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Introduction. The study of transfer of radiation is an
essential part in the stellar atmospheric research. The complex physical
processes that occur in stellar atmospheres do not permit us to obtain the
solution of radiative tramsfer equation easily. Various people working
with the problems of stellar atmospheres have developed different techni~
ques depending on their needs and tastes. Among the most notable methods
of solving the equation of radiative transfer ia the one based on the
principles of invariant imbedding due to Ambartzumian (1943) and Chandra-
sekhar (1950). These principles are a special case of the interaction
principle and the star product (Redheffer 1962 and Preisendorfer 1965)
vhich we shall describe later. The interaction principle and the star
product algorithm are general and applicable to any inhomogeneous media
in curved geometries. In general the following ateps are taken in
obtaining the solution.

1 Ve divide the medium iInto & number of 'cells' whose thickness
is defined by T which 1s less than a critical thickness ( Terit). The
critical thickness is determined on the basis of the physical characteris-
tics of the medium.

2 The integration of the transfer equation is performed on the
cell' which is a two-dimensional grid bounded by En’rnH:[xElj -%’uj -H;[

3 We compare these discrete equations with the canonical
equations of the Interaction principle and obtain the transmission and
reflection operators of the cell.

4 Lastly, we combiﬁe all the cells by star algorithm and obtein
the radiation field.

Note. We can divide the medium into shells whose thickness are
larger than T crit but integration is done only on 'cell' and star
algorithm is used to obtain the transmission and reflection of the
composite 'cell' or shell.
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In this article, we describe the basic theory and give two
examples where it has beem applied. We also give necessary details of the
formulae and procedures so that users need not refer to the articles citeg
here for details.

We shall divide the article into following sections:

A Discrete Space Theorz.
I. Interaction principle

II. Star product
TIII. Calculation of radiation field at internal points.
B Application
I. Integration of monochromatic radiative transfer equation
and derivation of r & t operators for the ‘cell'.
II. Flux conservation and temperature correction in the poly~
chromatic case.
III, Line formation in expanding media.
A Discrete Space Theory.

A.I Interaction Principle. The interaction principle relates the

incident and emergent radfation field from a medium of given optical
thickness, In figure 1, we have shown a shell of optical thickness T with
incident and emergent intensities. We assume that specific intensities
U: end U;+1 are incident at the boundaries n and nt+l respectively of the
shell with optical thickness 1. The symbols with signs + and - represent
specific intensities of the rays travelling in opposite directioms.

Figure 1. Schematic diagram showing the interaction principle.
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If u represents the cosine of the angle made by a ray relative
tothe common normal to the statification in the direction in which n
increases. That is

4.
v {Un (W) & O<p<l}
and U;' {o (=w) = O<usl}

U: represents the specific intensity of the ray travelling in the direc-
tion u and U; represents the specific intensity of the ray travelling in
the oppogite direction. We select a finite set of values of u(uj:1<j<m;
O<py <Hy Ug el <1l). Or

v, (m) T, (-u1)
U: =| U, (u2)| end U; = |U, (u2)
U, uy) U )

gre m - dimensional vectors on Euclidean space.

The incident intensity vectors are

+ -
Un and Un_*_1
The emergent intensity vectors are
- +

Un and Un+l

The energent radiation field will have the contributions from

the internal sources say, £+(n+l, n) and ¥ (n, nt+l) corresponding to the

output intensity vectors U;!-l and U; respectively.

We assume certa;in linear operators which reflect and transmit
the incident radiation namely, t (nt+l,n), r(n,nt+l), t(n,nt+l) and r(ot+l,n).
Then we can write the output intensities in terms of the transmitted and
reflected input intensities together with the internal sources as

+ + - +

Un+l = t(ntl,n) un+r(n.n+l) L + & (at+l,n)

- + - -

v, = r (ot+l,n) un+t(n,n+1) u g tE (n,n+l) (¢D)]

The introduction of the intermal source terms namely,£+6;+l,n)
znd I (n,n+l) was due to Grant and Bunt (1969a). The relationship given by
equation (1) 1s called the Interaction Principle. Equation (1) can also

be written concisely as
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o+
U U
_ = S(n,ntl) | _ + I(n,ntl) (2)
Un _E]n+l
where
t(ot+l,n)r(n,nt+l)
S(n,nt+l)= (3)
r{ntl,n)t(n,ol)

