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In this ('hapt~r a m~chanism is propost'd lor producing Ihe observed solar su­
(1'rgrDnu/OIion lrom 1M phOlosphuic granulation by a dissipative decay of two 
dim~ns;on.allurbulence. which leads to COfl('t!ntration 01 the energy spectrum to 
lhe longest Wtlvelf'nglhs. This conuntration of conve(.·tive eddies by selective 
dissipation (0 Ihe scale with the maximum ovai/ablt' spatial dimension and with 
Q much longer time scale is verifi~d by mode-mode coupling seen in computer 
simulations as well as in laboratory expf'riments. Theoretical predictions for 
these granulation scales cmd magnetic structures can be tested by high quality 
obs~rval;ons 01 rh~ solor sUrface. 

I. INTRODUCTION 

Radiation and convection are the two main energy transport processes in 
the solar interior. The convective transport becomes operative where the tern· 
perature and density gradients are such that a fluid element, when displaced 
from its eqUilibrium position. keeps moving away from it. This stratification, 
through unstable convection. produces turbulence in the medium. The fluid 
eddies of varying sizes then carry energy as they propagate and dissipate. 
The cellular patterns observed on the solar surface are believed to be the 
manifestations of convective phenomena occurring in the subphotpspheric 
layers. The cellular velocity fields are seen prominently on two ,cales: the 
granulation and the supergranulalion. though mesogranulation and giant cells 
are also suspected to be present. The formation of granules with an average 
size of 1000 km and a life time of a few minutes can be understood either 
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from the mixing length (Schwarzschild 1975) or from the linear instability 
(Bogart et al. 1980) description of the convection in the hydrogen ionization 
zone of the subphotospheric medium. The supergranules, with an average 
size of 30,000 km and a life time of 20 hr, do not have an unambiguous 
association with a subphotospheric region. Attempts have been made to iden­
tify this region and to seek an explanation for the energy concentration at the 
supergranular scale. Simon and Leighton (1964) suggested helium ionization 
to be responsible for accumulation of energy at supergranular scales. Con­
vective modes with dominant growth rates at the two scales have been favored 
by Simon and Weiss (1968), Bogart et al. (1980) and Antia et al. (1984). 

Here, a new mechanism of making supergranules is presented. It is 
based on the very special redistribution of the energy associated with the 
granules in a turbulent medium. Before discussing the particular processes 
that facilitate the formation of supergranules from granules, a few comments 
on the general properties of a turbulent medium are in order. 

Formation of ordered structures in a turbulent medium relates to the 
concept of self-organization, which occurs when a system has two or more 
invariants in the absence of dissipation. The invariants suffer selective decay 
in the presence of dissipation. One conserved quantity has a higher decay rate 
than the others. The cascading process is such that the slowly decaying quan­
tity transfers towards smaller wavenumber and thus appears in the form of a 
large-scale organized pattern. The system can be described using a variational 
principle where the fast decaying quantity is minimized keeping the slowly 
decaying quantity constant. Kraichnan (1967) found that in a two­
dimensional hydrodynamic turbulence, the energy cascades toward large spa­
tial scales and enstrophy, which is the total squared vorticity, and towards 
small spatial scales where it suffers heavy dissipation. It is this property of 
selective decay that facilitates the formation of large structures. whose di­
mensions are determined from the ratio of energy and enstrophy. 

The condition of two dimensionality needs to be clarified. It is shown in 
the following sections that a velocity field V = (V.(x,y). V)(x,y). VI) with a 
constant vertical V, component, and with the other two components varying 
only horizontally, satisfies the requirements of two-dimensional hydrody­
namic turbulence. We shall call this the generalized "2-D" situation. The 
observed nearly two-dimensional velocity field associated with supergranules 
encourages us to investigate the role of 2·0 hydrodynamic turbulence in the 
formation of supergranules. The inertial range of the turbulent spectrum is 
derived in Sec. II. Section III deals with the inverse cascade through mode­
mode interaction. The concept of self-organization in 2-D turbulence is dis­
cussed in Sec. IV and a model of supergranulation is proposed in Sec. V. The 
inverse cascade in 3-0, and how a 3-D situation develops into a quasi 2-D 
one, are discussed in Sec. VI and finally the role of the magnetic field is 
addressed in Sec. VII. 
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u. THE INERTIAL RANGE OF THE TURBULENT SPECTRUM 

The hydrodynamic equations describing the motion of an element in an 
incompressible fluid are: 

dV av 
dt = at + (V . V)V = - VT + vV2V (1) 

V'V = O. (2) 

Here V is the velocity, T = pIp is a normalized temperature, p is pressure, p 
is density and v is the kinematic viscosity. The equation for the vorticity 
vector 0 can be derived from Eqs. (1) and (2) as: 

dO an - = - + (V . V)O = lIV20 
dt 01 
n = v x V. 

