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On the Clustering of GRBs on the Sky
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Abstract. The two-point correlation of the 4th (current) BATSE catalog (2494 ob-
jects) is calculated. It is shown to be consistent with zero at nearly all angular scales
of interest. Assuming that GRBs trace the large scale structure in the universe we
calculate the angular correlation function for the standard CDM (sCDM) model. It
is shown to be ≤ 10−4 at θ ≃ 5◦ if the BATSE catalog is assumed to be a volume-
limited sample up to z ≃ 1. Combined with the error analysis on the BATSE catalog
this suggests that nearly 105 GRBs will be needed to make a positive detection of the
two-point angular correlation function at this angular scale.

INTRODUCTION

Recent optical identification of Gamma-ray bursts (GRBs) has established the
cosmological origin of GRBs and redshifts have been measured in 9 cases. (For a
comprehensive list of references on this subject see [1]). However, the physical origin
of these bursts, their environment, and their relationship with other astrophysical
objects still remains an unsolved puzzle. If these bursts are associated with the
underlying large scale structure in the universe, then they should show clustering
in their positions on the sky as expected of cosmological objects.

One way to search for the clustering is to determine the two-point angular auto-
correlation function of the burst positions [2–4]. We compute this quantity for
the 4th (current) BATSE catalog (2494 objects) in the next section. In §3 we
calculate the two-point correlation function from existing, viable, theoretical models
of structure formation. §4 summarizes the main results.

TWO-POINT CORRELATION FUNCTION

Given a two-dimensional distribution of N point objects in a solid angle Ω, the
two-point angular correlation function is defined using the relation [5]:
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nDD = ndΩN(1 + w(θ)) (1)

Here nDD is the total number of pairs between angular separation θ and θ + dθ;
n = N/Ω; and dΩ is an infinitesimal solid angle centered around θ. w(θ) is the
two-point correlation function. It measures the excess of pairs over a random
Poisson distribution at a given separation θ. Eq. (1) is not very convenient for
estimating the two-point correlation function and several alternative estimators of
the two-point angular correlation function have been suggested. We experimented
with several estimators [6–9]. The advantage of using either [8] or [9] is that the
error on the two-point function is nearly Poissonian; the leading term in the error
for the other two estimators is ∝ 1/N , which can dominate over the Poisson term
for large bin size [9]. In this paper we report results using the estimator given by
Landy and Szalay [9]:

w̃(θ) =
nDD − 2nDR + nRR

nRR

(2)

Here nDD is the number of pairs (for a given θ) in the GRB catalog, nRR is the number
of pairs in a mock, random, isotropic sample, and nDR is the catalog-random pair
count. The variance of w̃(θ) is given by:

δw̃(θ)2 ≃
1

nDD

. (3)

In Figure 1 (Left Panel) we show the angular correlation function with 1σ error
bars for current BATSE (2494 objects) catalog. We also plot the 1σ errors (Eq. (3)).
The main conclusions of our analysis are:

1. The two-point angular correlation function is consistent with zero on nearly
all angular scales of interest.

2. From Figure 1 (Left Panel) it is seen that at several angular scales a 1σ de-
tection of the correlation function seems to be possible. To make a definitive
statement about a detection we need to take into account several uncertainties
in our analysis. One of the dominant source of uncertainty is the heterogene-
ity of the sample with respect to the error in angular positions of the GRBs
(the localization uncertainty varies from ≃ 1◦–10◦). This means that errors at
θ ≤ 10◦ are much larger than seen in Figure 1 (Left Panel). Another major
source of uncertainty comes from anisotropic exposure function of the BATSE
instrument, which results in a non-zero correlation function even for a com-
pletely isotropic intrinsic distribution1. Though it is possible that some of the
signal at large angular scales is not an artifact, more careful analysis would be
required to confirm it.