A.II Ster Products
If there is another shell with boundaries (n+l,n+2) adjacent
to (n,n+l), interaction principle for this shell can be written as

+ +

U1:1.+2 Un+1
=g (ol ,nt2) +Z (o+1,n+2) @)
Uns Utz

where S(n+l,n+2) is similarly defined as in equation (3). If we combine
the two shells (n,n+l) and (ntl,nt+2) then the interaction principle for
the combined shell is written as, (for the thickness is arbitrarily defined)

+ +
Un+2 Un
=S (n,n+2) +ZI (n,n+2) (5)
Un Un+2

Redheffer (1962) calls S(n,n+2) the star product of the two S-matrices
S(n,n+l) and S(n+l,n+2) written as

S (n,n+2)=S (n,n+1) *S (ol ,nt+2) (6)
Equation (5)1is obtained by eliminating U: +1 and U; +1 from equations (2)and(4.
We can write r & t operators for the composite shell as
t(n+2,n)=t (a+2,0+1) [I-r(n,n+1) r (o+2 ,n+l):[—lt (n+l,n)
t(n,n+2)=t (n,o+1) [I-r (0+2,n+1) 2 (n, n+1)]_1t (o+l,nt2)
r(o#2,n)=r (o+l,n)+t (o, 0+l (042 ,0+1) [I-r (n,n+l)x (n+2,n+l):[—1x
t(ntl,n)
t(n,n+2)=r (n+1,0+2)+t (0+2,n+1)  (n,0+1) [I-r(0+2,0+1) x
T (n,n+1):[—1t(n+l,n+2)
and
L(n,n+2)=A(n,0+1;0+2) L (n,0+1)+A" (nyn+l,0+2) E (ntl,nt2)
where I is the identity matrix and



Peraiah: Discrete space theory 285

t (0k2,0+1) [Tt (n, o+l , -1
A(n,n+1;n+2)-[ 1) [I-r (v, 1) x (a2, 21]] ¢j

t(n,n+l)r (n+2,o+1) [T-x (n,ntl) x (nt2 ,n+1):Im1 I

A' (n3ntl, n+2)-‘:
0 t(n.n+1)]:I—r(n+2,n+1)r(n,z:\+1):!-:l

E (n+1,n+2):l
and I(n,n+l)=

I t(o+2,ntl)r(n,ntl) [I-r (n+2,n+1):(n.n-l-1ﬂ-:l

- (10)
Z (n,n+l)

Similarly Z(n+l,nt+2) 1s defined.
If we write S (a) to designate the shell o then

S(a*B)=S(a)*S (B) 11)
where o*B denote the reglon obtained by putting the two shells a and B
together., If the shells are homogeneous and plane parallel then

a*B =Bkq (12)
In general star multification is non-commutative., However, star multipli-
cation is associative. If we have to add several layers o,B,Y «...
then S[(a*(B*y)*...)] =s[(a*B)*y*.. ] etc. (13)

If the medium is homogenous and very thick then we can use what
is known as 'doubling method' (see van de Hulst 1965). For example,

s(2Pa)=s (2P layxs (2P~1qy, (p=1,2,3...) (14)
which means that we can generate the S-matrix for a layer of thickmess 2P4q
in p cycles starting with S(d) rather than in 2P cycles of adding the
S(d)'s one by one. If p=10, then only a fraction 10/210= 10_2 of the
computational work 1s needed to add 210 layers of thickness d.

A.IIT Celculation of Radiation Field at Internal Points.

We expect the reflectlon and transmission operatoers to be
non-negative. This condition will be satisfied only when the optical
thickness of the shell is less than certain value called the 'critical

size' or Terit (this will be discussed in section B), If the optical
thickness T of the shell in question 1s larger than theT crit then we can
divide the shell into several subshells whose ¥ 1s less than the Terit
and then use star algorithm to calculate combined response from the sub-
shells whose total thickness is T. If, for example we need the radiation
field at some internal points in the atmosphere, we shall have to divide
the entire medium into as many shells as we need and calculate the radia-
tion field at these points. Let us divide the medium into N shells. One
can write down the interaction principle for each shell and solve the

whole system of equations (see Grant and Hunt 1968).
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In figure 2, we show the atmosphere in which we calculate the
internal rasdiation £ileld. The atmosphere is divided into N shells with g
and b a8 the inner and outer radii. The solution U:+1 and U; (for any
shell between shell 1 and shell N) are obtained from the relations

4 -+
Un+1 = r(l,n+1)Un+1+vn+%

(15)
- - - - -1
Un t(n ,n+1)Un +1+vn +a

with the boundary condition U;+1=U-(a).

