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Abstract : Formation of ordered structurcs of definite sizes and shapes in an otherwise 
turbulent :1I1d sccmingly disordcred system is discussed using statistical description of a nonlinear 
system with tllarge number of degrees of freedom. Use or variational principle facilitates to fathom 
the field forms. Two examples from astrophysics: first the granulation patterns on the solar 
surfuce and second the pallcrns of gul<1)(Y distribution in the form of superclusters and giant­
clusters, are presented here to illustmte the potentiul of this way of describing a turbulent medium. 
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1. Introduction 

A tluid is said to be turbulent, when in a random state of motion, due to the excitation of 
instabilities, it exhibits molion on many spatial and time scales, capable of exchanging energy 
among themselves. Generally, the boundaries and the buoyancy constrain the motion on the 
largest scales and dissipation at the smallest scales. The presence of turbulence affects the 
transport of mass, energy, electromagnetic fields, concentration of species, mixing .of 
elements and chemical reactions in an anomalous manner. The transport could become 
exceptionally emcient if the turbulent system supports the formation of large organized 
structures. In the following sections, the conditions which facilitate the formation of ordered 
structures in fields describing the system will be explored and then applied to understand the 
solar granulation and clustering of galaxies, the two apparently disconnected phenomena 
[1-5J. 

2. Characterization of turbulence 

In a turbulent fluid, the velocity field V (x,t) can take any value in a completely random 
fashion. Since V(x.!) is a random function, its values must be distributed according to some 
definite probability laws which can be determined from the experimental data of the problem. 
A knowledge of V(x,!} for every point (x,!) constitutes a realization of the turbulent field. In 
general, there exists a statistical connection between the values of U(x,t). The probability 
laws describe this statistical connection and one is able to determine the average values of the 
various quantities or interest. For spatially homogeneous turbulence all regions of space are 
equivalent. Thus' averaging over large number of realisations or ensembles is same as 
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averaging over a large region of space for one realisation. But what one measures in a 
laboratory experiment is the time variation of u(x,t) at a fixed space point and obtains a time 
average. With the help of Ergodic theory, one arrives at the equivalence of the time avera e 
and the probability average which is further equal to the spatial average for homogeneo~s 
turbulence. 

3. Quantification of turbulence 

Mean values of the products of field variables (like velocity, magnetic field etc) and their 
derivatives fonn the fabric of a turbulent medium. Out of these, the two-point correlation 
function R ij (r) defined as : 

Ry(r)= <Ut(X)U/X+T» (1) 

IS the most important. Here angular brackets represent the space average. For homogeneous 
and stationary turbulence Rij(r) depends only on the configuration and not on its location. 
For example, the total kinetic energy of a fluid is given by Rij(o). The Fourier transfonn 
of Rift' J can be difined as : 

and since 

·kr 3 
R· .(r) = J q, .. (K) e' d k 

l) l) 

q, .. (K) = 1 3 f R .. (r) e-ikr d 3, 
1J (2n) 1J 

Rjj(o)=<Uj(x)u/x»= J q,jj(k)d3k, 

q,if(k) represents a density in wavenumber space of contributions to < Uj (x) Uj (x) > which 

determines the energy associated with the various components of the velocity. Thus l/Ii}{k) 

represents distribution of energy in K space and the total kinetic energy per unit mass of the 
fluid is given by : 

E = ~ < Uj (x) Uj (x) > = ! J q,ii (k) d 3.k = J E(k) dk. 

Now, by definition, a turbulent motion is rotational, therefore the vorticity Q) = V x u 
and the helicity Y= u. {O must be specified too. Their correlation functions are related to 
the two-point velocity correlation function Rij (r) and its derivatives. Conditions like 

incompressibility further restrict the amount of data required. The hope is that the action of 
Nai~er-Stokes equation of motion would direct the random velocity field into a manageable 

statistical state [6,7]. 

