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Abstract. Energy transport is considered in an intense flux tube on the Sun, with the 
aim of examining the role of various heating mechanisms and delineating their contri
butions to the energy budget. Radiative energy transport is modelled by solving the 
transfer equation in a. generalised version of the Eddington approximation. Convective 
energy transport is treated within the framework of mixing length theory. Dynamical 
effects are also incorporated in the analysis by allowing mass motions within the tube. 
The temporal behaviour of an intense flux tube is studied, when its equilibrium is per
turbed by a small downflow. It is found that overstable oscillations with a characteristic 
time of some 600s are set up. The computed temperature structure appears to be com
patible with observations in the upper layers of the tube. However, close to r = 1, 
the tube has a somewhat lower temperature than the one inferred from semi-empirical 
models. Radiative transport dominates the energetics in the photosphere, but in the 
lower layers the main contribution is from enthalpy transport. It also appears that 
overstable oscillations are probably not important in heating the chromosphere and 
corona. 

1. Introduction 

It is generally believed, on the basis of observations (see Stenflo, 1989 for a review), that most of 
the magnetic flux at the photospheric level is in the form of vertical magnetic flux tubes. Despite 
the availability of sophisticated observational techniques, our knowledge of physical conditions 
inside the tubes is far from complete. Owing to the small horizontal dimensions (typically 
S 1 arc sec), the internal structure of flux tubes is usually inferred indirectly using empirical 
methods (see Solanki 1990 and references therein). Recently, several empirical models of flux 
tubes have been constructed (e.g. Zayer et al., 1990; Keller et al. 1990), providing information 
on various quantities such as magnetic field strength, temperature and velocity at different 
depths. They provide fairly stringent constraints on theoretical models, which are ultimately 
needed to understand the physical processes occurring in flux tubes. 

A number of theoretical studies have focused on examining the formation and evolution of 
flux tubes with the aim of developing self-consistent models. Using the thin flux tube approx
imation, the formation of intense flux tubes due to convective collapse was studied by Hasan 
(1983,84,85), the latter hereafter designated Paper 1. The results of these time dependent non
linear calculations, clearly demonstrated the existence of oscillatory behaviour in the final state. 
Numerical simulations on flux tubes have been carried out in 2-D by Deinzer et al. (1984), 
Knolker et al. (1988), Knolker and Schussler (1988) and Grossmann-Doerth et al (1989) and in 
3-D by Nordlund (1983) and Nordlund and Stein (1989). 

The present study is a continuation of earlier work on quasi-l-D models of intense flux 
tubes by the author. This investigation differs from the previous ones through the inclusion 
of a more realistic energy equation, which treats both radiative and convective transport of 
energy. Preliminary results based upon such an approach can be found in Hasan (1990). These 
calculations have been further refined in two important ways: firstly, an open upper boundary 
condition is used to allow upward transport of energy and secondly, the convective energy flux 
is not assumed constant with time. Another difference is that a stronger magnetic field (closer 
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to the observed values) is used in the initial equilibrium state. It should be emphasised that the 
aim of the present analysis is not to examine the convective collapse phenomenon, but rather 
to examine the oscillations set up in an intense fiux tube, when its equilibrium is perturbed. 

2. Model and mathematical Aspects 

2.1 Equations 

Let us consider a vertical fiux tube of circular cross-section threading the photosphere and 
convection zone on the Sun and adopt a cylindrical co-ordinate system (r,B,z). In view of the 
small horizontal scale of 'the tube, it is convenient to use the thin fiux tube approximation 
(Defouw, 1976; Roberts and Webb, 1978). The MHD equations for an axially symmetric tube, 
in the .lowest order of this approximation, only involve one spatial variable, z. At the interface 
between the tube and the ambient medium, pressure balance is assumed. In the present study, 
the same set of equations as those used in Hasan (1985) are used, apart from the energy equation, 
which is 

