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ABSTRACT

Polarization that is produced by coherent scattering can be modified by mag-

netic fields via the Hanle effect. This has opened a window to explorations of solar

magnetism in parameter domains not accessible to the Zeeman effect. Accord-

ing to standard theory the Hanle effect should only be operating in the Doppler

core of spectral lines but not in the wings. In contrast, our observations of the

scattering polarization in the Ca i 4227 Å line reveals the existence of spatial vari-

ations of the scattering polarization throughout the far line wings. This raises

the question whether the observed spatial variations in wing polarization have a

magnetic or non-magnetic origin. A magnetic origin may be possible if elastic

collisions are able to cause sufficient frequency redistribution to make the Hanle

effect effective in the wings without causing excessive collisional depolarization,

as suggested by recent theories for partial frequency redistribution (PRD) with

coherent scattering in magnetic fields.

To model the wing polarization we bypass the problem of solving the full

polarized radiative-transfer equations and instead apply an extended version of

the technique based on the “last scattering approximation” (LSA). It assumes

that the polarization of the emergent radiation is determined by the anisotropy

of the incident radiation field at the last scattering event. We determine this

anisotropy from the observed limb darkening as a function of wavelength through-

out the spectral line. The empirical anisotropy profile is used together with the

single-scattering redistribution matrix, which contains all the PRD, collisional,

and magnetic-field effects. The model further contains a continuum opacity pa-

rameter, which increasingly dilutes the polarized line photons as we move away
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from the line center, and a continuum polarization parameter that represents

the observed polarization level far from the line. This model is highly successful

in reproducing the observed Stokes Q/I polarization (linear polarization par-

allel to the nearest solar limb), including the location of the wing polarization

maxima and the minima around the Doppler core, but it fails to reproduce the

observed spatial variations of the wing polarization in terms of magnetic field

effects with frequency redistribution. This null result points in the direction

of a non-magnetic origin in terms of local inhomogeneities (varying collisional

depolarization, radiation-field anisotropies, and deviations from a plane-parallel

atmospheric stratification).

Subject headings: Line: formation - polarization - scattering - magnetic fields -

methods: semi-empirical models - Sun: atmosphere

1. Introduction

Coherent scattering on the Sun produces a linearly polarized spectrum that is as rich in

spectral structures as the ordinary intensity spectrum, but has an entirely different appear-

ance since the underlying physical processes are different (cf. Stenflo 2004a). This linearly

polarized spectrum, which goes under the name the “Second Solar Spectrum”, is modified

by magnetic fields via the Hanle effect. It allows aspects of solar magnetism to be explored,

which are not accessible by the Zeeman effect, in particular the vast amounts of “hidden”

magnetic fields that have been revealed by Hanle-effect observations (Trujillo Bueno et al.

2004, see also Stenflo 2004b).

The atlas of the Second Solar Spectrum (Gandorfer 2000, 2002, 2005) provides an

overview of the linear polarization in lines observed near the solar limb, from the UV at

3160 Å to the red at 6995 Å. The largest degree of linear polarization in the visible spectrum

is exhibited by the Ca i 4227 Å line. Spatial variations of the linear polarization in the line

core due to the Hanle effect have been observed in regions with variable magnetic fields.

Specropolarimetric measurements in this line can be used to explore the magnetic field in

the mid chromosphere (Bianda et al. 1998a,b).

Recent observations by Bianda et al. (2003) in the Ca i 4227 Å line have revealed enig-

matic behavior of the line wing polarization. These observations were made in active regions

with the spectrograph slit perpendicular to the solar limb. They showed for the first time

spatial variations of the linear polarization (Q/I and U/I) in the far wings of the line, in

contradiction with theoretical expectations. We will refer to this unexpected phenomenon
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as the “(Q/I, U/I) wing signatures”. This observation contradicts the long held standard

theory for the Hanle effect, according to which the Hanle effect should only be effective in

the line core but not in the line wings. The polarization is expected to approach the non-

magnetic Rayleigh scattering limit in the line wings (see Omont et al. 1973; Stenflo 1994;

Landi Degl’Innocenti & Landolfi 2004, for details). In the present paper we report further

such observations, this time done in quiet regions with the slit placed parallel to the nearest

solar limb. Again we find similar spatial variations in the line wings as seen before in active

regions.

Bianda et al. (2003) suggested a qualitative explanation for the observed (Q/I, U/I)

wing signatures in terms of partial frequency redistribution (PRD) and radiative transfer

(multiple scattering) effects in the wings of strong resonance lines. Thus, in a balanced

mixture of coherent and non-coherent scattering, it is possible to generate Hanle depolar-

ization in the wings as follows : Hanle precession of the oscillating dipole moment is first

generated near the resonance (in the line core), but gets shifted to a wing frequency by an

elastic collision without destroying the atomic polarization. The atom subsequently emits

the photon at the shifted frequency in the line wing. This process would be the source of the

(Q/I, U/I) wing signatures. Multiple scattering in the medium (due to finite monochromatic

optical depth in the wings of strong resonance lines) may enhance this effect. Nagendra et al.

(2002, 2003) showed through radiative transfer calculations that angle-dependent (AD) PRD

is more efficient in generating shallow (Q/I, U/I) wing peaks by this mechanism than the

angle-averaged PRD.

In the present paper we explore the above suggestions, using the last scattering approx-

imation (LSA) instead of full radiative-transfer modeling, which is sufficient for our purpose

of verifying the validity of the Hanle wing effect as an explanation of the observed wing

polarization variations. This leads us to the rather unexpected conclusion that the Hanle

effect cannot explain the observed wing effects, which suggests that the spatial variations of

the wing polarization have a non-magnetic origin. For the scattering theory we use the re-

cently developed Hanle-Zeeman angle-dependent PRD matrices for arbitrary magnetic fields

(Sampoorna et al. 2007a,b, see also Sampoorna et al. 2009).