(3) 

(4) 

In generalized 2-D, V and n may be expressed by a scalar stream function-ll 
as: 

v = - V", x i + Vz i 

n = V 2-11 t. 
(5) 
(6) 

Here i is a unit vector and V, is the constant z-component of velocity V. 
Equation (3) can be rewritten as: 

where 

a a 
V. -i + -j. ax OJ 

(8) 

One notes that the term (V. f)'V(V2-11 £) vanishes for the generalized 2-D 
system. If the viscosity is small, i.e., the Reynolds number is large, the time 
evolution of the velocity field is determined by the second term in Eq. (7), 
which represents lhe coupling of various spatial fourier components in a tur­
bulent state. The equation for mode coupling is obtained from Eq. (7) by 
ex.pressing -II as: 



1032 V. KRISHAN 

\jI = V2 [~ \jilt) exp (i K . X) + c.c.] (9) 

where K is a two-dimensional wave vector and t\lK is the fourier amplitude. 
Equation (6) can be rewritten as: 

dl\sK + VlV .1. = IL2 " AK .1, .1, 
A- '+'K 7, L.J K'K' '+'K' '+'K" 

~ K=r+K' 
(10) 

where 

A~,K' = ~ (K' x K'~ . Z ([('2 - K'2). (11) 

The total energy W and the enstrophy U are defined as: 

(12) 

The conservation of energy and enstrophy in the absence of dissipation (v = 
0) can be easily proved if the fluid is surrounded by either a periodic boundary 
or a rigid boundary, so that the normal component of the velocity vanishes on 
the boundary. Enstrophy conservation remains valid as long as the vorticity 
n is along z and V is in the (x, y) plane. Since there are two invariants, two 
types of inertial ranges are expected, one for energy and the other for enstro­
phy. These can be derived by using Kolmogorov arguments. The inertial 
range for energy is the well-known Kolmogorov law: 

(13) 

where E is the dissipation rate of energy at a sink, C is a universal dimension­
less constant, and IW(K)dK gives the total energy. The enstrophy density is 
given by ~V}, and the inertial range for enstrophy requires that (p~V}) 
(KVK) = e' = constant. The energy spectrum in this range is given by: 

( ')2/J 
W(K) = C/ ~ K-3, (l4) 

The range of validity of the two inertial ranges (Eqs. 13 and 14) can be 
established by investigating the cascading process (Sec. III). 
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m. INVERSE CASCADE THROUGH MODE-MODE COUPLING 

Let there be a source at K = K.s with energy Ws' Through mode-mode 
coupling, this would decay to two modes with wavenumbers KI and K 2 • Since 
energy W and enstro~hy U are conserved. one can calculate the energies WI 
and W2 and enstmphlcs U1 and U2 of the modes Kl and K2 as (Hasegawa 
1985): 

(15) 

From Eq. (15) one finds 

(16) 

For WI'WZ > 0, X3 > K; > Kj should be satisfied. Thus Ks decays to two 
modes. one with wavenumber K. < Ks. and to another mode with Kz > Ks' 
Hasegawa and Kodama (1978) have shown that the decay rate is maximum 
when: 

Then 

K1 
P = K~ = (Vi - 1) 

~ 

Kj = K~ + K~. 

WI = P W\ 
VI = p1 U.P 

W: = (l-p)Ws' 

Uz = (1- pl)US' 

(17) 

(18) 

In the next step of the cascade. the mode at Kf decays to modes at 
pIq = pJK; and (I + p)Kj = p( I + p)~. The mode at K2 decays to modes at 
pIq = 1'0 + p)~ and (l + p)~ = (l + p)lK}. The corresponding energy 
partitions are pJWJ • 2p( 1-p)Ws' and (I - p)2Ws for wavenumbers at p'Jq. 
p(l + p)/q. and (I + p)Ki. respectively. Continuing to the nih step, the energy 
distribution is given by a binomial disbibution for a parameter (rln) such that 
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Equation (19) gives the energy spectrum which results from a series of cas­
cades at a fixed ratio (lq/Iq) = p at each step, where lq + Iq = Iq. It can 
easily be shown that the energy spectrum condenses at K --+ 0 as n --+ 00. 