( aT aT) () Xp (S) oFe pCv - + v- = -pCv "y -1 T~- + 47rK.p J - - -& fu XT fu 
(1) 

where p is the mass density, T is the temperature, v is the vertical component of velocity, 
b. = (V'.v)r=O, Cv is the specific heat at constant volume,,), is the ratio of specific heats, K. is the 
Rosseland mean opacity, S is the source function, Fc is the vertical component of the convective 
fiux (we implicity assume th~t 'the strong magnetic field suppresses horizontal convective energy 
transport) and z is measured positive into the Sun. Expressions for XP' XT can be found in 
Paper 1.' The first term on the right hand side of Equation 1 denotes the contribution due to 
compressional heating, whereas the second and third terms correspond to energy deposited by 
radiation and convection respectively. The second term can be related to the radiative fiux, 
defined as Frad = -(47r/3K.p)V'J, through the relation 

V'.Frad = 47r1~,p(S - J) (2) 

2.2 Initial state 

We assume that at t = 0, the tube is in hydrostatic and energy equilibrium. Both the external 
and internal atmospheres were constructed iteratively. Details of the method are described in 
Hasan (1988). Briefiy, the external atmosphere resembles the combined models of Spruit (1977) 
for the convection zone along with the Vernazza et al. (1976) model for the overlying layers. 
To obtain the atmosphere within the tube, the static equations of MHD in the thin flux tube 
approximation were solved, keeping /30 (/30 = 87rpo/Bo2) fixed at 1.0, where the subscript 0 
refers to the top boundary. 

2.3 Numerical technique and boundary conditions 

The equilibrium described in the previous section was perturbed by introducing a small downfiow 
velocity ( < 50 m s-l) and the subsequent time evolution of the tube was followed by numerically 
solving Equations 1,2 along with the momentum and continuity equations using an explicit finite 
difference scheme based upon the Flux Corrected' Transport algorithm of Boris and Book (1976). 
A finite length of tube, with upper and lower boundaries at z = -1000 km and z = 2000 km 
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was used. The level z = 0, corresponds to Te = 1, where Te is the continuum optical depth in 
the external atmosphere. 

The method of charactersitics was used to implement the boundary conditions. A trans
mitting upper boundary condition was used at the upper boundary. During the downflow phase 
of the oscillations, the pressure and density were kept constant and the velocity'was determined 
from the characteristic equations. For upflow, the velocity was assumed constant along the C
characteristic. At the lower boundary, a no flow condition along with constant density were 
assumed. The pressure was calculated from the characteristic equations. 

3. Results 

Fig. 1 shows the time variation of the vertical component of velocity v at three different depths 
in the tube corresponding to z=O (solid line), -500km (dashed line) and -900km (dotted line). 
Positive values of v denote a donwflow. We find that the flow exhibits oscillatory behaviour with 
a period of some 600s. The pattern of the flow is not a simple sinusoidal one, but somewhat 
complex, with the upflow and downflow phases not being symmetric. The amplitudes of the 
oscillations increase with time, indicating overstable behaviour. We also find that the oscillations 
at different heights are not in phase and indicate upward wave propagation. 

Fig. 2 depicts the variation of the temperature as a function of vertical optical depth. 
The curve marked e corresponds to the external temperature profile. Curves marked 1,2 and 3 
correspond to t =0, 3568 and 698s respectively. At the initial instant, the flux tube is hotter 
than the ambient medium at equal optical depths, because it is evacuated with respect to its 
surroundings. During the downflow phase of the oscillation, the upper layers are heated due to an 

-increase in the vertical radiatLve flux. In the sub-photospheric layers, which are superadiabatic, 
the tube is cooled by the dotvnflow. The opposite effect occurs during the upflow. It is useful to 
compare these theoretical curves with those from other models. The dashed curve corresponds 
to the semi-empirical plage model of Solanki (1986), with the vertical bars corresponding to the 
temperature range (deduced from different observations) found by Zayer et al. (1990). Shown in 
dotted curves, are also the temperature profiles calculated theoretically by Deinzer et al. (1984) 
for different parameters, using a 2-D simulation. The time-averaged theoretical profile, obtained 
from the present calculation, appears to be broadly in agreement with semi-empirical models in 
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Figure 1. Variation of v with tat z=O (solid line), -500km (dashed line) and -900km 
(dotted line). 
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Figure 2. Variation of T with T at t=O (curve 1), 356s (curve 2) and 698s (curve 
3). The external temperature is denoted bye. The dashed lines correspond to the 
semi-empirical plage model of Solanki (1986) and the vertical bars denote the temper
ature range based on the Zayer et al. (1990) model. The dotted curves denote the 
temperature profiles from Deinzer et aI. (1984). 
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Figure 3. Variation of B with T at t=O (curve 1), 356s (curve 2) and 698s (curve 
3). The dashed line correspond to the lower limit of the field strengths from the 
semi-empirical model of Zayer et aI. (1990) model. 

the upper layers of the tube, but somewhat cooler near T = 1. This could be because the actual 
tube is more evacuated than the one considered in this model. 