In § 2 we present the observations of the (Q/I, U/I) wing signatures. § 3 describes

our theoretical model. The model fitting to the observed data is discussed in § 4, while the

conclusions are presented in § 5.
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2. Observations of the (Q/I, U/I) wing signatures

2.1. Data acquisition

Spectropolarimetric recordings of the full Stokes vector were obtained for the Ca i 4227 Å

line with the 45 cm aperture Gregory Coudé Telescope (GCT) at IRSOL (Locarno, Switzer-

land). The ZIMPOL-2 polarimeter system was used (Gandorfer et al. 2004), allowing highly

precise measurements that are free from seeing-induced spurious effects, with an accuracy

only limited by photon statistics. The observations were performed during the years 2005–

2007 over 27 days. In total 86 positions at different limb distances and at various latitudes

on the solar disk were recorded, with the spectrograph slit parallel to the limb (which de-

fines the positive Stokes Q direction). Dark frames as well as flat fields were recorded before

and/or after the observations. The polarimetric calibration and data reduction procedure

has been described in Gandorfer et al. (2004).

The instrumental polarization in the GCT is mainly a function of declination and can

be considered constant during a full observing day. Cross talk from Stokes I to the other

Stokes parameters is determined from flat field measurements in quiet regions at disk center.

Since in the present analysis we are interested in the linear polarization away from active

regions, we selected only regions where Zeeman-like signatures in the Stokes V/I images

are sufficiently small, so that the circular-to-linear polarization cross talk is negligible. We

note that the circular-to-linear cross talk reaches its maximum at the solstices and is always

smaller than 25% (Ramelli et al. 2005).

It was carefully checked that the observed small signatures in the linear polarization

were not of instrumental origin. To make sure that the observed signatures in the line wings

do not originate from differential efficiencies of the different pixel rows of the ZIMPOL CCD,

we alternated measurements by shifting the telescope image back and forth by 10′′ along the

spectrograph slit direction. This could be achieved with the help of the automatic guiding

system (Küveler et al. 2003).

2.2. Observational results

Spatially varying linear polarization structures in the wings (of Stokes Q and/or U) are

found in 46 observations out of 86, thus in approximately half of all our recordings. This

frequency of occurrence represents a lower limit, since non-optimum seeing conditions may

smear the features to make them disappear below the noise level. Our observations thus

show that such wing signatures (in Q/I and/or U/I) are a very common phenomenon that
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is likely to be seen in the great majority of cases if the recordings are made with high spatial

resolution. We illustrate in Fig. 1 a representative example of an observation obtained on 5

October 2007 near the heliographic north pole at about 5′′ inside the limb. The spectrograph

slit width was 125 microns, which corresponds to 1′′, and its length corresponded to about

170′′. The total exposure time was 225 s. A second measurement (not shown) taken with

the slit shifted by 10′′ along the limb (and the slit) direction confirmed that the signatures

were related to the solar positions and not to the position on the CCD.

The intensity image shows the broad Ca i line at 4226.74 Å with blend lines in the

wings. Due to the limb curvature, the largest limb distance from the slit position is reached

at around 85′′ from the image bottom, while at 0′′ and 170′′ the distance from the limb is

minimum. This explains the brightness variation in the intensity image along the spatial

direction.

The strong polarization signatures seen in Q/I are due to scattering polarization. They

occur both in the line core and wings, but decrease in amplitude in the very far wings.

At the locations of the blend lines in the intensity image we also see the depolarization

effects caused by these lines in the Q/I image (Fluri & Stenflo 2001). In the line core we see

spatial variations (along the slit) both in Q/I and U/I, which are caused by the Hanle effect

(Bianda et al. 1998a,b, 1999) in the presence of magnetic fields in the mid chromosphere.

The Q/I polarization in the Ca i 4227 line wings increases at the edges of the spectrograph

slit, since the edges are located closer to the solar limb. Narrow horizontal strips that can be

seen for instance in the interval 55′′ to 75′′ from the bottom of the Q/I image show enigmatic

‘depolarization signatures’ in the line wings, which we want to explore.

The U/I image shows features in the line core that are due to Hanle rotation of the

polarization plane. However, structures can also be observed in the line wings but at different

spatial locations than the line core features, i.e., in the intervals 20′′- 30′′, 40′′- 50′′, and 70′′-

80′′. We note that there are hardly any spatial correlations between the Q/I and U/I wing

signatures.

Figure 2 shows profiles averaged over different spatial intervals. In the top panel the

dot-dashed line represents the intensity profile, in arbitrary units, averaged over a 40′′ broad

interval around the middle of the spectrograph slit. The Q/I profile shown by the solid

line is obtained by averaging outside the interval where depolarization in the line wings is

observed, while the dashed line represents the profile obtained by averaging in the interval

between 55′′ - 75′′. The difference between the two averaged Q/I profiles is shown by the

∆(Q/I) line.

In the bottom panel of Fig. 2 the solid line represents the U/I profile averaged over the
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Fig. 1.— CCD images of the Stokes parameters recorded with the spectrograph slit parallel to

the limb (5′′ inside the limb). Note the depolarization signatures in the Q/I wings in the 55′′

- 75′′ spatial interval. Corresponding U/I wing signatures are seen at the same wavelength

positions, but at a different spatial location, for example in the 20′′ - 30′′ interval.
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Fig. 2.— Stokes I, Q/I, U/I, V/I profiles extracted from Fig. 1. The heliocentric angle

corresponds to µ = 0.1. Note the depolarization in the Q/I wings and the U/I signatures

at the corresponding wavelength positions. In the present paper we refer to them together

as the “(Q/I, U/I) wing signatures”.
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spatial interval 29′′- 40′′. Its shape resembles a negative version of the Q/I profile. Note

that the Stokes U/I wing signals of Figs. 1 and 2 cannot be due to the possibility that the

positive Stokes Q direction may not be exactly parallel to the nearest limb, because in that

case the wing polarization in U/I would simply be proportional to the wing polarization in

Q/I all along the slit, which is not the case. It is important to note that in our observations

the Q/I and U/I wing polarizations never vary in synchrony along the slit but have different

spatial structures.

The V/I profile represented by the dotted line is averaged in the interval where the

largest polarization amplitudes are seen (24′′- 45′′). Only very faint signatures can be seen

in the Fe i lines at 4225.46 and 4227.44 Å. The absence of large signals in V/I shows that we

are observing a solar region with very weak longitudinal magnetic field components.

3. Theoretical model

Quantitative modeling of the scattering polarization with the Hanle effect requires the

solution of the relevant radiative transfer problem. Such calculations have been done by

Faurobert-Scholl (1992); Faurobert et al. (2009, and references cited therein) and Holzreuter et al.