4. Cascading characteristics of turbulence 

The direction of flow of energy in a turbulent medium containing several spatial scales is 
detennined by the nonlinear interactions between the fluid elements of various sizes. It is also 
well known that the direction of cascade or the transfer of energy depends very essentially on 
the dimensions of the system. Thus. a two-dimensional system behaves in an entirely 
different manner from a three-dimensional one. Since it is almost impossible to completely 
specify a turbulent state, often Kolmogorov's law [7] is used to find the spectral 
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characteristics in the inertial range which is a range in wave-number with no sources and no 
sinkS. In this range, the spectrum transfers smoothly in a stationary state with energy flow 
rate equal to the dissipation rate. In the absence of sources and sinks. a turbulent system can 
be specified by certa~ time-independent quantities. called the invariants of the system. By 
applyingKolmogorovlc arguments [7110 these invariants. one can get their spectral transfer 

laws. 

4.1. Three-dimensional hydrodynamic system: 

An incompressible hydrodynamic system is described by the Navier-Stokes equations: 

p[ :t + v. V] V = - Vp + vV2V (2) 

and VV=O (3) 

where p is the pressure, p the density and v is the kinematic viscosity. 

The total energy dermed as : 

j 1 V2d3 E = T P r (4) 

. is the only quadratic invariant of a 3-D system. If the Fourier amplitude of the velocity field is 
V 1, then the rate at which the spectrum cascades is given by (KVk), (the convective 

derivative). Kolmogorov [7] stated that in a quasi-steady state. there should be a stationary 
flow of energy in K-space from the source to the sink, i.e. the energy density flow rate (KVJ 
(PV2J should be constant and equal to the dissipation rate e of the energy density at the sink. 

Thus 

pKvl = e. (5) 

IfW(k) is the omnidirectional energy spectrum then the total energy E is given by: 

E = JW(k)dk 

cr KW(k) has the dimensions of vi. Therefore : 

( )
2/3 

W(k) = C; k-5/3 (6) 

where C is a universal, dimensionless constant, determined experimentally and lies in the 
interval 1.4-1.8 Landau [in II} however, pointed out a contradiction. Kolmogorov assumed 
an average constant dissipation rate e, whereas the dissipation can be equally well described 

by the local rate e (r, t) = -21 v [.ll + !..::L]2 , which is a fluctuating quantity, as 
dXi aXj 

COnflCffied by experiments. Notwithstanding this, no experiment has indicated any deviations 
from Kolmogorov law. though these have been observed for higher order velocity moments. 
This state of affairs is a pointer to the intermittent nature of small scale turbulence. In a 3-D 
system. the energy cascades to small spatial scales where it suffers dissipation. 
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4.2. Two-dimensional hydrodynamic system: 

In a 2-D incompressible and ideal system, there are two invariants in the inertial range, 1he 
total energy E and the enstrophy U difined. as : 

j(VX V)2 .fl. 

U = 2 crr (00) 

Therefore one expects, two types of inertial ranges, one for the energy and the other for the 
enstrophy. The enstrophy density is given by pk2Vt and the inertial range for enstrophy is 

determined by demanding: 

(KV 0 (p k2V~ = Constant = e' 

Using KW(k) = V~, one finds 

W(k) ='C ( ; f3 K-3 (7) 

If W(k) oc K-3, there is no energy cascade and if W(k) oc K-5/3, there is no enstrophy 
cascade. Hence a source at K = 1\, will set up two inertial ranges given by eqs. (6) and (7). 
Since enstrophy, because of its larger K dependence (K2V~) is dissipated at a rate faster than 

energy, the K> Ks region is expected to be the inertial range for enstrophy and K < K. for 

energy. Thus energy is expected to cascade towards large spatial scales and an inverse 
cascade is set up. This has been further confirmed by the mode-mode coupling consideration 
of Hasegawa [8]. Here, a source K s splits into two modes K 1 and K 2 such that the total 
energy and enstrophy are conserved. The process can continue for K 1 and K 2 until one finds 

that the energy condensates to the largest allowed spatial scale determined by boundaries. The 
inverse cascade of energy in a 2-D system has been substantially conftrmed by experiments 
and the numerical solution of the Naiver-Stokes equations [9,10], 

Question: Can inverse cascade of energy occur in a 3-D system? 