In Fig. 3, the variation of the B, the vertical magnetic field strength, with T is shown, at 
three different times. There is a significant increase of B during the downflow phase. The dashed 
curve corresponds to the lower limit to the field strength, deduced by Zayer et al. (1990). The 
value of f3 used in the present model gives . field strengths somewhat lower than those inferred 
from semi-empirical models. 

Fig. 4 shows the vertical radiative and enthalpy fluxes, Fr&d (solid lines) and Fenth (dashes) 
as a function of time at z=O (curve 1) and z=-200km (curve 2). All values have been normalised 
with respect to the normal photospheric flux. Positive values denote an upward flux. In the 
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Figure 4. Variation of Frad (solid lines) and Fenth (dotted line), in units of F0 , as a 
function of time at z=O (curve 1) and z=-200km (curve 2). Positive values denote an 
upward flux. 

photosphere and above, the energetics in the tube is dominated by radiative transport, whereas 
in the lower layers, it is the enthalpy flux which is much larger. In the layers close to the top 
boundary, it is found that Fenth is very small. The kinetic energy and convective energy fluxes 
have not been shown, since they are very small. 

4. Summary and conclusions 

The results indicate that intense flux tubes exhibit oscillatory behaviour, with a period of some 
600s and with the amplitudes of the oscillations increasing in time. The upflow and downflow 
phases do not appear to be symmetric. In the upper layers, the computed temperature profiles 
are within the observed range. Close to r = 1, they are somewhat cooler. The major contribution 
to the energetics within the tube comes from radiative transport in the photospheric layers and 
above. However, in the subphotospheric layers and below, enthalpy transport dominates. It also 
appears, that energy transport by overstable oscillations is probably not an effective mechanism 
for heating the chromosphere and corona. 
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Discussion 

M.Ruderman: ( a) Did you study magnetic tube stability in the linear approximation, and if you 
did what were your results?(b) What were the boundary conditions at the ends of the tube? 

Answer: (a) Yes, I have studied the linear stability of a tube in the adiabatic approximation 
and also with later heat exchange. The results can be found in my paper: 1986, Mon. Not. R. 
asir. Soc. 219, 257. (b) As al~a:-dy stated, a transmitting upper boundary condition and a no 
flow condition at the lower boundary were used. 

A.Sterling: Do your results have any dependence on the location of the lower boundary? 

Answer: The results have a weak dependence on the location of the lower boundary, provided it 
is taken sufficiently below the region of strong superadiabaticity, driving the instability. In the 
deeper regions, the velocity amplitude is fairly small, owing to the large density, so that taking 
a no flow condition at the lower boundary is a reasonable approximation. 

K.Shibata: What is the maximun velocity at the photospheric base in your flux tube? Does it 
depend on the initial plasme {3? If there is a 1-2 km s-1 velocity perturbation at the photosphere, 
such a perturbation may develop into a large amplitude wave in the upper photosphere. Did 
you find such behaviour? 

Answer: Owing to overstability, the velocity amplitude grows as a function of time. Starting 
from a small perturbation, flows with amplitudes of around 1 km S-1 develop after some 600s at 
the photospheric base. The calculations clearly reveal that the amplitude of the flow increases 
with height, owing to the decrease in density. In the present investigation, the dependence of 
the results on f3 was not studied, but I expect, on the basis of my earlier calculations, that the 
effect of changing f3 is to increase the growth rate of the instability and the amplitude of the 
oscillation. . 

B.Roberts: It may be worth stressing that the low energy flux you find from the tube waves 
applies only to that arising in a tube, when left to itself, but subject to overstability. In other 
words, other mechanisms (such as buffeting by granules surrounding the tube) will add to the 
energy flux and to the generation of oscillations in tubes. 
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