(2005, 2006), who use angle-averaged (AA) PRD. Extensive radiative transfer calculations

have also been done by Trujillo Bueno and co-workers (see Trujillo Bueno 2009, and refer-

ences cited therein) to model the scattering line polarization and the Hanle effect in terms of

the complete frequency redistribution (CRD) approximation, but taking into account atomic

level polarization in multilevel atomic systems.

For exploratory purposes we can avoid such full-scale radiative transfer modeling by

using semi-empirical approaches in terms of the last scattering approximation (LSA), which

has proven successful in the past (Stenflo 1982). In the present section we describe how LSA

in combination with the full redistribution matrix for arbitrary magnetic fields can be used

to model the Second Solar Spectrum. We illustrate this approach by applying it to the Ca i

4227 Å line observations presented in § 2.

One of the earliest works on modeling the linearly polarized solar spectrum with LSA

dates back to Stenflo (1980), where the observed Ca ii H and K line wing polarization that

exhibited a quantum-interference signature extending over about 200 Å was fitted. In a later

paper Stenflo (1982) extended the LSA concept to interpret Hanle polarization observations

of several spectral lines in terms of a micro-turbulent magnetic field, which allowed the

strength of the “hidden” tangled fields to be estimated for the first time.

In the present paper we extend this approach to the exploration of the Hanle effect for
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partially resolved magnetic fields, which produce signatures in both Q/I and U/I. In the

following subsections we revisit each of the important ingredients of Stenflo’s method, for

the purpose of clarity and completeness.

3.1. Last scattering approximation (LSA)

The concept of LSA is particularly useful in astronomical contexts where either (i) the

geometry is too complicated or (ii) the relevant transfer equation is difficult to solve com-

putationally. Recent applications of this concept in the modeling of scattering polarization

can be found in Faurobert & Arnaud (2002, modeling of molecular emission lines); Stenflo

(2005, modeling the solar continuum polarization); Belluzzi et al. (2007, modeling of the Ba

ii D2 line); and Frisch et al. (2009, Hanle scattering in random magnetic fields - where a

variant of the LSA idea is presented).

LSA exploits the fact that the polarization of the radiation that escapes the atmosphere

is mainly determined by the anisotropy of the radiation field at the place where the last

scattering process takes place. Since the polarization amplitudes in the lines are small, the

polarization of the incident radiation at the last scattering event can be neglected. In other

words, the emergent polarization is produced in a single scattering event (the very last one)

rather than through multiple scattering within the atmosphere.

In the practical application of this idea the most important limiting assumption is that

we base the radiation-field anisotropy that we apply to the single-scattering event, on the

observed limb darkening function which represents the top of the atmosphere. In reality most

of the observed photons originate from τ ≈ µ. This difference however becomes negligible for

extreme limb observations (µ → 0), for which the emergent radiation represents the topmost

layers of the atmosphere (τ ≈ 0). If frequency coherent scattering in the laboratory frame is

assumed, LSA allows us to write the emergent Q/I polarization for non-magnetic scattering

in a neatly factorized form:
Q

I
≡ P = W2,eff kG,λ(µ) kc, (1)

where µ = cos θ, with θ being the heliocentric angle (see Stenflo 1994). Here W2,eff is the

effective atomic polarizability factor, which is unity for the Ca i 4227 Å line, since it behaves

like classical dipole scattering. The blend lines on the other hand generally do not polarize,

which means that they have a W2 = 0. Their non-polarizing opacity therefore dilutes the

polarized Ca i 4227 line photons, making the “effective polarizability” W2,eff much smaller

than unity inside the blend lines. kG,λ(µ) is a geometric depolarization factor that depends

on the anisotropy of the radiation field, and the line of sight with respect to the local normal.
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It describes the depolarization caused by the angular integration over the incident radiation.

In practice this factor is determined from the observed center-to-limb variation (CLV) of

Stokes I (see § 3.2). kc is the collisional depolarization factor given by ΓR/(ΓR + ΓE), where

ΓR and ΓE are radiative and elastic collision rates.

3.2. Empirical determination of the anisotropy factor kG,λ(µ)

kG,λ(µ) can be determined using the observed limb darkening function, which is defined

as follows :

cλ(µ) ≡
Iλ(µ)

Iλ(µ = 1)
. (2)

However, what is actually observed is a series of unnormalized spectra b(µ)Iλ(µ), where b(µ)

is some arbitrary scaling factor that is different for each µ. To eliminate the arbitrary b(µ)

we normalize each spectrum to the continuum intensity. Since a true continuum is usually

not recorded, we choose a reference wavelength λref at which we are as close to the continuum

as we can be. Further we assume that the CLV at that reference wavelength is the same as

the CLV of the continuum, namely

Iλref
(µ)

Iλref
(µ = 1)

≈
Ic(µ)

Ic(µ = 1)
. (3)

The observed quantity that we have to work with is

Iobs,λ(µ) =
b(µ) Iλ(µ)

b(µ) Iλref
(µ)

, (4)

for each spectrum, so that b(µ) divides out. We can then write the limb darkening function

as

cλ(µ) =
Iobs,λ(µ)

Iobs,λ(µ = 1)

Ic(µ)

Ic(µ = 1)
. (5)

For the limb darkening function of the continuum around the 4227 Å line we use the following

analytical representation

Ic(µ)

Ic(µ = 1)
= 1 − a0,c − a1,c + a0,c µ + a1,c µ2, (6)

where a0,c and a1,c are fit parameters taken from Pierce (2000). The limb darkening function

cλ(µ) determined from the observed data is then fitted by the following function

fλ(µ) = 1 − a0,λ − a1,λ + a0,λ µ + a1,λ µ2. (7)
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Least squares fitting of cλ(µ) in terms of fλ(µ) gives us the values of the coefficients a0,λ

and a1,λ. It is important to note that the λref chosen should be kept the same for all the

recordings of Stokes I with different µ values.