4.3. Inverse cascade in 3-D: 

One learns from a 2-D system that it is the incompatibility in the inertial range spectra of the 
two invariants, that led to the energy cascade towards large spatial scales. So, if one had one 
more invariant in a 3-D system, perhaps inverse cascade of energy could occur. Besides, the 
appearance of large scale structures in 3-D atmospheres of planets compells us to look for the 
possibility of inverse cascade in 3-D. Specifically, the observations of helical type of flow 
structures in circumstances varying from oceans to cloud complexes, brought to the fore the 
importance of helicity in turbulent fluids. The fundamental idea that needed to be appreciated 
was that the large helicity fluctuations always exist in a turbulent medium even if the average 
helicity vanishes. It was shown that the fluctuating topology of the vorticity field in turbulent 
flows can be characterised by the statistical helicity invariant I represented by conserved mean 
square helicity density [11] : 
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J = f < J(x) J(x+r» >r:Pr = J!(r)d3r 

Lim 1-
wbeIe < y(x) y(x+r) > = V2~cc V:~ Jl<x)y(x+r)d3x. 

l(r=O) = < r(x)y(x) > = J/(k)d3k 

r = V.(Vx V). 
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(8) 

(9) 

Here, I(k) represents a density in wave number space of contributions to < rex) rex) > 
which is the mean square hclicity density. Thus E an I are the two invariants of a 3-D syste~. 
For a quasi-normal distrihution of hclicitics. I can be written as : 

I = A J[W(k)]2 elk (10) 

where A is a constant. . 

Using Kolmogorovic arguments for the J invariant. one can determine the spectrum in 
the inertial range as : 

(KV ~ (kW~ = constant 

Wt «K-1 (11). 

and the total energy density is 

E = JE (k) dk oc: 10gbfJ· (12) 

Hrre IJ..t) is the transient largest scale excited at time t . One observes that the energy groWS­

very slowly as the spatial scale L(t) grows. So, practically, there is little transfer of enexgy , 
towards large scales. But, what happens is that as the correlation length of helicit)! 
fluctuations increases, abe velocity and vorticity become more and more aligned ~d as,a 
consequence the nonlinear term (V. V) v of the Navier-Stokes equation decreases and 
retards the flow of energy towards small scales. On the other hand, the growth of correlation 
length cannot go on indefinitely. Especially if the medium is restricted in the vertical direction 
by gravity or buoyancy as is true of atmospheres of any celestial object, may it be a planet or 
a star. Under such circumstances. the correlation length continues to grow in the horizontal 
plane and the system becomC!S more and more anisotropic. In addition. since I(k) = [E(k)]2 
and E,(k) GO: K-SJ3. in analogy with the 2·D case one expects 1(/() to be dominant at small k 

whileEGt) will be larger at large K and this itSelf is a pointer to the inverse cascade of T. 

What is achieved by abe growth of correlation length of helicity fluctuations is the 
anisotropy in the system which can now be approximated to a quasi 2·D system. Here, the 
~tal scale is much larger lhan the vertical scale and the vertical velocity V zo is much 
SIla11er than the horizontal velocities (V~, V,,). This decouples the horizontal and vertical 
motions. Vz becomes independent of (x.,.z) and (V.x' V,)/) independent of (z) leading 10 
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CI}%,J = ( VXV)"',J = O. The invariant I becomes : 

and 

I = J < (VzCl}z)2 > dx dy dz 

.::. L, < V; > K2VtK-2 oc vi = KW(k) oc LZ/3 

J(k) 0<: K-S13. (13) 

Here. L is the largest length scale in the horizontal DIane. Thus I(k) spectrum coincides with 
energy spectrum of 2-D turbulenceE(K) IX K-5/3 corresponding to the inverse cascade. One 
expects that an increasing fraction of energy is transferred to large spatial scales as the 
anisotropy in the system increases. This can go on until coriolis force begins to be effective. 
The length scale Lc where the non linear term of the Navier-Stokes equation becom~ 
comparable to the coriolis force. can be determined from 

(v.v,l"v = 2(VxO)-Ox (OX r) 

or Lc ... V 
n 

(14) 

(15) 

where D is the angular velocity. Given sufficient energy. structures of size L c must form. At 
these large spatial scales. the system simulates 2-D behaviour and enstrophy conservation 
begins to play its role. One may consider scale!; L ~ Lc as a source of vorticity injection into 

the system. The enstrophy then cascades towards small scales with a power law spectrum 
given by 

(16) 

Thus there is a break in the energy spectrum as energy must cascade to larger spatial scales as 
L'1I3 and to small scales asL2. Therefore the energy must accumulate at L - L c and pass on 

to the highest possible scales of the general circulation of the atmosphere. The complete 
energy spectrum of a hydrodynamic turbulent medium is given in Figure 1. 