Hence an inverse cascade and condensation of the spectrum at K --+ 0 is 
expected from this model. Inverse cascade obtained this way is a consequence 
of conservation of energy and enstrophy. 

IV. SELF-ORGANIZATION IN TWO-DIMENSIONAL 
TURBULENCE 

Kraichnan's hypothesis of inverse cascade and inertial range spectra 
(Kraichnan 1967) has been tested by solving Eq. (10) numerically (Batchelor 
1969; Lilly 1969; Fomberg 1977) as shown in Fig. 1. The creation ofIarge­
scale structures in the stream function in two-dimensional fluids has also been 
observed in laboratory experiments. The condensation of energy at the long­
est wavelengths permitted, due either to the finite size of the container or to 
the periodic boundary condition, has been reproduced in computer simula­
tions (Hossain et al. 1983). 

From modal transfer, it is clear that enstrophy cascades towards the 
shortest length scales and then suffers viscous dissipation. Thus, if the en­
strophy f(O,2J2) d 3r vanishes during normal cascade, the total energy Wat­
tains constancy even in the presence of viscosity. This, together with the 
experimental evidence for the inverse cascade, indicates that the system will 
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Fig. I. Velocity field as calculated from Eq. (10). 
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evolve to a state of minimum enstrophy with constant energy. Such a dissi­
pative process is called selective dissipation (Kraichnan and Montgomery 
1980). Thus the large-scale structure appears as a result of minimization of 
enstrophy with the constraint of constant energy. This is expressed. as 

au - >. aw = o. (20) 

For periodic boundary conditions or for a viscous boundary such that n = 0 
at the boundary, one finds: 

v x (V x V) - A V = 0 (21) 

which can be solved by using the stream function that is determined by 

(22) 

Since >. gives the ratio of enstrophy to energy, Eq. (22) should be solved for 
the minimum eigenvalue A. If the fluid has a periodic boundary condition 
with the periods a and b in the x and y directions, then 

2'ITX 21TY 
til = 410 cos --;;- cos b' (23) 

The seJf-organized state obtained here is also a stationary solution of the 
dynamical Sq. (1). Substituting Eq. (22) into Eq. (1) and setting (Mdt == 0 
and v = 0, one gets 

(V2 02) 
V'2 + T + 2)" = O. (24) 

This gives the temperature profile T(x,y) shown in Fig. 2. 

V. APPUCATION TO SOLAR SUPERGRANULATION 

TIle observed nearly two-dimensional nature of the velocity field in the 
supergranules permits us to use the results of Sees. II, III and IV. Based on 
this, we would like to propose and test the following model for formation of. 
supergranular cells on the solar surface: 

1. The supergra1lulation is produced as a result of redistribution of en­
ergy associated with granulation. 

2. 1'be redistribution of energy takes place in a region with predomi­
nantly horizontal velocity fields. i.e .• between the middle chromosphere and 
photosphere. below which the velocity field becomes three dimensional and 
isotropic. 
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Temp 

Telrlp 

Fig. 2. Spatial distribution of temperature calculated from Eq. (23) in a region (xla, yla) .. (0,0) 
to (1,1) plot (a) and (0,0) to (0.5,0.5) plot (b). 

3. The redistribution of energy responsible for supergranulation occurs 
through the inverse cascade of energy towards larger scales, a consequence 
of the mode-mode interaction in a two-dimensional system with two invar­
iants, the energy and the enstrophy. 

4. The largest spatial scale is determined from the ratio of energy and 
enstrophy. From Eqs. (22) and (23), we find 
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A = (:1iY + (2:r (25) 

where a and b are the dimensions of the organized structures, here the super­
granular cell. and A is the ratio of enstrophy U to energy W. Therefore, for a 
- b - L. the size of the cell, one finds 

(26) 

For horizontal velocities V - 0.5 kIn s -I, the energy per unit density and unit 
volume is (l 12)(0. 5 x 10')2 cm2 5- 2• Therefore, to get L - 30,000 lan, the 
value of enstrophy per unit density and unit volume is required to be 10-8 

S-2. It is instructive to compare this with the square of the average velocity 
gradient in the supergranular cell, i.e., with (VIL)2 - (0.5 x 10'/3 x 109)2 

- 0.028 x to-I S-2. Thus. the required value of the enstrophy corresponds 
to a stronger velocity circulation. 