For use with LSA we obtain the geometric depolarization factor kG,λ(µ) by multiplying

the Rayleigh phase matrix with an unpolarized Stokes vector (I, 0, 0, 0)T and integrating

over all the incoming angles. This gives (see Stenflo 1982, 2005)

kG,λ(µ) = Gλ(1 − µ2)/Iλ(µ), (8)

where

Gλ =
3

16

∫ +1

−1

(3µ′
2

− 1)Iλ(µ
′)dµ′. (9)

Note that our definition of Gλ differs from that of Stenflo (1982, 2005) only by a negative

sign. This sign change is made to account for the circumstance that the positive Q direction

in the theoretical calculations of scattering matrices is defined to be perpendicular to the

limb, while it is defined to be parallel to the limb in the observations. In Stenflo (2005) this

sign change has been made in the final expression for Gλ presented in that paper (see his

Eq. (31)). For convenience of our purposes, it is sufficiently accurate to assume that the

actual limb darkening (Iλ(µ)/Iλ(µ = 1)) can be represented by a parabolic type function

fλ(µ) as given by Eq. (7). This allows us to perform the integration in Eq. (9) analytically.

fλ(µ) is defined for the outwards hemisphere (positive µ) only. For the inwards hemisphere

(negative µ) it is assumed to be zero, which is a valid assumption at the surface (τλ = 0).

Thus we obtain

kG,λ(µ) =

(

3a0,λ

64
+

a1,λ

20

)

×
(1 − µ2)

1 − a0,λ − a1,λ + a0,λ µ + a1,λ µ2
. (10)

Notice that the determination of a0,λ and a1,λ and thus of kG,λ(µ) crucially depends on

the observed CLV of Stokes I. Hence we made a dedicated set of observations on January 10,

2009, to record the intensity spectrum with great precision at several µ positions. The slit

was oriented parallel to the geographic north pole and placed at different µ positions. Since

the intensity flat field of the detector in the spectrograph focus is very important for this

type of observation, we applied a careful flat-fielding procedure by combining images taken

while the telescope was moving in a random pattern around disk center and the spectrograph

grating position was unchanged, with images taken while the grating rotated to smear the

spectrum. The µ positions were calculated to a high degree of accuracy using three methods,

namely (i) the slit position calculated from the digitized slit jaw image, (ii) the slit position
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calculated from the guiding system (primary image guider; Küveler et al. 1998), and (iii)

the slit position calculated with the aid of the encoder system, giving the telescope position

in right ascension and declination. The various Iλ(µ) recordings were brought to a common

wavelength scale through interpolation, so that the wavelength position of all the blend lines

perfectly match for the different Iλ(µ) observations. Otherwise, due to small wavelength

drifts between the different Iλ(µ) recordings one can get spurious peaks in kG,λ(µ) due to

gradient effects in the vicinity of the blend lines.

Fig. 3.— Plot of the geometric depolarization or anisotropy factor kG,λ(µ) as a function of

λ for disk position µ = 0.1.

Fig. 3 shows a plot of the geometric depolarization factor kG,λ(µ) for µ = 0.1. It can also

be called ‘anisotropy factor’ as it is largely governed by Gλ (see Eq. (9)). The resemblance

of kG,λ(µ) to the Iλ(µ) spectra is very striking in the far wings. However, it also has a

distinctive shape in the core and wings of the Ca i 4227 Å line. The anisotropy factor has

a minimum in both the core of the main line and the cores of the surrounding blend lines.

It is largest in the line wings, where it reaches a nearly constant value. We note that our

anisotropy plot resembles the anisotropy curve J2
0/J0

0 shown as the solid line in Fig. 5 (right
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bottom panel) of Holzreuter et al. (2005) for the same line.

3.3. Atomic and atmospheric data

Ca i 4227 Å is a resonance line for which the lower level is the ground state, and the cou-

pling to other bound states of Ca i may be neglected (see Faurobert-Scholl 1992). Therefore

a 2-level model atom is a reasonably good approximation. The ( 1S0 →
1P1 →

1S0) scattering

transition produces a triplet line in the presence of strong magnetic fields. In weak fields

the partially split m-states coherently superpose (interfere) to give rise to the Hanle effect.

We take the required atomic data for this line from Faurobert-Scholl (1992). The radiative

width is ΓR = 2.18 × 108 s−1. The Doppler width is given by

∆λD =
λ0

c

√

2kT

Ma

+ v2
turb , (11)

where c is the speed of light, k the Boltzmann constant, Ma the mass of a Ca i atom. For

a temperature T = 6000K and a turbulent velocity vturb = 2kms−1, the Doppler width is

35.9mÅ. The corresponding damping parameter aR = ΓR/(4π∆νD) = 2.8 × 10−3.

3.4. Model for the non-magnetic scattering polarization

It is well known that strong resonance lines like Ca i 4227 Å can be modeled only when

PRD effects are taken into account. Therefore we need to use appropriate PRD matrices

in our LSA approach. The relevant expressions can either be taken from Domke & Hubeny

(1988), or computed from our Hanle-Zeeman theory with B = 0 (see Sampoorna et al.

2007a,b). Further we now need to generalize Eq. (1), which was formulated for frequency

coherent scattering in the laboratory frame by Stenflo (1982). The expression for the line

contribution to the linear polarization Q/I is given by

PQ,line =

∫

R21(λ, λ′, Θ) kG,λ′(µ) Iλ′(µ = 1) dλ′

∫

R11(λ, λ′, Θ) Iλ′(µ = 1) dλ′
. (12)

Here Ri1(λ, λ′, Θ) are the redistribution matrix elements for i = 1, 2. They depend on the

scattering angle

Θ = cos−1 [cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′)] , (13)

where (θ, φ) and (θ′, φ′) are respectively the outgoing and incoming ray directions with

respect to the atmospheric normal.
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The expression for PQ,line (i.e., Eq. (12)) can be justified as follows : According to LSA

the emergent polarization is produced by the last scattering event. The incident radiation is

unpolarized, so we only need to consider the single-scattering redistribution matrix elements

Ri1(λ, λ′, Θ) as done in Eq. (12). The angular integration over incoming angles is avoided

by applying the kG,λ′(µ) factor, which embodies the effect of the anisotropy of the incident

radiation field. Thus the matrix element R21 simply needs to be scaled with this factor

and integrated over all incoming wavelengths. Conceptually we have here decomposed the

angular integral into two parts. The first part consists of a unidirectional delta function

scaled with kG,λ′(µ). The second part is isotropic and vanishes on angular integration with

R21. Only the delta function contributes to the polarization.

When CRD is assumed, we have Ri1(λ, λ′, Θ) = H(∆λ′, a)H(∆λ, a)Pi1(Θ) where H(∆λ, a)

is the Voigt function (see below) and Pi1(Θ) are the non-magnetic Rayleigh phase matrix el-

ements (see for e.g., Stenflo 1994, for their expressions). Thus under CRD Eq. (12) becomes

wavelength independent and therefore is valid only in the line core (see § 4.1.2).