E (L) 

I 
f 
I 
I 

I 
I ~c 

3 100 
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Figure 1. Turbulent energy spectrum. Lz =sca1e of the fust break due to buoyancy, Lc= scale 

of the second break due to the Coriolis force, C = cluster, SC = supercluster and OC = giant 
cluster. 
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5. Self·organization or negative temperature 

USIng the two invariants, the energy E and the enstrophy U of a two dimensional 
incompressible fluid, the Gibbs distribution function is-written as 

P = Constant x exp [-aE - ,8U] (17) 

where a and f3 are constants. In wave-number Fourier space, U" =,K2 Wj:, one finds the 
model energy distribution in wave-number space to be: 

1 
< Wk > = (18) 

a +f3k2 

Thus < Wk > 0 even for a< 0 and therefore, temperature == crt can be negative and a self­

organized state willi energy accumulating at large spatial scales due to inverse cascade forms. 

Analogous to 2-D, one can write the Gibbs distribution function for a 3-D system 
using energy E and mean square helicity / as the two constants of motion: 

P = Constant X exp [- a E - f3T]. (19) 

In the wave-number Fourier space, /(k) = [W(k)] 2, the modal energy distribution in wave­
number space is given by 

J: e -b( IVL +a/2h)2 W kdW k 

(Wk)=~------J: e-h(IVL +al2b)2 dWk 

-a exp[-a2 /4b] = --+ ---.==~----"----
2b 2b~; '{I + 4'( a 12.,[b)} 

(20) 

where tP is the probability function. Here we find a<O (,8>0) is possible. One could in 
principle, get a state with negative temperature corresponding to E. This is surprising since it 
was found that it is I that cascades towards large spatial scales and E towards small spatial 
scales in a 3-D system. Therefore one would expect (X > 0 and ,8 < 0 to be the only 
possibility, which corresponds to negative temperature associated with I instead of E. 
However, from the fact that cascading of / towards large spatial scales is also accompanied by 

the alignment of velocity and vorticity which retards the flow of energy to small spatial scales, 
it is in this sense that a can acquire negative value in a system developing anisotropy. 

6. Variational principle for self-organized state 

Hasegawa [8] has discussed the earlier work on the formation of ordered structures in a 
medium that supports at least two differentially decaying ideal invariants. Thus. the 
minimization of the rapidly decaying GJuantity B( V) keeping the slowly decaying one A( V) 

constant leads to a quasi-stationary state in which th~ random field V, e. g. velocity in a 
turbulent fluid can be described by the equation: 
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aA (V) - )..dB( V) = O. (21) 

For a 3-D system, A(V) = J (V. (j)2cPX and B(V) = J V2cPx gives 

J av. [2(V· co) co -/lV - V x V(V. w)] d3x 

+ f V. [(V. W)dVX Vld~x ~ 0 

where co = V x Vis the vorticity. Applying the divergence theorem and assuming that w.n 
vanishes on the boundary, the second them in eq. (21) vanishes and the variational equation 

equation becomes 

2(V.m)w -Vx V (V. co)-/lV = O. (22) 

For'comparison, the corresponding equation obtained for a 2-D system with enstrophy and 

energy ~ its invariants"is 

Vx (V~V) = /lV. (23) 

Thus, the variational eqs. (22) describing the flow pattern of a 3-D system is nonlinear and 
enonnousiy more difficult to solve. The self-organized state described by eq. (22) should be a 
stationary solution of the Navier-Stokes equation (without dissipation) and from it one can 
determine the temperature distribution 

p(V. V)V =: - Vp 

p = pRT(x, y), 
(24) 

where R is ths gas constant. Summarising. the energy spectrum, the velocity flow pattern and 
the temperature distribution of an organized state in a turbuIe.nt fluid are given by eqs. 
(6,12,1(5), (22) and (24) respectively. 

