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A SIMPLE MODEL FOR CORONAL LOOPS AND THEIR STABILITY
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ABSTRACT

The solar corona is highly inhomogeneous, and struc-
tures with a variety of shapes and sizes are seen to
pervade it. The basic structural component of the
solar corona is the coronal loop. Montgomery and
his co-workers have developed a frame work to de-
scribe the steady state of a turbulent magneto fluid,
without the usual recourse to linearization. Thus,
the magnetic and velocity fields emerge in their fully
nonlinear form as a consequence of the selective de-
cays of the invariants of the system. Using the sta-
tistical theory of magneto hydrodynamic turbulence,
the pressure, magnetic field and the flow fields of a
solar loop have been determined. The spatial and
temporal profiles of the loop is derived. In order to
study the stability of these loops, we have resorted
to the properties of a dynamical system. Whenever
this system has a stagnation point which is hyper-
bolic in nature, the system admits instability. The
advantage in this analysis is that one need not resort
to the usual eigenvalue problem approach which is
quite tedious and complicated.
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1. INTRODUCTION

The solar corona is highly structured with coronal
loop as one of the basic structures. Structures in
corona are of various sizes and shapes. There are
open radial rays along which the plasma flows into
the solar wind which are termed coronal holes and
are found near the poles. The loops link magneti-
cally active regions of different polarity. The typical
temperature will be of the order of (2 — 3) x 105 K

and density 107°gem 3.

Coronal loops or arch-like structures of the active
regions of the Sun have been observed in the emis-
sion at the UV, FUV, and X-ray wavelengths (Foukal
(1978), Levine and Withbroe (1977), Vaiana and
Rosner (1978), Bray et.al. (1991)). The number of
loops in a single system may vary from one to about
ten or so. Plasma flows have also been observed in
the loops.

Although there is continuous pumping of mag-
netic and velocity field fluctuations into the coronal

plasma, the loops exhibit a fairly stable and well con-
figured geometry. The steady state pressure struc-
ture is the result of the various manifestations of the
balance of the inertial and magnetic forces. Kris-
han (1983) and Krishan (1985) discussed a steady
state model of active region coronal loops using the
statistical theory of incompressible magneto hydro-
dynamic turbulence described by Montgomery et al.
(1978). The main features of the theory consists
of using the MHD equations for an incompressible
fluid. The magnetic and velocity fields are expressed
in terms of Chandrasekar-Kendall (hereafter referred
to as C-K ) functions which is a complete system.
The pressure profile is derived as a function of the
velocity and magnetic fields in the form of a Poisson
equation. The pressure structure of the coronal loops
in three dimensions was derived by Sreedharan et al.
(1992). Sasidharan et al. (1995) studied the tempo-
ral behavior of pressure in coronal loops. Modeling of
a solar coronal loop in terms of MHD equations has
been given in a good review by Krishan (1996). In
this study, we present the pressure profile of the coro-
nal loop in three dimensions as well as the temporal
structure. In the above studies, the stability of the
loop has not been considered. In the present study,
we deal with the stability of the loop. We resort to
the results of dynamical systems and apply it to the
loops.

2. SPATIAL PRESSURE PROFILE

Let the coronal loop be represented by a cylindrical
column of length ‘L’ and radius ‘R’. The mechanical

pressure P is expressed as a function of velocity V and
magnetic field B using the MHD equations given by

v . . - o
p[%t‘ +(V-V)V]=-VP+Jx B, (1)

vxéz‘—‘cﬁf, (2)
V-B=0, (3)
V.-B =0, (4)
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oB .
E:VX(VXB). (5)

It is easy to see that there are three types of equilibria
for the above system.

(i) for V=0,VP=.JxB;

i) for & = 0,p(V - V) = —VP either for B = 0 or
Lo
forJ x B=0

(iii) for V =0 and J x B ~ 0, VP = 0.