S. 'The spatial variation of temperature within the supergranularcell is given 
by Eq. (24). For a = b. one finds aT/ax is maximum at (x = (2n+ 1)a/8, 
y) and aTlfJy is maximum at (x. y = (2n+ l)al8). 

6. The rate of modal transfer is given by the nonlinear term, and the 
associated time scale is .... (KV K) -', For the two inertial ranges one finds: 

KVK = P{W(K)]IIZ oc J(Vl for K <! Ks 

oc l(O for K > Ks' 
(27) 

Therefore, the characteristic time increases with the increase in the spatial 
scale, which means that the larger cells will have larger time scales. 

7. The velocity field (V~. V,) given by Eq. (5) is plotted in Fig. 3 for the 
case a = b. The circulation pattern is clearly visible. This attains special 
significance in view of the recent observations of vortex formation in the 
granules (Brandt et aI. 1988). 

8. The distributions in energy and enstrophy would give a range of spa~ 
tial scales. the largest of which may correspond to the giant cells. 

Proposed tests of the model are the following: 
A. If the energy input for supergranulation is at the granular scale Ks, 

then the energy spectrum should show 8 break at Ks: the spectrum should go 
as K- 3 for K > Ks. and as K-$/J for K < Ks. Duvall (1987) bas proposed two 
experiments to check the spectral behavior: (i) Doppler shift measurements. 
which have the advantage of providing a high·precision map of motions over 
the surface. The disadvantage is that one gets only one component of the 
horizontal motion. as the Doppler effect gives only the line-of-sigbt compo.. 
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Fig. 3. An omnidirectional energy of two-dimensional Navier-Stokes turbulence obtained nu­

merically (Lilly 1969). The initial spectrum dominated by the SOlUte spectrum at the source 
wave K •• is shown to relax. to the inertial range spectra for enstropby at K > K. and energy at 
K<K •. 

nent; (ii) tracer measurements in which small magnetic elements can be fol­
lowed and both horizontal components measured. The disadvantage is that 
one does not obtain a very dense grid of tracers, and this would yield a noisy 
measurement. Under the assumption that the two components of the horizon­
tal motion are approximately equal, the Doppler method looks quite promis­
ing. 

B. The constancy of energy and enstrophy can be verified with detailed 
observations of velocity fields. 

C. The observed spatial variation of temperature when compared with 
the prediction of Eq. (23) will provide another test of this model. 

VI. SOLAR GRANULATION AND 3-D HYDRODYNAMIC 
TURBULENCE 

It has been shown in the previous sections that in a 2-D situation, the 
inverse cascade of energy can lead to the formation of large coherent struc-
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tures, which in the case of the Sun may be the supergranular cells. But how 
good is the assumption of 2-D for the Sun? Levich (1985, and references 
therein) has shown that the inverse cascade occurs even in 3-D hydrodynamic 
turbulence. A qualitative description of this phenomenon, and investigation 
of the very important question of how a 3-D situation develops into a 2-D or 
a quasi 2-D one, are briefly attempted here. In analogy with the Earth's at­
mosphere (where the energy released is the latent heat of vaporization), the 
energy injection into the solar atmosphere occurs by convective upward mo­
tions, and the energy associated with the latent heat of ionization is released. 
It is estimated that 2 to 3% of the thermal energy is transferred into kinetic 
energy of random motions. This begs the question whether the excitation of 
random small-scale motions can lead to large organized structures that are 
observed in the form of granules, supergranules and even giant cells. Here, a 
picture that emphasizes the role of large helicity fluctuations in the cascading 
process is presented, as developed by Levich (1985) and co-workers for the 
formation of large cloud clusters, cyclones, and other related structures in the 
Earth's atmosphere. The helicity density, a measure of the knottedness of the 
vorticity field, is given by -y = V-('V x V). A turbulent medium exhibits 
large fluctuations in helicity even though the mean helicity < V·(V x V) > 
= O. The reason for this is that in a nonequilibrium system, any quantity is 
expected. to fluctuate strongly if there are no special restrictions. The fluc­
tuating topology of the vorticity field in turbulent flows with <-y> = 0 is 
characterized by a statistical helicity invariant I, which represents the con­
served mean sqwu:e helicity per unit volume: 

