrate equations (50) and (51) in the same manner as des-

cribed section BI. The corresponding discrete equations are written as 
Mru+ -U+/+p fA+U+ +A-U- .l+t !/l ...,..U+...,... 
~ t..;n+l ~ c t.: ~n~ ~ -n~ n~~n~-n~ 

Tn~~n~~(l-e:)Tn~~~t~ @'+liJn#ltJ:l~Y:~ (55) 

similarly 

where 
+ m+ + + + + Jt U .. Ul U2 U3 ...... , Ui .... , UI "'n ... ,n,- tn, .... ,n - ,n "¥ ,n 

t indicates the transpose of the vector. 

~ (Tn,\ll'~iJ 
U+i ~4ni I (rn,\!Z,Xi ) 
-,n n ........... 

I('!: \.l Xi) n, :r, 
Here I and J are the total number of frequency points and angle points 

respectively. 

!n+li" ~kk ~n+li" (B+!/lk) n~ °kk' 

where 

and 

k"j+(i-l)J,l~k~K"IJ 

(56) 

(57) 

(58) 

(59) 

j and 1 being the running indices of angle and frequency quadrature. The 

subscript ~ represents the average of the parameter over the shell boun­

ded by radii rn and r n+1• MOreover, 

!/lk"tH~I\!j) 
, 

Sn~·(P~~~)Bn~~~ 
, 2 

Bn~"4nrn+liB(rn~) (6~ 

41i \ • aiCj 

with 
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Aicfl i 
a-

i ~ Aicfl(xi) (61) 

i =1 

A'S being the quadrature weights for the frequency points. 
i + The matrices 

!1 and ~-

(62) 

with 

~m~jl5jJ and similarly ~- is defined. 
+ 

and ~-are the curvature matrices given Appendix AI. The quantity ~1~~~ 

in equations "5) and "6) are the equivalents of the comoving terms in equa­
tions(50)and(51). We have 

~l=~l11Vn+~l~PcVn~ (63) 

\:f1_[! .!. J'M!-Gll~l5jl~ (64) 

'M1 
m 

i-l'l! .. J'I!.El_"~)'jil (6s) 

j,l.1,2 •••• ,J,llVn~-Vn+l-vn 

The matrix d is determined from the condition of flux conserva­

tion and 1s given by 

-d1 d1 

-d2 0 d2 .••••• 

d" -d3 0 

-d4 dI _1 

-dI dI 

where d1"(xt+C~_irl for 1-2,3 ••• ,1-1 

We set d1=dI-O as boundary condition on the frequency integration. 

The average intensities u+~,u-~ are approximated 
""n~ "'U'T""J 
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by the diamond scheme given by 

!(U++U+ ) .. U+ 
2 _n _n+1 _n~ 

and 

1 - - -2 (~n +~n+l )"~n~ 
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(67) 

Substituting equation $3) into equations~5)and(56)and arranging the resul~ 

ing equations in the form of the equations of interaction principle. we 

obtain the r & t operators for the cell. These are given in the Appen­

dix III. The critical optical thickness can be estimated from the condit~ 

that the r and t operators be non negative. 

Using the source functions that are obtained in the comoving 

frame. one can obtain the radiation field transformed to a point at 

infinity (see figure 5). or on to a rest frame whichever is necessary. We 

shall present calculations of spectral lines obtained in the static and 

maving media (rest-frame and comoving frame). 

Figure 5. Schematic diagram showing how fluxes are calculated 
at infinity 

v 



Peraiah: Discrete space theory 

In a static medium we have no velocity fields and all the 

comoving frame terms in equations (50) and (51) vanish (assuming that 

299 

the velocity gradients are also absent). We have performed some calcula­

tions in this situation and these results are presented in figure 6 and 7. 

Figure 6. Symmetric line profiles for LTE and non LTE and 
plane parallel (pp) and spherically symmetric media. Calcula­
tions have been done in static media with (B!A)2=1 for pp and 
(B/A)2m2 for SS. The total optical depth is taken to be 200 
and the Planck function is set B(r)zexp(-T!n2) where n is the 
number of the shell (n-1 at r~b and naN at rca and N=150). 
This Planck function represents an atmosphere with decreasing 
temperature outwards. Taken from Peraiah (1973). 
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Figure 7. Equivalent widths are plotted against log e for 
PP and 58 with the same parameters given in figure 6. Taken 
from Peraiah (1973). 

pp 

SS 

(3 - 10- 5 

,I 

o 
o -I -2 -3 -4 -5 -6 -7 -8 

Log € 

We need not employ the full angle-frequency mesh for differen­

cing as we are calculating the line in a static medium and it is enough if 

we solve half the number of equations necessary to obtain the line prof~. 