Cases (i) and (iii) lead to the force free condition J x

B = 0. A static equilibrium with constant pressure
and force-free magnetic field, is described by

V x B=aB

Montgomery et al (1978) have shown using the se-
lective decay hypothesis that the total energy decays
to a minimum value while the magnetic helicity H s
and the cross-helicity H. remain more or less con-
stant. Here

HM =fAB '§d3T

H,= [V Bdr

where Ap is the vector potential. One can write
a variational principle through which an organized

state of magnetic and velocity field emerges. Using
the variational principle one can write

6E — Ay0Hp — ASH, =0 (6)

from which one finds that

/ [6(V=AcB)+6Ap-(VXB=2AnB=AVxV)|d®r = 0.

(7

Here A. and A,, are the Lagrange multipliers. The
ibove equation can be simplified to yield

VxB=aB (8)
VxV=aV (9)
— 2Am
T1-A2
=\B

uation (8) describes a force-free field while (9) de-
‘ibes a Beltrami flow.

coronal structure that evolves continuously in re-
se to its highly variable environment may not
rerally be in the minimum-energy state. It is quite

likely that a coronal loop exists in a state consisting
of a superposition of the force-free magnetic fields
and the Beltrami flows. A single C-K function rep-
resents a force-free field. The magneto fluid in the
coronal loop is believed to be in an approximate state
of the force-free fields with small departures from the
current-free fields of the photospheric fluid. It is rea-
sonable to assume that the coronal loop fields and
flows to have departures from the strictly force-free
conditions. Superposition of CK functions may give
a better picture of the departure from the force-free

state. The velocity field V and the magnetic field B
are expanded in terms of the CK functions as follows:

V = Z /\nmnnrn(t)Anm (I‘) (10)
é = Z/\nmfnm(t)Anm(r) (11)
Anm = Chmann(r) (12)

Cpnm is a normalizing constant and
f AL Anm 3 = b Omm:
Here,

-

anm(r) =é,01Ynm + é¢oa2'¢’nm + €za3Ynm (13)

where
ay = {% + :\%ﬁ‘%
w4 -

Ynm
Anm = (7121m + krzz)l/27k" = %Tn’

n=0,%1,£2,....m=0,%1,£2, ...

Jm(Ynmr)ezp(ime + iknZ),

The functions a,,(r) are the solutions of the equa-
tion

V X 2nm(r) = Apmanm(r) (14)

For a rigid, perfectly conducting, impenetrable wall
at radius 7 = R, i.e. for an isolated loop with no ex-
change through its surface, the boundary conditions
are

Ve(r=R) =0,

B.(r=R) =0, (15)

The two ends of a coronal loop are anchored in the
sub photospheric region, where they undergo small
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twisting motions. The sub photospheric region con-
tains a high 4 plasma, where 3 is the ratio of the gas
kinetic pressure to the magnetic pressure. As a result,
the magnetic field lines move on a time scale much
longer than the coronal time scales. This line-tying
reduces the region of unstable excitations, especially
those of long wavelength. It is reasonable to assume
that nearly identical conditions prevail at the end of
the two foot points, at least for symmetric loops. We
shall assume periodic boundary conditions in the Z
directions with a period equal to the length L of the
loop. This gives k, = 27n/L. The condition (15)

gives for m? +n? > 0

REnYnm i (YnmR) + MAnmIm (YamR) = 0. (16)

where primes on the Bessel functions J,, denote their
derivatives. For m = n = 0, we observe that a, = 0.
Thus, for the lowest mode m = n = 0, we need to re-
sort to some additional constraint. It can be checked
that for the (0,0) mode, the ratio of the toroidal flux
@: to the poloidal flux ¢, is given by

¢: _ —RJy(v00R)

6o LJo(v00R) (17)

for A\gp > 0, where
¢ = %foL dz foR rdr 027r B.df = const at r = R,
op = foL dz f027r d9Apz = constatr =R .

Thus Ago is determined for a given value of ¢; /).