I = lim 1. «fV'(l<pr)2) 0: I [W(K)J2dK 
v- V 

(28) 

which is a constant for a nondissipative system. One recalls that the nonlinear 
tenn in the Navier-Stokes equation is V x (V x 0). Thus if in some volume 
I is large, i.e., (v·n) is large. then (V x 0) is very small. In other words, 
if V and n are strongly aligned, the nonlinear interaction term is vanishingly 
small. Therefore the energy cascade to small scales is inhibited in this vol­
ume. Using Kolmogorov arguments (see Sec. II), one can determine the in­
ertial range of the I invariant. If one substitutes W(K) 0: K-s/J, which is the 
inertial range for energy in 3-D, into Eq. (28), one finds total energy E = 
fW(K)dK oc L'lJ) and I a VI3. Therefore, as was argued in the 2-D case, it is 
not possible to have both E and I conserved in the identical inertial range. 
Thus energy (like enstrophy in 2-D with larger K dependence) cascades to 
smaller scales and I to larger scales. It is more appropriate to say that the 
correlation length of helicity fluctuations in<:reases, without carrying much 
energy with it. In the case of highly anisotropic flow, with the vertical scale 
L, « LH, the horizontal scale, as well as V, « V"' V"' one gets 
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-v = _z + V - + v - v = 0 D av (a a) 
Dt Z at x ax Y ay Z 

(29) 

i.e., Vz is convected by the horizontal velocity field. Therefore <V;> is -
constant and independent of (x, y), which was previously called "generalized 
2-D." The helicity density can be approximated as VJl. - VvOy « VzOz. 
Then 

I = f(CVzOz)2) dxdydz ex Zo I ( CVzOz)2) dxdy 

= Zo <V;> J <O;} dxdy ex L21J 

(30) 

and from JJ(K)dK = I. J(K) ex K-SI3, where L is the largest characteristic 
scale in the (x, y) plane. Thus the 1(K) spectrum coincides with the energy 
spectrum of 2-D turbulence, W(K) ex K-"3, corresponding to the inverse cas­
cade. Thus, the cascade of the I invariant to large scales is indistinguishable 
from that of the energy, in contrast to the fully 3-D case where a small energy 
flux accompanies the cascade of the I invariant. Intermediate situations cor­
respond to various degrees of anisotropy. As anisotropy increases, the fraction 
of energy transferred to larger scales also increases. These conclusions can 
be summarized as: 

(a) An anisotropic situation can develop from a completely isotropic one 
if the growth in the vertical direction is restricted due to some condition in 
the atmosphere. For example, in the solar photosphere this maximum vertical 
extent may be limited by the size of the region in which the temperature 
gradient remains superadiabatic. 

(b) In the initial stages when isotropy dominates, most of the energy 
cascades to small scales where it suffers viscous dissipation. The cascade of 
the I invariant results in an increase of the correlation length of helicity fluc­
tuations. 

(c) When this correlation length becomes equal to the vertical scale im­
posed by requiring superadiabaticity, for example, the correlation can grow 
only in the horizontal plane. This gives rise to anisotropy. 

(d) The anisotropic fluctuations act as a new anisotropic stirring force 
accompanied by increasing amounts of energy transfer to large scales. 

(e) As the anisotropy grows, it facilitates the accumulation of energy at 
larger scales and thus the formation of large structures like supergranular 
cells. 

(f) The growth of large structures in the case of anisotropic turbulence 
can again be interrupted as a result of symmetry braking for example, caused 
by the Coriolis force. At the length scale Lo where the nonlinear term of the 
Navier-Stokes equation becomes comparable to the Coriolis force, the inverse 
cascade is inhibited. In the quasi 2-D situation that exists, the Coriolis force, 
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together with a lack of reflectional symmetry with respect to the horizontal 
plane, favors helical structures with a definite sign of helicity. It is found that 
in quasi 2-D, the CorioHs force favors cyclonic circulation, and the sign of 
helicity corresponding to the updraft cyclonic motion can be fixed. If down­
ward motion is present, it must be anticyclonic to retain the same sign of 
helicity. It is also found that much greater energy is needed to maintain co­
herent structures at the scale Le' 

There are several related questions of the energetics, the life times, and 
the temporal evolution of these structures which need a detailed investigation 
(keeping in view the available observations of solar granulation), and which 
may give direction to what more needs to be measured about solar granula­
tion. 