We employed 14 frequency points in Xe(-4,+4) and 2 angle points (~r~2) 

over ~e(O,l). These points are taken from Gauss-Legendre quadrature. (see 

Grant and Peraiah 1972). In figure 6, we have plotted frequency dependant 
, ~ ~ 

fluxes in the line for a-lO and ~~l for LTE and e-lO for Non LTE situ-

ation, with a two level atom approximation. We performed calculations in 

plane parallel (PP) stratification with (B/A)2=1 and in spherically sym-
2 metric shells with (BfA) -2 where B and A are the outer and inner radii i:o 

the spherical medium. Effects due to non LTE physics and sphericity are 

conspicuous. In figure 7, we have shown how the equivalent widths change 

due to changes in e and BfA. 
In figure 8, we have given the line profiles of the emergent 

hydrogen Lyman alpha line for a nebula expanding uniformly with twice 

the thermal velocity. (see Peraiah and Wehrse 1978). These calculations 

are done in the rest frame, and for details the reader may refer to the 
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Figure 8. Profiles of the emergent hydrogen Lya liue for a 
nebula expanding uniformly with twice the thermal velocity. 
These profiles are calculated in the rest frame. Td is the 
dust optical depth. Taken from Peraiah and Wehrse (1978) • 

• 1.01,....--.--....-....... -...,....-..--.---.--..--.-_..-_......--, 

unilarm expansion 
v=2Yo 

.0.5 

o 

-0. 

-1. 
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9. Flux profiles of the lines received at the observer F = F(x)/F 
(Xmax) and Q = X/Xmax. These profiles are transformed from 
comoving to a frame at infinity. Taken from Peraiah (1980) • 

.... , 
I / 2-0 \ r 
I 
I 

I 10 130 
1 
I I I 

1·0 I 

S/A=3 
\ I \ 

E ={3= 0 \ 
\ 

0 

-0·8 -0-4 0 0-4 0·8 
Q 

The comoving frame calculations have been done with partial 

frequency redistribution in an isothermal atmosphere (Peraiah 1980). We 

calculate the frequency dependent source functions in the comoving frame 

and it is transformed on to a point at infinity. We have presented in 

figure 9 such profiles calculated using angle averaged redistribution 

function RI in the comoving frame. Here we have used a velocity law with 

constant velocity gradients 

VB-VA 
V(r)-VA~(r-A) 

Where VB and VA are the velocities (in mean thermal units) at radial poi~E 

a and b respectively. The veloc1tyVA is always set equal to 0 and the 

numbers corresponding to each curve represent the velocities atb(1.e)VB' 

When VA·VB~O (static medium) we obtain a symmetric line profile and when 

the velocity increases, the ~ine becomes asymmetric. 
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Appendix I (AI) 

The curvature scattering matrices are 

+ (1-\.I~f#) (\.Ijf# -\.Ij) 
CjAjk- (\.I -\.I) ,k-j+1,j=1,2 •• J-l 

j+l j 

.. (1-\.I~~) (Il j +l-\.Ijf#) _ (1-\.I~_,) (ll j ..,-llj _ 1) 

(Ilj +l-\.Ij) CIlj -\.lj_l) 

k=j,j=1,2 ••• J 

and 

- 1 
CjAjkD-idj,10k,1 
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The \.l'S and c's are the roots and weights of Gauss - Legendre quadrature 

on \.Ie(O,1) (see Abramowitz and Stegun 1970, page 921). 

For J=2,\.11=.21132,l.\z- .78868,,.- c2 - .5 

f·25 .7~ fl ~ 
A+=l:.75 _.7~A-=Lo qj 
For J-4 

\.11-.06943 ~-.33001 \.13 ... 66999\.14-.93057 

c1-.17393 <:z-' 32607 ~-. 326077.-.17393 

[ 

.46494 2.23590 0 0 ~ 
+ -1.78139 -0.04258 1.15005 0 

A.. 0 -1.15005 -0.75945 0.58343 

o 0 - .73228-1.09379 

A---2.87476oj ,10k,1 
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Appendix All 

The operators of transmission and reflection are given by 

+r:+ ++ +--+1 
:(n+1,n).~ ~ ~ +: : J 

-r:- -- -+ +-1 
~(n,n+l)~~ ~ ~ +: : J 

r(n+1,n)·2t-r-+h 
... - ...... 
++-­r(n,n+l)= t r ~ M 

~ ~ 

and the source vectors are 

+ r; +- -+1-1 - r; -+ +-J-1 
~ - ~-~ ;: J ,t· ~-;: ;: 

+- + +- -+ --+ 
r - ~ S ,r • ~ S 
~ ~ 

+ r.: 1 ++ ~-l 
~ .~Tn~(~-~~ 

~-=E~T~(:-~~-1 

-- 1 - + 
Sn~=~~ :+P~ IT~ 

-+ 1 -+ -I 
~.~~ :+p~ Tn~ 

O~a~21 P+-c-pA-/T ~ 
;n~ • _ • n~ 
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Appendix AlII 

a - 1-e, Y ~a ~~~, ~ ... !-! 
M d p A-

~+ ... ~+Pc A+ /T.- ~1~ Y = Y\-£::-_ _ T. ' ~+ ~ T. 

t.± - ~-r~J-l, :±= ~-~'~J 

s+- = !T.t.+ Y_, 01+- _ Ir-a+- S-+l- 1 
~ 2~~ ~ L J 

-+ -+ Similarly a and a are defined. Now we shall write the transmission 

and reflection matrices and the source vector as 

r (n+1,n) 01-+ (+ G+t:~ 

and ::~ ... T.a+-~++t- ~J~ 

The operators t (n,"+1), r (n,n+1) and t-~ are obtainedby in~erchanging . . .~ 

the + and - signs in the operators t (n+1,n),r (n,n+1) and t:~ 
respec tively. 
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