The pressure profile of the cylindrical column of
plasma is given by

—

VP _(VxB)xB o _ .- oV

. . VWV - (18)

or
P 1, (VxB)xB 5 1
I 75 U S S e Y 7 P2l
V{p+2v} ; (VxV)x1 5
(19)

and
vX(V’xé)-aa—]f:o. (20)

The complete dynamics of the loops can be described
by a set of infinite coupled nonlinear ordinary differ-
ential equations, which are of first order in time for
the expansion coefficients of velocity and magnetic
fields and it is a formidable task to find solutions to
these equations. Thus we choose to represent the
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fields by superposition of the three lowest order CK
functions. The reason being that these lowest or-
der functions represent the largest spatial scales and
therefore may be the most suitable. In the triple-
mode system,

V= Aama(t)Au + Xemp(t) Ay + A A (21)

B = Xaba(t)Aq + Mo () Ap + AE()A: (22)

The dynamics can be described by taking the inner
products of the curl of the equations (18) and (20)
and integrating over the volume. The resulting six
coupled coupled nonlinear ordinary differential equa-
tions for the triple mode system are given by

agta _ ,\/,,\;\c (Ae = M) I[me7e — Esée/p) (23)
%Z_b - /\;;\a (Ao =X [Mina — E&afp]  (24)
?c% - A;ib (Ao = Aa)I"[nams; — &€a/p)  (25)
aafta = M A [moée — 1e&s) (26)
% = Achal" 1260 = ML) (27)
%f?c = XM I [a85 — 5] (28)

where I = [ A% (4, x A,)d*r and the (n,m) values of
the modes (a,b,c) satisfy the conditions n, = ny + n.
and m, = myp + me.

It can be shown that

(VxB)xB= Y AN&&GO—A)d x4,

i=a,b.ci)=b.c,a

(29)

(VxT)xV = Z

1=a,b,c:y=b,c,a

A (A= A4, x 4,

(30)
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so that
V[p (% VQ] - Zl:n‘b,c:jzb.c,n /\i)\j()\i - /\])
. D1 %
22 _pmitd, x A, = =— .
{ ninj A x A ET (31)

For the steady state, 8/0t{n,€] = 0, and hence one
can show from the time dependent equations

o = fa/pl/2

m =& /p'/?

and

Te = Ef‘//’l/2

Thus equation (31) reduces to
V[P/p+(1/2)V?¥ =0.
i.c., P/p+ (1/2)V? = constant.

If the value of P at the origin (r = 0,z = 0) is I,
then

Plp=PRo/p+(1/DV5 = (12V?,  (32)

3. DISCUSSION

The spatial variation of the pressure is presented for
a cylindrical column of plasma for which the ratio of
the radius R to the length L is taken to be R/L =
1/10 and the ratio of the toroidal to poloidal flux

¢t/dp =0.1.

We have chosen two triads a, b, ¢ such that they
represent the largest possible spatial scales, as well
as satisfy the condition a = b+ c. These are

a=(1,1),b=(1,0),c=(0,1)

The corresponding values of 4's and A's are found to
be

Yot = 3.23, v R = 3.85, 7.1t = 3.85
Adt = 329, MR = 3.90, A [t = 3.85

Figure 1 presents the value of (p — pp) x 102 as a
function of 7,7 for different values of z with 8 the
azimuthal component, averaged over a full cycle. It
is clear that the pressure at any height increases along
the radius towards the surface. The radial variation
of pressure is maximum at the foot points of the loop
and it is minimum at the apex.

The axial variation of the pressure (p — po x 10% for
various values of 7z are presented in Figure 2. The
axial variation is maximum at the axis and minimum
al the surface. The maximum value is attained near
the apex for all values of v,7.

Figure 3 presents the azimuthal variation of the pres-
sure for different values of y,r > 2.0. The pressure
exhibits an oscillatory behaviour predominantly near
the surface.
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F19.1 Radial Variation of the pressure P for different z
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Fig.2 Azial Variation of the pressure P for different r

The contour plot of the pressure as functions of v,r
and z when the pressure is averaged over § is pre-
sented in Figure 4.

There are two physical situations under which Equa-
tions (23) to (28) can be solved analytically. (i) the
linear case, (ii) the pump approximation.

(i) Lincar Case

We study the time evolution of small deviations of
the velocity and magnetic fields from their equilib-
rium values. We assume n = ng + m, &= + & and
that no = & , m << 10,& << z1p for all modes.
Assuming that both 7(¢) and £(¢) have time depen-
dence through e®!, the dispersion relation is obtained
as

s =21 | T][A2(Xp = AcAa)? | oo |2 +AZ(Ae — Ags)?