Figure 2. Schematic diagram showing the diffuse radiation.

Arp

Diffuse radiation field

The quantities r(l,n-i-l) ,v+

¥

- and vn+l are celculated (with the initial

1
conditions r(l,1l)=0 an‘dvv1 2 U+(b)) %y computing recursively

[

r (l,ntl)=r(n,n+l)+t(n+l,n)r(l,n) E[—r(n+1,n)r(l,n):[_lt(n,nﬂ)
- oLt -
vn%-t(nﬂ,n)vn_%ﬂ. (n+1,n)+Rn_'_;}: (n,n+1)

- + _
v 1=r(n+1,n)Vn_%+Tn_%E (n,n+l)

o
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where

t{ntl,n)=t(n+l,n) E‘L-r (1,n)r(n+1,n):]-1
T (otl,0)=x (o+1,n) [T-r (1,0)x (a+1,0)] "
Rn-l-%= t(mt+l,n)r(l,n) an

Tn+%- [T-r(n+1,0)r (1,n5]"}

and
t(n,n+l)=Tn+%t (n,n+l) (18)

To calculate the radiation field at the internd points we
proceed as follows.

1 Divide the medium into a number of shells (say N) with N+l
boundaries.

2 Start calculating the two pairs of reflection and transmission
operators r(n+l,n)r(n,n+l),t(n+l,n) and t(n,n+l) in each shell (if the
optical thickness in each shell is larger tham Tcrit, then apply star
algorithm or use doubling procedure if the medium 1s homogeneous).

3 With the boundary condition that r(l,1)=0 and v -u+(a) and
the r & t operators mentioned in 2 compute recursively r(l,n+l), vii, and
E(n,n+1) given in equations (16)to (18 from shell 1 to shell N (i.e,from b
to a in fig 2 ). .

4 Next we shall sweep back from a to b (see fig 2) calculating
the radiation fleld given in equation (15 with the boundary condition Ux-ﬂ-l-
U (a).

Note. We have to retain the operators r(l,nt+l), E(n,n-l-l),
v:_'_i_ and V:H_l for each shell that are calculated in the steps 2 dnd 3 abowe
until we start calculating the radiation field froma.(The storage of these
operators will not increase the virtual memory of the machine required for
computations. The operators can be stored on a magnetic disc and can be
recalled whenever necessary). \

If the surface at a is reflecting, we can write

LR (19
vhere e is the reflection operator. For a totally reflecting surface

rG-I. Therefore, we have

+ -1+
U, =[I-r(1,§+1)r v, 1 10}
1™ [FF (LR o
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rom which one can calculate U;T+1 from equation (9). Rest of the calecula-

:ions follow equation(15).

B Applications
B.I Integration of Radiative Transfer Equation over 'cell'

As the solution of the radiatlve transfer equation in plane
parallel approximation can be obtained as a special case of the solutiog
in epherically symmetric transfer equation we shall try to obtain the
solution in the latter case, The equation of radiative transfer ip

spherical symmetry is written (see Peralah and Grant, 1973)
3 .
Z (1w b 2 2 a1 (@)1,

-o(r){[l—w(r)]b(r)+-w(r)f" (T DI, N I(r,uHap' }

where w(r) 1s the albedo for single scattering, b(r) represents the

(21)

sources Inside the medium, r 1s the radius, u is the cosine of the angle
made by the ray with the radius vector a¢(r) is the absorption coefficient,
I(r,u) 1s the specific Intensity of the ray and p(r,u,u') 1s the phase
function. The phase function is normalised such that

+1
% J P (r,u,u )y =l (22}
-1
and p(r,u,V }>0 and -1<u,p' <1
1f we write
U(r,u)-4nr21(r,u)
B(x) =4Hr2b (r)
Equation (21)can be rewritten as

M [(l—u )u(r,u)]+0(r)u(r.u) =
U(r){[l-m(rj\B(r)-Hsn(r)f ? (ryu, " Yulr,u)du} (23)

for outward going rays and

_ Bu(ra,—]gz -z aut(l-u Yulr,=u)J+o(r)ulr,=y)

r

U(r)'[D-'w(r):]B(r)-st(r)rp(r.-u,u' Yu(z,d Y } (24)
S |
for inward going rays and we choose the discrete points of u to lie between

0 and 1.