1) for more details see http://www.batse.msfc.nasa.gov/batse/grb/catalog/



THEORETICAL PREDICTIONS

The two-point angular correlation function can be related to the two-point three-
dimensional correlation function ξ(r) using Limber’s equation (for details see [5]).
If we assume that the GRBs constitute a volume-limited sample up to a distance
rmax and that the comoving number density of objects is constant, the Limber’s
equation reduces to:

w(θ) =

∫ rmax

0

∫ rmax

0
r2

1
r2

2
dr1dr2ξ(r12, z1, z2)

[
∫ rmax

0
r2dr]2

(4)

Here

r2

12
= r2

1
+ r2

2
− 2r1r2 cos θ. (5)

r is the coordinate distance in an isotropic, homogeneous universe. The two-point
correlation function is related to the power spectrum P (k) of the density fluctua-
tions as:

ξ(r, t) = b2
1

2π2

∫
∞

0

k2dkP (k, t)
sin(kr)

kr
. (6)

b, the bias factor, denotes the clustering of visible matter relative to the dark
matter. While its absolute value is still uncertain, the relative bias between nearby
rich clusters of galaxies and optically-identified galaxies is ≃ 5. And hence if
GRBs originate in clusters rather than ordinary galaxies their correlation can be
25 times larger. In this paper, we use the linear perturbation theory predictions
for P (k, t). We have checked that for the angular scales of interest (θ ≥ 5◦) it is
a reasonable assumption. We use the BBKS fit [10] for the linear power spectrum
of the standard CDM (sCDM) model and some of its variants. We normalize
the power spectrum requiring σ8 = 0.7. The time dependence of linear power
spectrum is P (k, t) ∝ (1+ z)−2, which is also the time dependence of the two-point
correlation function. It should be noted that in general the two-point correlation
function depends on both the separation between two points and their redshifts, as
indicated in Eq. (4). However, the two-point correlation function is negligible for
points separated by a large enough redshift difference. Therefore, for most purposes
ξ(r, t) ∝ (1 + z)−2, where z refers the redshift of any of the two points.

In Figure 1 (Right Panel) we show the theoretically predicted angular two-point
correlation function for sCDM model. The bias b is taken to be one. If observed
GRBs constitute a complete sample up to z ≃ 1 and they are assumed to be
associated with highly biased structures like rich clusters, the value of correlation
function is ≤ 10−4 at 5◦. This is the smallest angular scale at which information is
possible in the BATSE catalog. At larger angles the correlation function typically
scales as θ−1.



CONCLUSIONS AND SUMMARY

The two-point correlation function of the 4th (current) BATSE catalog (2494
objects) is consistent with zero at nearly all angular scales that can be probed in
the BATSE catalog. This result is consistent with theory if the GRBs are assumed
to trace the dark matter distribution with some bias and are a complete sample up
to z ≃ 1.

When can a detection of the two-point correlation function become possible? The

error in the two-point correlation function scales as n
−1/2

DD (Eq. 3) and nDD ∝ N2,
N being the number of objects in the catalog. Therefore the error in estimating
the two-point correlation function scales as 1/N . Theory suggests that the value
of correlation function at θ = 5◦ is ≤ 10−4 if the GRB sample is assumed to be
complete up to z ≃ 1. We check that nDD at θ ≃ 5◦ is ≃ 10−2 times the total number
of pairs (≃ N2/2) in the GRB sample. This would suggest that a detection might
become possible at this angular scale when the number of objects in the sample
exceeds 105.

Future surveys like HETE-II and SWIFT will localize the GRBs to a few
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FIGURE 1. Left Panel : The two-point angular correlation function for the BATSE catalog

(2494 objects) and the 1σ error bars are shown. The solid line corresponds to the two-point

correlation function. The dotted lines show the 1σ errors given by Eq. (3). Right Panel :

Theoretical prediction for the two-point angular correlation function is shown for the sCDM

model as a function of depth (redshift) of the sample. The quantity plotted is the absolute value

of the two-point correlation function at θ = 5◦.



arc-minutes. This means smaller angular scales could be probed. And as the
theoretically-predicted two-point correlation function scales as ∼ θ−1, the prob-
ability of detection will increase. SWIFT will detect nearly 1000 objects over a
period of 3 years with an angular resolution ≤ 1′′. However, though the two-point
correlation function is large at these angular scales, the average separation between
1000 objects on the complete sky is ≃ 6◦. Therefore as long as w(θ) ≤ 1, the
probability of finding an object within a few arcseconds of the other is negligible.
It is possible that w(θ) ≫ 1 at sub-arcsecond scales. However, detailed analysis,
taking into account the non-linear correction to the power spectrum of density per-
turbation, is needed to make precise theoretical predictions for the future surveys.
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