Fo 12 =220 = X = A | 1a0 1)1 (33)
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Fig.4 Contour plot of the pressure as a function of y,1
and z when 6 is averaged.

(ii) The Pump Approximation

In the pump approximation, one of the three modes
is taken to be the strongest. For example, here, since
the conscervation condition gives a = b + ¢, we can
take ‘a’ to be the dominant mode and call it the pump
which share its encrgy with the other two modes. The
time evolution of the two modes does not produce
any significant change in the pump mode, and hence
we can neglect all time variations in (1,,&,). The
system of equations (23) to (28) can be recast with
some algebraic simplifications as

d%

Wéﬁ =P+ P (34)
d? , ,
—(—1?25=P171C+P2 (35)

where

& = 225 (m — )

Aa=Ae
Iy = 1o — ¢ Y Lero
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N
|

Qe = (,\—ffm(’)c - 1)

~
1l

o + S/\"—;(Ailfm

DA A = AT P )P

Py AN = A= A) [T 2 e 12 1
P =P

Py= N\ = No = A) [ T2 a1 1.

a

Integrating equations (34) and (35) we get
Iy = ;le‘/ﬁ' + Bem’ - PQ/PI
ne = QeYPit 4 ReVPt _ P /P,

where A, B, Q. R are to be determined by the initial
conditions. Thus in the pump approximation analyt-
ical solutions to the system can be found.

4. STABILITY

There is a very extensive literature concerning the
field of hydrodynamic stability. Bayley (1988) stud-
ied the stability of quasi 2-dimensional steady flows
via an analysis of a Floquet system of ODE. The sta-
bility of certain very special flows which are exact
solutions of the Navier-Stokes equations have been
considered by Craik and Criminale (1986). Fried-
lander and Vashik (1991) have discussed the insta-
bility criteria of the flow of an inviscid incompress-
ible fluid. They have obtained a geometric estimate
from below on the growth rate of a small perturba-
tion of a three dimensional flow. Satya Narayanan
(1993) studied self-organization processes in quasi 2-
dimensional hydrodynamic flows. Satya Narayanan
(1994) considered the stability of quasi 2-dimensional
hydrodynamic flows. In this study, we present the
analysis of Friedlander and Vashik (1991) and Satya
Narayanan (1994) to study the pressure structure of
coronal loops.

Consider the dynamical system of ODE’s :

X = ~U(X) (36)
< oU
£= [a—X]Té (37)

.

ou 3
b=-[—=]Tb-[(VxU)xb- - —— 38
The dot denotes differentiation with respect to time
t. The initial conditions at t = 0 are
X = -\'076 = fﬂyb = b()
with {() - b() = 0.
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The quantity &/ | & | is the direction of the spatial
wave vector. The matrix OU/JX has components
Ou,/0z;,1,j =1,2,3.

The vector b(Xy,&o,t) is the amplitude of a high-
frequency wavelet localized at zp . If o is the growth
rate of the perturbation of the equilibrium solution,
then it was shown using WKB methods by Friedlan-
der and Vashik (1991) and Satya Narayanan (1994)
that

li—Tnt—mo(1/t)lnfsuplro,€o,bolHb(X’ 607 t)OH <o (39)

with the condition
[&1=1,6 by =0

They also showed that at a stagnation point of the
flow where V x U = 0, the nature of the stability
would depend on the eigenvalues of the matrix given
by

o 17

They showed that if one of the eigenvalues of the
above matrix is positive, then such a flow admits ex-
ponentially growing solutions.

Returning to the problem of coronal loops, it is very
clear that the stability of the pressure profile depends
on the stability of the velocity profile as is clear from
equation (32). It is very clear from the expression for
the velocity which is in terms of CK functions which
form a complete set that the eigenvalues of the matrix
which is given in equation (40) depends on A and 7 .
It can be shown by straightforward algebra (we skip
the details for the sake of brevity) that whenever n,
is greater than 7y and 7. with n, =~ 7., the system
has one eigenvalue which is negative implying that
the loops become unstable. One can consider other
possibilities for the triple mode system. However,
in this study, we have restricted our calculations to
a particular choice of the amplitudes. More work
needs to be done in this direction and will be taken
up separately.
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