We integrate the equations(23)and @4)on the 'cell' whose
boundaries are defined by

E'.n'rnﬂ]xE-k‘ﬂ-;g
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a two dimensional grid (Carlsom 1963, Lathrop and Carlson 1967).

First comnsider the angle integration. The choice of the set
of {l-l 4 -Hz} ia dictated by convenience. We have utilised the roots y 3 and
thelir corresponding weights ¢ 1 of the Gauss - legendre quadrature formula
of order J in the interval uaE),l .

putting 1-1;i = 0 we define

uj_|,,,ﬁ-§1‘t=1ck, 3=1,2...3 (25)
Integrating equationi (23) on the interval E. -3 M4 "{l we obtain
CyHy 3}955.}2 + ;l,l:(l‘uiﬂ)ujﬁ(r)
-2 el @ e sl @) = oy [a-ow)B@Ha
2@ geegli T @) g9 @) 26)
where u} (r) = u(r,uy),uj () = ule,-uy),
Pﬁ(r)jj.- P(Tayy .uj-).15'+(r)jj. = p(r,-ly k), ete.

&
1
The quantities u 14 are defined as

TV 1Ty X CTRIPE I U
E TR 2 M . i e . S i 2 TS U S W

27)
I+ U4+17Hy (
and put
+ _ .- by interpolation
Y T Yy
u; = u; - % (u';-h:I) (28)
By writirg
u{(r
uf(r)
a*@ = | § 29)
w (x)

and making use of equations (27), (28) and (29), the equation (26) can be

rewritten for all the angles in matrix form. This is given by
+
3y (x) --
M—g ¥ % E'}+E+(r)+é u (r)]‘l- O(r)g+(r)

=a(z) ]:E.-m(r):] 13"'(r)+ %m(r) Eg"*(r) c \3+(r)-§.€' “(x) e g‘(r)ﬂ (30)
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Similarly equation 24) can be written as
Ma—!-gll -= A u (r)+A u (r):l+6(r)u ()

=o(r){(1~u(r)}B” (r)+im(r) e (r)cu (r)+p  (r)eu () (3)
where ¢ and M are diagonal matrices with elements [ 194 j] and Ejs jj]
respectively. l}_ and ]}' are source vectors and Q and Q are matrices

of dimension JxJ called curvature schttering matrices. They are described
in Appendix I. These matrices should satisfy the idemtity

J
jzlc Ajk jk) 0 (32)

Now we integrate over the radial coordinate from r, to LR

Integration of equations (30)and (31)£from r otor glves us
+ + _ph:
E[E-:rnﬂ g:ZI+Tn-Hsgn Tty (1-u 445)3 (imn-l-kpn#gc T, 'Hi) et
- (33
1 +- pa -
+(§wn+31 En+3§ e -'Fn_-l'lz) gn#ﬁ]

-+ oh .\ 4
M U -U +:l[+1n+45 o -Hs[(l mnﬂ)n “’n+15£’n+lsf "n-a-l,)un‘“i

N (4
+(2 n-Hspn-Hs Tn )U +3;—_l

where

)
and variables subscripted with mt such as U:-Hg’ Toakg? Unalg 8T averages
over the cell whose radial boundaries are T and LR We define br_ e

Tot1 Tp? Tnﬂ-cnﬂ A:'n_l_;i and p'ﬂrn g / T, "o where rn'H: 1s a suitable mean

radivs such a8 (r +r .,)/2

o+ -

The quantities Un-kl; and U '*45 are replaced by

gt + -

L, i(gn+ +Un) and l..ln+35 2(gn+gn+1) @)

which is nothing but the 'diamond' difference scheme, We substitute
equations (35) into equations (33)and (34) and reerrange the input and output
intensities in the form of the interaction principle. Comparing these
equations with those given in(l),we obtain the transmission and reflectim
operators. These arz given in Appendix II.