VII. ROLE OF MAGNETIC FIELD 

The enhancement of magnetic field at the supergranular cell boundaries 
due to horizontal motion has been discussed by Simon and Leighton (1964), 
where the maximum magnetic field builds up to the equipartition value. In 
the chromosphere the ratio of magnetic to kinetic energy is found to be greater 
than unity. The nature of magnetohydrodynamic turbulence in the presence 
of a strong magnetic field changes significantly (Montgomery and Thrner 
1981). The turbulent spectrum results from the interplay of three effects: (1) 
the driving mechanism; (2) dissipative mechanisms; and (3) the modal trans­
fer due to nonlinear interaction between various spatial modes. From labora­
tory studies. it is found that in the presence of a strong magnetic field B, 
anisotropy is set up and the turbulent spectrum splits into two parts: (1) two~ 
dimensional magnetohydrodynamic fluctuations carrying most of the energy 
in a plane perpendicular to the mean field Bo: and (2) a more isotropic spec­
trum which is identified with Alfv6n waves. In two-dimensional incompres­
sible MHO, the square of the vector potential A2 and the magnetic field B 
take the roles of V and n in two-dimensional Navier-Stokes turbulence. Thus 
an inverse cascade in the spectrum of A2 can lead to an organized state such 
that 

8f('V X A)2 dV - A.8fAldV = 0 (31) 

which gives 

(32) 

The constant-A contours correspond to the magnetic lines of force. and 
the expected self-organized state is a pair of long wavelength circuIar mag-



netic fields. The cascade of A 2 to small wavenumbers and of magnetic field 
energy to large wavenumbers has been demonstrated by Pouquet (1978). The 
time scales of the 2-D MHD fluctuations are governed by nonlinear terms, 
whereas for the isotropic part these are the Alfvenic time scales. The Alfvenic 
part of the turbulent spectrum can be associated with the spicules, which 
Osterbrock (1961) described as slow-mode disturbances carrying chromo­
spheric material up along the magnetic lines of force into the corona. The 
organized two-dimensional MHO turbulence could be an explanation for the 
formation of the magnetic network. 

The predictions of the above model can be tested by measuring the cor­
relation lengths along the mean field Do and perpendicular to it. One expects 
that the correlation lengths along Do are much longer than those transverse to 
Bo. This is true for velocity and magnetic field fluctuations. The root-mean­
square values of the transverse magnetic fluctuations are much larger than the 
longitudinal (along Bo) fluctuations. The single-point frequency measure­
ments for both magnetic and velocity field fluctuations are expected to show 
steep power-law frequency spectra that are negligibly small for frequencies 
below either the ion gyrofrequency or the ratio of the Alfven speed to the 
correlation length, thus indicating the weakness of the higher-frequency 
Alfvenic spectrum. 

The organizational properties of three-dimensional magnetohydrody­
namic turbulence have been successfully used to delineate the structure of 
coronal loops (Krishan 1985a,b). The lowest-energy state emerges as a force­
free state which reproduces the observed spatial variations of pressure in the 
coronal loops. In 3-D MHO, the new invariant, magnetic helicity, turns out 
to be a useful indicator of the pre-flare configuration of a flaring loop. as it is 
conjectured that during a flare, a high-energy, nearly force-free state decays 
to the lowest-energy state with the release of magnetic energy, while the mag­
netic helicity (due to inverse cascade) remains nearly constant (Krishan 
1986). 

Thus, these studies indicate the relevance and the resourcefulness of the 
concept of self-organization in magnetohydrodynamic turbulence in the solar 
context. 

VIll. CONCLUSIONS 

The inverse cascade of energy in two-dimensional hydrodynamic tur­
bulence favors the formation of large organized structures. Application of 
this idea to the production of supergranulation seems to account for the ob­
served spatial scale of the cellular motion. With inclusion of a strong mag­
netic field, for example, for the conditions obtained in the chromosphere. the 
turbulent spectrum consists of two parts: (1) anisotropic two-dimensional 
MHO fluctuations in the transverse direction; and (2) an Alfvenic spectrum 
along Bo' The predictions about correlation lengths in the two directions 
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along and perpendicular to Do need to be tested by obtaining high-quality 
observations. 
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