For the calculations presented in this paper, we choose cos θ = µ = 0.1, for which the

observations were made. For the scattering geometry we use cos θ′ = 1 and φ = φ′ = 0.

The collisional depolarization factor kc is self-consistently contained in R21 and R11 through

proper branching ratios. We use the angle-dependent PRD matrices for all our modeling

purposes, unless stated otherwise.

In order to model the observations we also need to take into account the contributions

of the continuum, namely the continuum opacity and the continuum polarization. They are

included in our model as follows :

Q

I
= S

[

PQ,line
H(∆λ, a)

H(∆λ, a) + C
+ Pc

C

H(∆λ, a) + C

]

. (14)

H(∆λ, a) is the Voigt function that describes the absorption probability for the Ca i 4227 Å

line, with damping parameter a given by

a =
ΓR + ΓI + ΓE

4π∆νD
= aR

[

1 +
ΓI + ΓE

ΓR

]

. (15)

Since the inelastic collision rate ΓI ≪ ΓE, we set ΓI = 0. For a given choice of ΓE/ΓR, the

free parameters of our model are S, C, Pc. The global scaling parameter S is adjusted such

that the amplitude of the modeled Q/I blue wing maximum agrees with the observed value.

Ideally S should be close to unity. Large departures from unity may be due to transfer effects

and/or collisional depolarization. The continuum opacity parameter C plays the dominant

role. It allows us to reproduce the overall shape of the observed Q/I in the near and far

wings of the Ca i 4227 line. In particular it determines the wavelength positions where the
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maximum wing polarization is reached, beyond which the polarization starts to decline again.

The continuum polarization Pc only determines the asymptotic shape of Q/I in the very far

wings and does not play an important role here. Pc is fixed by the asymptotic behavior of

Q/I far from the line center. From the atlas of Gandorfer (2002) we determine the ratio

robs = (Pc)obs/Pwing,max(4227). In our modeling we always choose Pc such that rmodel = robs.

The fitting procedure is as follows :

(1) Choose a given value of C.

(2) Choose a Pc that makes rmodel = robs.

(3) Find a value of S that makes (Q/I)wing,max of the model agree with the observed value.

Iterate (1) to (3) until the best fit is obtained. The fitting procedure is repeated for different

choices of ΓE/ΓR, so that we obtain S, C, and Pc as functions of ΓE/ΓR.

3.5. Model for magnetic scattering polarization

Assuming that the non-magnetic anisotropy factor kG,λ(µ) is still valid in the presence of

weak fields, we extend the model of § 3.4 to include the Hanle effect. We further assume that

the same kG,λ(µ) can be used for both Q/I and U/I. This implies that the decomposition

of the angular integral into a contribution from a unidirectional delta function scaled with

kG,λ(µ), while the rest represents isotropic scattering, is equally valid for both Q/I and U/I.

This is a reasonably good approximation, but we plan to test it in future work. Thus the

model U/I profile for the Hanle effect is given by

U

I
= SPU,line

H(∆λ, a)

H(∆λ, a) + C
, (16)

where

PU,line =

∫

R31(λ, λ′, Θ) kG,λ′(µ) Iλ′(µ = 1) dλ′

∫

R11(λ, λ′, Θ) Iλ′(µ = 1) dλ′
. (17)

Q/I is given by Eqs. (14) and (12), but now R21 and R11 contain magnetic field contributions.

For the scattering redistribution matrix elements Ri1 with i = 1, 2, 3 we use the Hanle-

Zeeman theory (see Sampoorna et al. 2007a,b), although we may also use approximation-II

of Bommier (1997). Note that in a plane-parallel atmosphere the continuum polarization

contribution to the U/I is zero. However, as shown by Trujillo Bueno & Shchukina (2009),

in a real 3D model atmosphere this contribution to U/I is actually a non-zero quantity

whose local value fluctuates in sign at the spatial scales of the horizontal inhomogeneities
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that produce symmetry breaking in the radiation field. The fitting procedure for the weak

magnetic field case is as follows :

(1) First the model parameters S, C, Pc for different choices of ΓE/ΓR are fixed by fitting

the Q/I observed in a quiet region (see § 3.4).

(2) For these fixed parameters we use the magnetic redistribution matrix to compute U/I

and Q/I for various choices of ΓE/ΓR and the vector magnetic field BBB parameters.

(3) We then explore which combinations of BBB and ΓE/ΓR best reproduce the observations.

4. Results and Discussion

4.1. Model fit of the non-magnetic Q/I

Using the procedure described in § 3.4, we fit the observed non-magnetic Q/I data

shown as the solid line in the top panel of Fig. 2. We recall that such a fit fixes the values

of the free parameters S, C and Pc.

4.1.1. Role of the geometric depolarization factor kG,λ(µ)

To illustrate the important role of the anisotropy factor kG,λ(µ) we present in Fig. 4

the model profiles computed using kG,λ(µ) determined from observations (solid line) and

computed with a flat kG,λ(µ) (dashed line). For the flat kG,λ(µ) we choose the value of non-

flat kG,λ(µ) at the wavelength of the Q/I blue wing peak, and keep it constant for all other

wavelengths. To compute the model profiles in Fig. 4 (solid and dashed lines) we have used

the collisionless PRD matrix (i.e., angle-dependent pure RII−AD type redistribution). The

free parameters obtained by the model fit are S = 0.325, C = 9.7 × 10−5, and Pc = 0.25 %.

Clearly the entire structuring of the Q/I model profile, with the minima around the Ca i

4227 Å Doppler core and the blend line depressions are all related to the kG,λ(µ) structure

(see Fig. 3). The blend line minima of the model profile (solid line) are less deep than in

the observed spectrum (dotted line). The main reason why the computed blend lines are

not sufficiently deep in Q/I is not due to kG,λ(µ) alone, but because we have disregarded

that the blend line opacities can have intrinsic polarizability W2 = 0 and thus dilute the Ca i

4227 line photons with unpolarized photons. We have chosen to ignore this property here,

to avoid introducing more free parameters and keep the model as simple as possible.
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4.1.2. The role of partial frequency redistribution

The use of frequency coherent scattering in the laboratory frame (static atoms) is physi-

cally incorrect due to Doppler redistribution. It can still be used as a good approximation in

the line wings, but becomes invalid in the line core. For a correct treatment we need partial

frequency redistribution (PRD).