These operators should be non negative and for this condition
to be satisfied, we must have
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+ -
A',L7 § .5 3>0. See Appendix II.

This can be achieved only if

1 +
. uji EDAH
Tntds <Terit=min

L. + (36)
2 (1uniagPy5°y)
Generally, we take thg critical step size to be approximately equal to
Terit = 2u1 (37

For a &4 angle quadrature Tcrit = ,l4., Once we calculate the r &t operators
corresponding to this optical depth, we can use star algorithm for obtain
ing the radiation field for a shell of larger optical thickness.

B.II Flux Conservation and Temperature correction,

Flux Conservation.

We must have the solution checked for flux conservation. The
systen should neither create nor destroy energy and we must show that the
solution obtained in the frame work of discrete space theory does con-
gerve flux. (see Grant and Hunt 196%9b and Peraish and Grant 1973). The
simplest case is that when we have purely scattering media. In this
case we have w=]1, We solve the transfer equation as deacril';ed in the
previous section and obtain the operators

r(a,nt+l), r(ot+l,n); t(n,n+l) and t(nt+l,n)

Then we should show that

[[t(n+l,n)+r(n+1,n)||-1+0(A-r) (33

where || || means that we take the norm defined by

m|. =1
[ Al = jgl‘(‘m )jkl,k=1,2,...T (39
and
D=218t ¢
As a consequence of condition(38)
J + —+
¢ %52:1"':1 Ejk‘n)ﬂjk(“{l']’kﬂ'z"' »J 4o
This is due to scattering. And
J + -
- = ol e n 4
) jglcj (Ajk Ajk) 0,k=1,2...J 4D

This is due to the nature of the curvature terms (see Appendix AI).

A more practical way of testing the system for f£lux conser-

vation is as follows.
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We introduce some flux at the point a and calculate the fluxeg
that emerge out at a and b. (see £1g.2) Thus 1f F denotes flux, we must
have

F(a) = F (b) + F (a) (42
(Notice that we did not give any flux at b(Le)ut=0x where F (b) is
the flux emerging at r=p and F+(a) is the flux back scattered ipto
the inner region. We give F (2)=ll.We present the quantitites F-(b) and
F+(a) in the table and we can see that the equation(42)can be satisfied
to within the machine accuracy (1 part in 109).

Table 1 Global comservation for a conservative isotropically
scattering shell illuminated isotropically on the inner boundary r=a, The
columns give the total flux emerging from the shell at radii g and p and
verify the equation F+(a)+F_(b)=F_(a)=n. Calculations are based on 8§
point Gauss-Legendre quadrature. A and B are the inner and outer radii
of the shell. Notice that when B/A=l, the approximation becomes plane

parallel. The results are taken from Peraish and Grant (1973).

T 2 3 10

3/A |7 (®)/2n|F  (a) /2n|F" (b) /20 |FF () /2n | Fo(b) /21 ¥ (a) /21

1.0040,19503 {0.30497 | .10383 | .39617 {0.05387 |0.44163

1.30|0,24617 {0.25383 | .13354 | .36646 |0.07550 | .42450

1.5010.27325 |0.22675 | .15177 | .34823 | .08650 | .41350

1.7 }0.29611 |0.20389 | .16881 | .33119 | .09716 | .40284

2.0 }0.32439 {0.17561 | .19227 | .30773 | .11254 | .38746
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Figure 3. Angular distribution of the specific intensity from
inside (n=100) to the outside (n=1) of a spherical atmosphere.
Here 1=10, B/A=1.5, N=100, w=1.0, isotropic scattering.
Teken from Peralah and Grant (1973).
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Flgure 4. Angular distribution of emergent Intensity ,
w=1.0, isotropic scattering (1) B/A=2; (2) B/A=1.5; (3)B/A=1,3;
(4) B/A=1.0. Taken from Peraish end Grant (1973).

0-55

05

o4

5 o3

0-2

00




Peraish: Discrete space theory 294

In figure 3, we have presented the solution of the transfer
equation and the emergent gsolution 1s given in figure 4, for the specifiagd
parameters.