7. Applications in astrophysics 

(i) Solar granulation 

Radiation and convection are the two main energy transport processes in the solar interior. 
The convective transport becomes operative where the temperature and density gradients are 
such that a fluid element, when displaced from its equilibrium position, continues to move 
away from it. This stratification through unstable convection produces turbulence in the 
medium. Fluid eddies of varying sizes then carty energy as they propagate arid dissipate. The 
cellular velocity patterns observed on the solar surface are believed to be manifestations of 
convective phenomenon occurring in. the sub-photospheric layers. The cellular velocity fields 
are seen prominently on two scales: the granulation and the super granulation, though 
mesogranulation and giant cells. are also suspected to be present The fonnation of granules 
with an average size of 1000 km and a lifetime of a few minutes is understood either from the 
mixing length [12] or from the linear instability [13] description of the convection in the 
hydrogen ionisation zone of the sub-photospheric medium. The supergranules with an 
average size of 30000 kIn and a lifetime of 20 hours do not have an unambiguous association 
with a subphotospheric region. The attempts have been to seek an explanation for the energy 



Se/f-organization processes in aslrophysics 577 

concentration at the supergr:mular scale and to identify the region. Simon and Leighton [14] 

Suggested helium ionisation. to be r~sponsible for accumulation of energy at supergranular 
scales. Convective modes with dornmant growth rates at the two scales have been favoured' 
by Bogart et al [131 and Ant.i.:l el aJ [15]. 

The quality observations obtained at Pic-du-Midi indicate the existence of a continuum 
of sizes instead of one dominant scale in the granulation. The fractal dimension studies reveal 
that small edclies arc more regular than the large ones (16], Further, a plot of kinetic energy 
E(K) elK contained in the scales between K and K + dk versus the wave number K shows two 
slopesof-(-O.70) and (-1.70) with a break atK-l == 2000krn [17]. The slope of (-1.70) is 

th K 1 ' , 1 ,A·5/3) t" h " very close to e 0 mogorov s aw 11.' lor omogcneous IsotrOPIC turbulence. where 
large eddies cascade 10 small eddies, setting up an inertial range. Similar conclusions 
confirming the turbulent nature of granulation have been arrived at through the SOUP 
observations by Title el al [181. Prompted by these observations it was suggested that perhaps 
the energy inj~tion into the solar atmosphere occurs at the supergranular scale and the 
continuum of granules is formed by the direct cascading of energy from large scales to small 
scales [19]. Assigning the convective energy transport to supergranules also alleviates the 
problem of geuing too large a measure of vertical velocities and temperature fluctuations if 
one restricts the energy unnsport only to granules (20.21]. The large scale motions reported 
by Ribes et at [22] could also be sustained by supergranules or may be a consequence of the 
instability of the convection zone against large scale disturbances. Mesogranulation refers to 
the scales lying between the granules and supcrgranules as reported by November et al [23]. 
Here. we explore if the e~citation of random small scale motions can lead to large organized 
structures which are observed in the form of granules. mesogranules, supergranules and giant 
cells. 

Energetics : 

According to the picture f 111 presented here, the energy in the larger structures has been 
inverse cascaded from the smaller structures, if so, then the energy density per unit gram E(L) 
in the large scale L should not exceed in the small scale (I). From the energy spectrum E oc 

L2IJ. it follows that 

(25) 

where fis the time for which energy injection must occur. Ifwe take f to be the lifetime of the 
larger structure then for "1- 20 hrs for supcrgranu!cs and.&>W == (0.5)2 km2/sec2 for energy 

density/gm in the granules, one gets 

L - LSG - 36000 km. (26) 

which is the typical Sil.e of a supcrgranulc. The size of a giant 'Cell can be determined from eq. 

(15) for n = (. ~~ ) day-I and assuming V - OJ km/sec for supergranular velocity (since 

'hey provide the stirring force for turbulence that organises itself into giant cells) one gets : 

Lc = La; - 1.17 x lOS Ian. (27) 
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Again, the energy content of giant cells should not exceed that of supergranules. Using eq. 
(16) for the energy spectrum in this region, one gets: 

[ I 2 J2/3 2 
Eoc ~ E(LSG ) LSG7: Lac ~ E(LSG') (28) 

where [ E~LSG) ] is the enstrophy injection rate. 
LSG 7: 

For Lac - 10 5 km, 't = 30 days = lifetime of a. giant cell, L SG - 30000 km, and 
Eso - (O.3)2km2 / sec2. One finds that eq. (28) can be barely satisfied. Furthermore, in the 
presence of coriolis force, the pressure balance condition becomes: 