In Fig. 5 we compare model profiles computed with different redistribution mechanisms.

The coherent scattering (CS) limit can for example be obtained from the general PRD

expression by choosing R = RCS = H(∆λ, a) δ(λ − λ′) as the redistribution function. The

angular dependence of the scattering process is then given by the non-magnetic Rayleigh

phase matrix. One can see in Fig. 5 that except in the line core, where CS differs greatly

from angle-dependent PRD (heavy solid line, which is the same as the solid line in Fig. 4),

pure coherent scattering (CS, dashed line) provides a good approximation at the Ca i 4227 Å

wing frequencies. In fact coherent scattering gives deeper minima in the blend lines than

PRD. This is because when C = 0 and Pc = 0, the model profile obtained with coherent

scattering exactly mimics the kG,λ(µ) spectrum, while PRD modifies it significantly in the

inner core of the Ca i 4227 line and also in the cores of the blend lines (because although

RII−AD has coherent peaks in the wings, such peaks are not exactly delta functions unlike

the case of pure coherent scattering and cause some broadening).

Fig. 5 also shows a model profile computed with the assumption of CRD (dot-dashed

line). We recover the CRD limit from the general expression by using R = RCRD =

H(∆λ′, a)H(∆λ, a) for the redistribution function. The shape of the model profile obtained

with CRD can be easily understood from Eqs. (14) and (12). In CRD the redistribution

matrix elements are R21 = 0.7425 RCRD, and R11 = 1.2425 RCRD (see eg. Nagendra 2003, for

the Rayleigh phase matrix expression). Thus PQ,line becomes wavelength independent and is

given by

PQ,line = 0.6

∫

H(∆λ′, a) kG,λ′(µ) Iλ′(µ = 1) dλ′

∫

H(∆λ′, a) Iλ′(µ = 1) dλ′
. (18)

Therefore the line contribution becomes constant at a value that is found to be 6%. The

shape of the CRD model profile is then entirely due to the factor H(∆λ, a)/(H(∆λ, a)+C) in

Eq. (14). As C ≪ 1, this factor is close to unity at line center, where we have (Q/I)∆λ=0 ≈

6 % × S. For the value of S = 0.325 derived from the best fit (obtained with PRD),

(Q/I)∆λ=0 ≈ 2 %. As we move away from the line center, the factor H(∆λ, a)/(H(∆λ, a)+C)

decreases monotonically, and there is no possibility of modeling the observed Q/I maxima of

the Ca i 4227 line anywhere in the line wings. We emphasize that it is not only the anisotropy

of the incident radiation field that governs the shape and magnitude of the wing maxima in

Q/I, but also a realistic redistribution mechanism, namely PRD.
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We also show in Fig. 5 a comparison between the model Q/I profile based on the

angle-averaged RII−AA (thin solid line) and angle-dependent RII−AD (heavy solid line) PRD

mechanisms. Both succeed well in modeling the wing peaks within our LSA framework. The

differences are noticeable only in the line core. The double peak in the line core has also

been seen in the radiative transfer modeling by Holzreuter et al. (2005), who use RII−AA.

Note that the same qualitative features of (Q/I)line−core that we have found here for different

line scattering mechanisms (CS, CRD, RII−AA, and RII−AD) may not be reproduced with the

same details in full scale radiative transfer modeling.

Comparison with the observed Q/I spectrum shows that LSA allows us to model the Q/I

wings extremely well. With LSA we can fit the envelope (above the blend line depressions) of

the observed Q/I. The line core of Ca i 4227 is however not modeled so well by LSA, although

correct qualitative features like the Q/I dips around the Doppler core are reproduced. This

is also the case after including the contribution from RIII−AD type scattering through the

introduction of elastic collisions (see below). This means that LSA does not work well enough

in the line core, and that one may need radiative-transfer physics to explain the core shape

of Q/I. This question is something we like to pursue in a future work by modeling the Ca i

4227 Å line with full radiative transfer, to allow us to clarify and identify what aspect of

radiative transfer is the source of the difference that we see in the line core.

The fit of the observations with the last scattering model leads to a scaling factor S of

32.5% rather than unity, which may be due to collisional depolarization, although radiative

transfer effects may also cause deviations from LSA. If the main contribution to the scaling

parameter S comes from elastic collisions, then the scaling parameter gives us an estimate

of the elastic collision rate ΓE. In the following section we discuss the effect of ΓE on the

model profiles, as it plays an important role in the modeling.

4.1.3. Role of elastic collisions ΓE

In the previous sections we considered only limiting cases of frequency redistribution,

namely frequency coherent scattering in the atomic frame (i.e., pure RII−AD in the laboratory

frame) and CRD. We now consider more realistic situations, where both types of scattering

may occur, i.e., a weighted combination of RII−AD and RIII−AD type scattering. The weights

are the branching ratios given by

A =
ΓR

ΓR + ΓI + ΓE
, (19)
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for coherent scattering (in the atomic frame – RII−AD type), and

B(K) =
ΓE − D(K)

ΓR + ΓI + ΓE

ΓR

ΓR + ΓI + D(K)
, (20)

which represents the fraction of the scattering processes for which the atom is subject to

elastic collisions that destroy the frequency coherence, but not the 2K-multipole atomic

polarization. Here D(K) is the rate of destruction of the 2K-multipole, with K = 0, 1, 2 (note

that D(0) = 0). As we are only considering linear polarization, only D(2) is relevant. D(2) is

related to ΓE through D(2) = constant × ΓE. The classical value of this constant is 0.5 (see

Stenflo 1994). Using an accurate form for the inter-atomic potential, Faurobert-Scholl et al.

(1995, see also Faurobert-Scholl 1996) estimate this constant to be 0.6 for the Ca i 4227 line.

In our modeling we therefore use D(2) = 0.6 ΓE.

For the Ca i 4227 Å line ΓE is due to collisions with neutral hydrogen (see Auer et al.

1980; Faurobert-Scholl 1992). The effect of ΓE on Q/I is to reduce the polarization at all

wavelengths, and thereby make the scaling parameter S become unity. Thus an increase in

the elastic collision rate ΓE causes a depolarization throughout the line profile. The effect of

D(2) is limited to the line core, where it is somewhat similar to that of ΓE, but it does not

affect the line wings, in contrast to ΓE.