Temperature Correctiom

The temperature correctionfr the discrete space theory had
been worked out by Wehrse (1981). We shall outline his procedure here and
those who are interested further may look into the above reference. We
begin from the interaction principle given in equation(l), written for all
the shells. Let us write

A U=z “3)
vhere A is a-t;i:iiagonal block matrix and U and Z condition all the specific
intensities and source vectors respectively from shell 1 to N. From
equation {43}, we have

g=a"l% ()
To calculate.'fiu;vector we multiply E] by a matrix (3: which contains the

welght factors for interaction

1
J" o (4s5)

=1
The total flux in a shell Ft':ot over all frequency points is

-1
\ = =
RN ACE AN o
vhere g4 are the integration weights and ne is the total number of fre-

quency points. Let the temperature stratification vector be T-El’TZ"'Tﬂt

for which the total flux is conserved. We write,

-1 3T
where k is the iteration number. The temperature correction vector is
given by

azi
F-=F (T K AT)= 4L lgi{GA (5t T)} ()

-1
{ ? g1 (GA } (48)

AF=F-, lgi(GA Ly 1) (49)

This procedure has been successfully used by Wehrse (1981) for computing
the models of M-super giant stars.
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B.III Line Formation in Expanding Stellar Atmospheres.

The problem of calculating the spectral lines iIn an expanding
stellar atmosphere 1s considerably complicated because the physical proper~
ties of the medium are affected by the local conditions of the moving
matter. If the velocity of expansion is small (say one or two mean thermal
units) one can use the rest frame and simulate the spectral lines. In this
frame we have to deal with a large engle-frequency mesh and the size of
this mesh increases with the velocity of expansion because of Doppler
effect. On the other hand in a comoving frame, one need not worry about
the Doppler effect and can employ very high velocities, with a much
smaller angle-frequency mesh. Therefore, we shall formulate the algorithm
in a comoving frame and indicate how the same procedure can be utilised in
a rest frame.

The equation of radiative tramnsfer for a Non LTIE two level
atom in the comoving frame in spherical symmetry is written as (see
Peraiah 1980)

2
1 )
u g(xla”r!r) -+ _“rL _I%.;Ml - 1-((x,r) SL(r)+Kc(r)Sc(r)
2 ¢ )
_E((x,r,‘)ﬂ(c(r):ll(x,“,r) + El-uz)ﬂrﬂ*' el X ,; i -

dr
2
L) L BebDop(r,ns, ()4, (1S, (0)- Eex, o+

Kc(r):II(x,-U,r)+{(l-V2) T 42 B Ea it (1)

Where I(x,H,r) is the specific intensity of the ray making angle cos—lu

and

with the radius vector r at the radial point r corresponding to frequency
point x(=(v-vo)/As, As being some standard frequency interval in the line).
Vv(r) is the velocity of the gases at r and K(x,r) and Kc (r) are the absorp-
tion coefficients per unit frequency interval in the line and continuum
respectively. The quantities SL(r) and Scare the line and continuum source

functions respectively and are given by

5. () = BOLET 5 (2,06 RyaxteB () (52)
S, = p(r)B(x) (53)
K(x,r) = K (14 (x) (54)

vhere K.L(r) is the line-centre absorption coefficient and ¢ (x) is the
normalised line profile. B(r) is the Planck function and p(x) is an
unspecified parameter. € is the probablity per scattering that a photon
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is lost from the line by collisional de-excitation of the excited states,
J(x,r) is the mean intensity.
We integrate equations (50)and (5D In the same manner as des-

eribed section BI. The corresponding discrete equations are written as

MUn+1 U_]"" E ALY L CRPY R -H:

ot ey -Hs[:ﬁ ]E7+u] LR 5
similarly
th_I;—U; +1:[-n @+§;+;,+A'U++{I+‘n+a"nﬁ‘3;+€
TSt 5 (1-6)T, [ﬂ E’ +Uj g 40 (56)
where
g;E!l.n,-Z,n,g;,n'"""gjl-,n"“’-;sn G

t indicates the transpose of the vector.

I(T M, %)
o =4IIr2 6, vy, "1) (58)
ui, .

I :u.T!xi_)

Here I and J are the total number of frequency points and angle points

respectively.