1 V2 
- IVp I = - + Fe = 2V2/Lc, (29) 
P - Lc 

In contrast to the case with mcoriolis force where -11 Vp 1 == l,IlILt> Thus, one concludes 
p 

that larger energy density is required to maintain structures at scale Lt>' This may be the 
reason for their rare observability. The appearance of structures at Leo must be accompanied 

by a corresponding increase in the convective flux and therefore probably of total solar flux. 
Total solar luminosity changes of 1 % have been observed. If we attribute all of this 1 % to 
increase in the convective flux, eq. (29) can be satisfied and structures of size Leo can get 

excited. The differential rotation of the sun favours the formation of larger structures at the 
polar regions in comparison to the equatorial regions. This is further substantiated by the fact 
that the dominantly open magnetic fields in polar regions do not inhibit flow of convective 
flux. Thus one may look for probable correlation between polar phenomena and solar 
luminosity enhancements with the appearance of giant c~lls. A very steep spectrum eq. (16) 
practically foIbids fwther organisation or turbulence into structures larger than Le. 

(u1 Clustering of galaxies; 

The formation of the observed hierarchy of larger s.cale structures in the universe remains a 
challenging problem in conventional cosmology. The distribution of galaxies is no longer 
pictured as a random sprinkling. There are enormous superc!usters as well as giant cellular 
voids, interspers~d here and there with long lacy chains of galaxies. The survey by M GelIer 
and J Huchra of thousands of galaxies in a relatively narrow strip of space shows that 
galaxies follow intricate network of arcs and segments with huge rounded cell [24]. 

This distribution of galaxies into very ordered large scale fOimations, far more ordered into 
self-organised structures than previously thought suggests the operation of well defined 
physical processes. 

It is to be noted that gravity by itself appears to be too weak to form such large 
structures from the initial density perturbations in time scales comparable with the Hubble 
age. In other words the conventional hypothetical scenarios in which the density had subtle 
scale invariant fluctuations which grew in amplitude and in scale with the expansion of the 
universe to form such large scale structures seem untenable. However, a more detailed recent 
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work 'indicates that it might be possible to fonn large structures through gravitational 
instability picture. 

Many galaxies have independent motion (i.e. so called peculiar velocities) at odds with 
the direction and speed of the overall Hubble flow. Looks as if the galaxies are being drawn 
towards enormous concentrations of matter, high density regions with masses _10 17 m. For 

instance the Local Group is moving at - 300 km1s towards Virgo cluster in relation to Hubble 
flow. And as shown by Burstein et al [25] galaxies between the local supercluster and the 
Hydra-centaurus Supercluster share same direction of motion showing peculiar velocities of 
several hundred kilometres per second, this being the deviation from uniform Hubble flow. 
This reveals the presence of enormously massive structures powerful enough to draw several 
clusters towards it Structures - 1018 mo seem indicated [26]. More recently the Great wall of 
galaxies [27Jhas been identified over scales 100 Mpcl Also recent observations have shown 
galaxies to already exist at red shifts close to z = 4. This suggests the formation of galaxies, 
which are the smaller ~e structures at z ~ 5. Then one is faced with the problem of how 

the smaller scale structures interacted or what physical processes led to the formation of the 
larger clusters and superclusters of galaxies from the galactic size smal'ler structures. In the 
conventional warm or hot dark matter scenarios (chiefly involving neutrinos with small rest 
masses as the dark matter). it appears that the largest scale structures formed first. Then one is 
faced with the problem of accounting for the presence of small scale structures even at z = 4. 
The Zeldovich type pancake fragmentation model also favours initial formation of large scale 
structures. The cold dark matter scenario has had some measure of success in forming the· 
smaller structures f~t But it essentially invokes a particle (i.e. the axion) evidence for which 
seems to be becoming more and more meagre (despite intense recent searches). 

We will use ideas developed here to construct a model of cosmic ciustering in its 
entirety from clusters of galaxies to giant clusters of galaxies. 