With ΓE as a free parameter, we have determined by model fitting the parameters

S, C, Pc for different choices of ΓE. The combination of free parameters thus determined

are listed in Table 1. We note that as ΓE/ΓR increases, the continuum opacity parameter C

increases as well, and the scaling parameter S approaches unity. The continuum polarization

Pc remains nearly constant. Furthermore, introduction of elastic collisions improves the fit

to the observed Q/I spectrum, in particular around the red wing maximum, and also the

computed blend line minima become deeper as compared with the pure RII−AD model fit

(compare the solid lines in Figs. 4 and 6). For illustration we present in Fig. 6 an example

of a model fit obtained for ΓE/ΓR = 10.

4.2. An attempt to model the (Q/I, U/I) wing signatures

Next we try to model the U/I observation shown in Fig. 2 with the modeling procedure

described in § 3.5. Observations show wing maxima in the −U/I spectrum around 4226.2 Å

and 4227.2 Å, which correspond approximately to ±15 Doppler widths from the 4226.74 Å

line center. Note that the observed U/I spectrum happens to be negative in our present

recordings. In general U/I spectra of either sign are equally likely, as they are due to a

rotation angle that can be both positive and negative. In this paper we refer to the ‘−U/I
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spectrum’ to avoid confusion when we speak about polarization maxima in the line wings.

Ambiguity might arise if we would instead speak of wing minima in U/I, since the absolute

value of the polarization always has wing maxima in both the +U/I and −U/I cases.

The parameters required for the modeling are Hanle ΓB = geB/(2mΓR) in standard

notation, and (ϑB, ϕB) representing the orientation of a directed magnetic field, defined

with respect to the vertical direction in the atmosphere. The elastic collision rate ΓE is also

used as a free parameter. We recall that the parameters S, C, and Pc determined from the

non-magnetic model fit for a given choice of ΓE/ΓR (as listed in Table 1) are kept constant

when the magnetic field parameters are varied. In this way we have attempted to model the

observed (Q/I, U/I) spectra outside the so called “non-magnetic” regions, and at the spatial

locations where the (Q/I, U/I) wing signatures are seen.

4.2.1. Wing peaks of Q/I

The framework that has been developed in the previous sections for modeling the non-

magnetic Q/I can still be used in the magnetized case with the modifications described

in § 3.5. For the purpose of discussion we introduce a quantity ∆(Q/I) = (Q/I)mag −

(Q/I)non−mag, which is a measure of the depolarization caused by the combined effect of

magnetic and collisional depolarization that we get in PRD. In the top panel of Fig. 2 we

observe depolarization in Q/I (with respect to the non-magnetic Q/I), not only in the line

core, but also in the wings (compare the solid and dashed lines in that figure). To model

these observations (the dashed line in Fig. 2), we varied the field parameters (ΓB, ϑB, ϕB)

and the elastic collision strength ΓE/ΓR. Our study shows that with the choice of pure

RII−AD to represent the PRD mechanism we do not get any wing depolarization (∆(Q/I) ≈

0), regardless of the choice of the field parameters. However, when we introduce elastic

collisions we find that for an optimum choice of the combination (ΓB, ΓE/ΓR), we do get wing

depolarization (∆(Q/I) 6= 0) in Q/I. Let us next discuss briefly a few interesting aspects of

this study. All the tests have been made for the field strength range 0.3 ≤ ΓB ≤ 10.

In the line core ∆(Q/I) decreases towards zero as ΓE/ΓR increases. This shows that

for large values of ΓE/ΓR the effect of collisional depolarization dominates over the effect

of magnetic depolarization in the line core. In the line wings ∆(Q/I) ≈ 0 when ΓB < 3.

For 3 ≤ ΓB ≤ 10 the wing signature ∆(Q/I) initially increases slowly with ΓE/ΓR, and

then decreases towards zero with a further increase of the collision strength. For example,

when (ΓB, ΓE/ΓR) = (10, 10) we observe Hanle depolarization that extends into the wings

as shown in Fig. 7 (compare the heavy solid and the thin solid lines), but no wing peaks

are obtained in ∆(Q/I) that is represented by the dashed line. If we further increase ΓE/ΓR
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(say to 100), then ∆(Q/I) vanishes in the line wings and becomes almost zero also in

the line core, implying that the collisional depolarization effect again dominates over the

magnetic depolarization effect. These two competing effects together decide the extent of

depolarization in the wings.

4.2.2. Wing peaks of U/I

Our modeling efforts turn out to be unsuccessful in reproducing the observed wing max-

ima in −U/I, contrary to our expectations. We expected that the elastic collisions play a

significant role in transferring the Hanle effect from the line core to the line wings without de-

stroying the atomic polarization (Nagendra et al. 2003; Bianda et al. 2003; Sampoorna et al.

2007b). This expectation is satisfied to some extent for Q/I for an optimum choice of the

parameter pair (ΓB, ΓE/ΓR), but even in this optimized case we fail to reproduce the wing

maxima that are observed in ∆(Q/I). In the case of U/I we find that for ΓB < 3 the ampli-

tude of U/I in the line core gradually decreases when ΓE/ΓR increases, but correspondingly

no wing peaks appear at all. For 3 ≤ ΓB ≤ 10, U/I in the line core initially increases

slightly with ΓE/ΓR but then decreases with the further increase in the collision strength.

Again no wing peaks appear. Variations of the magnetic field parameters also do not help to

reproduce the U/I wing peaks (like they failed to reproduce the ∆(Q/I) wing peaks). The

line core peak in U/I on the other hand sensitively responds to variations of all the above

free parameters, in a manner that is well understood (Nagendra et al. 2002).