8ty I:?kk] =) g (59
where

g
and

k=j+(1~1)J, 1<k<K=1J
J and 1 being the running indices of angle and frequency quadrsture. The
subscript nMg represents the average of the parameter over the shell boun-
ded by radii r, and T +1. Moreover,

¢k ] (Xin )
sn_l_;;(a B-i-san)Bn +956kk'
2
13:__| _H!-Al'lrn +953 (rn _“5) (60
¢1VL = agcy
with
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o tt®s
i % A 9(x1) (6D
1i=1
A'is being the quadrature weights for the frequency points. The matrices
+
Mand A

M i
m ~m
+
M + A
E{- o A= ~ (62)
M it
m -~

with
I—'imE E: 4 § j1;| and similarly l} is define@.
+ .
and {&‘are the curvature matrices given Appendix AI. The quantity M. dU iy
in equations (55) and 66) are the equivalents of the comoving terms in equa-
tione (50)and(51). We have

el
@1-@ Avn#zﬂ:{zpcvn#ﬂ (69
En N
m
1 1 1.7, 2
M= M ,Mm-l:(uj 531)] (64)
|
)
,3{2 —
m 2 2
MZ= M [ o'
M w 2 1 [ 18] (65
= )

1oIm0, 2000y To0V, =V =T

The matrix d is determined from the condition of flux conserva-
tion and is given by

=4 d) enenn
“dy 0 dyeerses
d= -dy 0 (60
-4 droa

= _1 L] -
vhere di (xi+l—xi—1‘) for 1=2,3...,I-1

We set d1=dI-0 a8 boundary condition on the frequency integration.

-+ -
The average intensities gnﬁ'gnﬂ are approximated
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by the diamond scheme given by
L, bt o
'Z-(En+gn+1) gn#s (67
and

LA L
Substituting equation (63) into equations (35) and (56) and arranging the result-
ing equations in the form of the equations of interaction principle, we
obtain the r & t operators for the cell. These are given in the Appen-
dix III. The critical optical thickness can be estimated from the conditin
that the r and t operators be non negative,

Using the source functions that are obtained in the comoving
frame, one can obtain the radiation field transformed to a point at
infinity (see figure 5), or on to a rest frame whichever is necessary. We
shall present calculations of spectral lines obtained in the static and

moving media (rest~frame and comoving frame).

Figure 5. Schematic diagram showing how fluxes are calculated
at infinity
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In a static medlum we have no velocity fields and all the
comoving frame terms In equations (50) and (51) vanish (assuming that

the velocity gradients are also absent). We have performed some calcula-

tions in this situation and these results are presented in figure 6 and 7.

Figure 6. Symmetric line profiles for LTE and non LTE and
plene parallel (pp) and spherically symmetric media. Calcula-
tions have been done in static media with (B/A)2=l for pp and
(B/A)2=2 for SS. The total opticel depth is taken to be 200
and the Plenck function is set B(r)=exp(~T/n?) where n is the
number of the shell (n=l at r=b and n=N at r=a and N=150).
This Planck function represents an atmosphere with decreasing
temperature outwards. Taken from Peralah (1973).
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Figure 7. Equivalent widths are plotted against log E for
PP and §S with the same parameters given in figure 6. Taken
from Peraiah (1973).
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We need not employ the full angle-frequency mesh for differen-
cing as we are calculating the line in a static medium and it is enough if
we solve half the number of equations necessary to obtain the line profie,
We employed 14 frequency points In Xe(-4,+4) and 2 angle points (ul,uz)
over ue(0,1). These points are taken from Gauss-Legendre quadrature. (see
Grant and Peraiah 1972). In figure 6, we have plotted frequency dependant
fluxes in the line for B--lO"5 and e=l for LTE and s:-lo_:3 for Non LTE situ-
ation, with a two level atom approximation. We performed calculations in
plane parallel (PP) stratification with (B/A)2=l and in spherically aym-
metric shells with (B/A)Z-Z where B and A are the outer and inner radii is
the spherical medium. Effects due to non LIE physics and sphericity are
congpicuous, In figure 7, we have shown how the equivalent widths change
due to changes in € and B/A.

In figure 8, we have glven the line profiles of the emergent
hydrogen Lyman alpha line for a nebula expanding uniformly with twice
the thermal velocity, (see Peraish and Wehrse 1978). These calculations

are done in the restframe, and for details the reader may refer to the
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above paper.