In our model, elementary formation (or vortices) are identified with ordinary galaxies 
including dwarf galaxies. These would then form clusters by ordinary gravitational clustering 
as well as by turbulent cascading. We invoke inverse cascading only for the formation of 
superclusters and giant clusters like the great wall, beginning with clusters of galaxies. 
Velocities and scale sizes of the large scale structures formed by inverse cascade are 
consistent with these two types of structures i.e. superclusters and giant clusters. For 
instance, turbulent velocities of 300 km/sec for the clusters give rise to structures at 

scales - Mpc on a time scale of 3 bjllion years and turbulent velocites of _104 km/sec for 
superclusters give rise to structures on scales - 100 Mpc. There is a gap in the energy 
spectrum, situated between the clusters of galaxies and superclustes. This is consistent with 
the observational absence of visible objects between galaxy elements and superclusters (28). 
The energy spectrum also shows a discontinuity at a scale where superclusters begin to 

develop into giant clusters with much steeper energy spectrum which perhaps may explain the 
rarity of the largest scale structures. 
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Energetics: 

According to the picture [11] presented here, the energy of the larger structures has been 
inverse cascaded from the smaller structures, if so then the energy density per unit gram E(L) 
in the large scale L should not exceed that in the small scale Eo (1). From the energy spectrum 
E oc: L2/3 it follows that 

E(Lsc) ::;; ( Eo (ld )2/3 L~~ .::. Eo (Lc), - (30) 
'tse 

where 'tsc is the time for which energy injection must occur, which should be at least the 
lifetime of the large structure. If we take Lsc '- 3 Mp<> for a supercluster and Eo (Ie) - (300 
km/sec)2 for turbulent energy ofa cluster, we geuse - 3 x 109 years. 

The giant clusters are formed in a turbulent medium being stirred by the random 
motion of superclusters. The largest horizontal scale is limited by the corioUs force. From eq. 
(l5)'for Lac = size of the giant cluster -100 Mpc and a random velocity of superclusters of 
10,000 kIn/sec one finds the angular velocity n - 3 x 10.18 radians/sec. The energy content of 

giant clusters should not exceed that of superclusters. Using eq. (16) for the energy spectrum 
in this region one gets : 

EGC ::;; [ ~(Lsc) ]2/3 L~c ~ E(Lsd, (31) 
Lsc'toc 

where [E(Lsc)Jl..k ~ is the enstrophe injection mte. For Lac - 100 Mpc, E(L sc) - (104 

km/sec)2, andLsc - 3Mpc, one gets 'GC == 1011 years. It is clear that structures of the size of 
few hundred Mpc cannot be formed if the random velocity of a supercluster is less than 
10,000 km/sec. Furthermore, in the presence of Coriolis force, the pressure balance condition 
becomes: 

1 V2 
-IVpl ==~-
p Lac 

2V2 
+ Fe == --, 

Lac 
(32) 

in contrast to the case with no corioUs force where .1.. I Vp I == VZ/ LGC Thus, one ~oncludes 
p 

that larger energy density is required to form or maintain structures at scale LGc. This may be 

the reason for thei( rare observability. A very steep spectrum eq. (16) practically forbids 
further organization of turbulence into structures larger than Lqc. 

The processes of inverse cascade have been shown to occur in an incompressible 
turbulent medium. The incompressibility fixes the epoch of formation of large structures 
before the recombination phase. Since the recombination takes about 20% of the Hubble time, 
the structures formed then should be detectable, at present The eddy turnover time for the 
largest structure of say 100 Mpc with an associated fluid velocity of 10.000 km/sec is 10 10 

yes which is smaller than Hubble time. This is also true at smaller scales. Within the 
framework of present theory, the smaller structure are more or less isotropic whereas the 
larger ones are anisotropic and become nearly two dimensional at the largest scale. One may 
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!Iso note that the turbulent velocity scales as V IX L at the largest scales instead of V f3 as for 
KoImogorovic spectrum (Figure I). Peebles [29,30] has obtained a non-Kolmogorovic 
spectrum including effects of expansion. Silk [31,32] has shown that the effects of expansion 
cause little deviation in turbulence from the incompressible case. 

8. Conclusion 

The two apparently different phenomena of solar granulation and closuring of galaxies have 
been modelled invoking the properties of inverse cascade in a hydrodynamically turbulent 

medium. The proof of the inverse cascade, in addition to other aspects we believe. lies in the 
energy spectrum. parts of which are available through observations of \,elocity on the solar 
surface, whereas such observations for galactic systems are not yet available. In view of the 
recent "exit of cold dark matter hypothesis" (and the inability of the hot dark matter to form 
bottom-up structures in addition to its undetectability (even in the laboratory) the inverse 
cascade mechanism offers a new solution to the large scale structure of the universe. 
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