5. Conclusions

In the present paper we have developed a simple framework based on the last scatter-

ing approximation (LSA) to model the Second Solar Spectrum. This approximation gives

excellent fits to the linear polarization that is observed in the wings of spectral lines, as

demonstrated for the case of the Ca i 4227 Å line. However, fitting the line core polariza-

tion may require the solution of the polarized radiative transfer equations (including PRD),

at least for strong resonance lines. The most important quantity in our modeling is the

anisotropy factor kG,λ(µ), which we determine from the observed center-to-limb variation of

the Stokes I spectrum. The detailed wavelength variation of the limb-darkening function

plays a fundamental role and is responsible in particular for the occurrence of Q/I minima

that surround the core region and separates it from the wing maxima. Another key ingre-

dient is the appropriate partial frequency redistribution matrix to be used. The detailed

validity range of the last scattering approximation (extent of its applicability in the line
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cores of strong lines and throughout the line profiles in the case of weak lines) needs to be

explored by benchmark tests with full scale radiative transfer, before the diagnostic potential

of this approach can be fully exploited.

We have applied the LSA framework to explore the question whether the observed

spatial variations in the Q/I and U/I wings of the Ca i 4227 Å line may be explained in

terms of the Hanle effect, which usually is confined to the Doppler core of spectral lines

but could in principle become active in the far line wings through frequency redistribution

mediated by elastic collisions. Such Hanle-like wing signatures were noticed for the first time

in active regions by Bianda et al. (2003), but in the present paper we report observations

showing that these wing signatures are present in quiet solar regions as well. Our attempts to

model these (Q/I, U/I) wing signatures failed to reproduce them. Both the ∆(Q/I) profile

of the Q/I spatial variations and the −U/I profile are observed to have maxima in the wings,

similar in shape to the Q/I non-magnetic profile. However the ∆(Q/I) and −U/I modeling

failed to retrieve this property, although we searched the whole parameter space of collision

rates and magnetic-field parameters.

This null result appears to rule out a direct magnetic-field origin (via the Hanle effect)

of the observed spatial variations of the scattering polarization in the line wings, in con-

tradiction to earlier suggestions (Nagendra et al. 2003; Bianda et al. 2003; Sampoorna et al.

2007b), at least within the framework of the currently available PRD theory. This points

in the direction of a non-magnetic interpretation, which may include local deviations from

a plane-parallel stratification (see Manso Sainz & Trujillo Bueno 1999, for some information

on the possible effects) with an inhomogeneous solar atmosphere containing “hot spots” (see

Holzreuter & Stenflo 2007, who used this mechanism to interpret the Q/I and U/I fluc-

tuations seen abundantly in the Ca K line). The local density inhomogeneities may also

cause significant fluctuations of the collisional depolarization rate. Detailed analysis of these

possibilities is outside the scope of the present paper, but such alternative interpretations

clearly need to be explored. Ideally one would like to do 2-D mapping of the Stokes vector

(rather than work with single slit positions) with high spatial resolution to map the polariza-

tion signatures together with the intensity structures to examine whether the non-magnetic

interpretation is viable.

The non-magnetic interpretation is not without its own problems. Thus with a simple-

minded model for spatially varying deviations from a plane-parallel stratification one would

expect a spatial correlation between the line wing fluctuations seen in Q/I and U/I, but such

a correlation seems to be weak or nearly absent in our observations. This indicates that the

3-D atmospheric structuring that one would need is more complex, and that we may have to

consider a mixture of geometry and collisional effects. It is important to quantify how much
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the atmosphere deviates from a plane-parallel stratification in lines of various strengths, and

how these deviations are spatially structured, and coupled to the opacity structure within

the line as we move from the core to the wings of the line. While this is a challenging

problem, it is within reach with the new generation of observing facilities that are becoming

available. The problem can also be approached by numerical simulations to generate 3-D

atmospheric models, and then use 3-D radiative transfer to compute the linearly polarized

line profiles that emerge from this atmosphere (e.g., as done by Trujillo Bueno et al. 2004;

Trujillo Bueno & Shchukina 2007, for the Sr i 4607 Å line assuming CRD). Such a project

for the Ca i 4227 Å line for which PRD effects are important would be extremely demanding

on computing resources, but it is something that also will soon be within reach.
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Fig. 4.— Role of kG,λ(µ). The solid line is the model profile computed using pure RII−AD type

redistribution and kG,λ(µ) determined from observations. The dotted line is the observed

Q/I in the non-magnetic region (same as the solid line in the top panel of Fig. 2). The

dashed line is the model profile computed using pure RII−AD type redistribution but with a

flat kG,λ(µ) = 0.112 for all wavelengths. The free parameters obtained from the model fit

are S = 0.325, C = 9.7 × 10−5 and Pc = 0.25 %.
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Fig. 5.— Role of PRD. The heavy solid and dotted lines are the same as in Fig. 4. The

dashed line is the model profile computed with frequency-coherent scattering (CS), while

the dot-dashed line is computed assuming CRD. The thin solid line is the model profile with

RII−AA, while the heavy solid line has been computed with RII−AD.
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Table 1: The free parameters S, C, Pc determined from the model fit for different choices of

ΓE/ΓR.

ΓE/ΓR S C Pc (%)

0 0.325 9.7E-5 0.25

0.5 0.345 1.5E-4 0.25

1 0.38 2.2E-4 0.25

2 0.43 3.5E-4 0.25

3 0.485 5.0E-4 0.25

5 0.67 1.0E-3 0.23

10 1.00 2.1E-3 0.13

Fig. 6.— Model fit obtained for ΓE/ΓR = 10 (solid line). The dotted line is the observed

Q/I. Note how well the observed Q/I wings are fitted by the computed model profile.
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Fig. 7.— Attempt to model the (Q/I, U/I) wing signatures. The observations (dotted

lines) shown here correspond to the “magnetic observations” presented in Fig. 2. In the

Q/I panel the heavy solid line represents the magnetic model profile, the thin solid line the

non-magnetic model profile, and the dashed line their difference. In the U/I panel the solid

line represents the magnetic model profile. The parameters used are (ΓB, ϑB, ϕB; ΓE/ΓR) =

(10, 90◦, 135◦; 10).


	Introduction
	Observations of the (Q/I,U/I) wing signatures
	Data acquisition
	Observational results

	Theoretical model
	Last scattering approximation (LSA)
	Empirical determination of the anisotropy factor kG,()
	Atomic and atmospheric data
	Model for the non-magnetic scattering polarization
	Model for magnetic scattering polarization

	Results and Discussion
	Model fit of the non-magnetic Q/I
	Role of the geometric depolarization factor kG,()
	The role of partial frequency redistribution
	Role of elastic collisions E

	An attempt to model the (Q/I,U/I) wing signatures
	Wing peaks of Q/I
	Wing peaks of U/I


	Conclusions