Figure 8. Profiles of the emergent hydrogen Lya line for a
nebula expanding uniformly with twice the thermal velocity,
These profiles are calculated in the rest frame. T4 1s the
dust optical depth. Taken from Peraish and Wehrse (1978).

uniform expansion
v=2v%
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Figure 9. Flux profiles of the lines recelved at the observer F = F(x)/r
(¥max) and Q = X/Xmax. These profiles are transformed from
comoving to a frame at infinity. Taken from Peralah (1980).

2:0}— \

e e e et
Gl
o
T ——
\.

———
\———————-__

o
I
S
"
ol
—

The comoving frame calculations have been done with partial
frequency redistribution in an isothermsl atmosphere (Peraish 1980). We
calculate the frequency dependent source functions in the comoving frame
and it is transformed on to a point at infinity. We have presented in
figure 9 such profiles calculated using angle averaged redistribution

function R. in the comoving frame., Here we have used a veiocity law with

I
constant velocity gradients

VB_V A
v(r) 'VA'l-—f:A—(r-A)

Where VB and VA are the velocities (in mean thermal units) at radial poire
a and b respectively. The velocityVy 1s always set equal to O and the
numbers corresponding to each curve represent the velocities at b(i.e)Vp-
When Vp=Vp=0 (static medium) we obtain a symmetric line profile and when
the velocity increases, the line becomes asymmetric.,
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Appendix I (AT)

The curvature scattering matrices are

i (1) (tysy)
C AL, = Jkmi+1,4=1,2, .-
ik (uj+1_uj) | h| 1

2 2
. (g Gy (00 ) By )
Olyr7Hy) )
k=1,1=1,2...7

2 2 -’
L ) by )
(uy=iy_y)

sk=i=1,3=2,3,..J
and

- _1
Cyhy™2%, 1%, 1
The u's and ¢'S are the roots and weights of Gauss - Legendre quadrature
on pe(0,1) (see Abramowitz and Stegun 1970, page 921).
For J=2,1,=.21132,},= -78868,q = c, = .5

-.25 .75 -10

A+= A-=

-.75 =75 00
For J=4
1-11-.06943 15-.33001 u3= .66999 uta-'93057
cl-.17393 3-.32607 03-.32607 02'-.17393
46494 2,23590 0 0
-1.,78139 -0.04258 1.15005 0
0 ~1.,15005 -0,75945 0.58343
0 0 - ,73228-1.09379
A~m=-2,874766

A=

3,1%,1
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Appendix AII

The operators of transmission and reflection are given by

t(n+l,n)=t [ .H-ﬂ"l~ _ﬂ

t(n,n+1)=t_Ess “hr r"*:[

r(ntl,n) = 2t *ahy

~ -

r{n,n+l)= +r"~A

and the source vectors are

+

n'Hs -Hz(l-m)t EB +r A B]

e [
- -1

t+- I-r r:[ ,t ]:—r r]

R T S

= %4 cAS

-~ - -

.1 +
e et

[ ]

- -1
1 —
a= _‘,“E%a—k‘f‘%:ﬁ’:[
o] ++
5 =¥7Tnﬂ(5—%lﬂ)

SN, g T Q)

-+ 1 —+ + 1 +—
S a= -
- ZTrrikgn-ﬂsand § ZTn-H:gnﬂ

glj;;wp c-pA /-r s

Qn =-;-wp c+oA /Tn-H:

—t 1 -
H 7 SR [y,

4

‘:f°-r ':f°

=-J‘w e F W2
Hg 290 CTPL /T
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Appendix AIII
o= l-g, Y = %o qubtizl, Z = ¢-Y

A
- ..1.. » Pol
Z, = B0 B/ S5 T = YRt

Mld
z_= Z-p A /'r— -u, Y-Y-p A It

+ 1 -1
A = Tz |, I‘= M—-fz:l

-1
Y, ot - E—B+'B'il

Simtlarly B—+ end u_+ are defined. Now we shall write the transmission
and reflection matrices and the source vector as

a.+ EI‘+ +B+ g ]
r (nt+l,n) E+A I‘:I

'ra.+ - E++B+ - A-:l S

The operators t (n,ntl), T (n,ntl) and I_ Loy oTe obtained by interchanging
the + and - signs in the operators t (n+1 n), r (n,o+l) and Z .y

t (ot+l,n)

+
and L
T

respectively.
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