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The image t(x) of an object distribution q(x) is given by the convolution equation

[ce]

1(x) = px-y)q(y)dy,

where p(x) is the known response of the imaging system to a point object. This cquation occurs frequently in many
branches of physics and astronomy. One has to restore ¢(x) from a set of noisy data r(xy,), m==1, 2......N. The restora-

tion is complicated hecause the solution is not unique and is also sensitive to the noise present in the data. From the
Fourier transform of the equation (R (u)-=P(u) Q(n), where capital letters denote Fourier transform), it can be seen that
the equation contains no information on Q(u), in the region where P(u) vanishes, as happens for all apertures of finite size
beyond a critical frequency or for missing frequencies in the case of interferometers. Conventional methods assume Q(u)
also to be zero when P(u) vanishes to arrive at the *“ smoothest ” possible solution agreeing with the data (the ““ principal
solution ** introduced in Bracewell and Robetts 1954). This has two limitations : (a) the resolution is limited as informa-
tion is suppressed beyond the critical frequency ; and (b) the sharp cut-off in P(u) introduces spurious negative values
(sidelobes) in the restored distribution. The latter, in fact, is a violation of our prior knowledge that (x), being usually
an intensity distribution across the obiject, is always positive. Improvement of the solution is possible only by considet-
ing information not present in the original equation, e.g. extrapolation of Q(u) beyond the critical frequency.  Positivenes
of q is an impottant prior information and extrapolation incorporating this feature is known to give an improved resolu-
tion (e.g. Biraud 1969). Moreover, the noise in the data is stochastic in nature and hence should be treated according
to statistical principles (e.g. Frieden 1972). These methods, however, involve nonlineat equations whose convergence
is difficult for noisy data.

. We tepott here a relatively simple and more general method, which gives a solution consistent with out prior
knowledge, patticularly the positiveness, and follows a statistical treatment (least squares method) for noise. We give
here a brief summary of the method and apply it for restoring brightness distribution of a radio source from lunar occul-
tation observations. Our results show considerable improvement over a conventional method (Scheuer 1962). Details
will be presented elsewhere. For simplicity, one-dimensional problem has been considered throughout.

By choice of a suitable integration formula, the integral equation is reduced to a system of algebraic equations
with integration being teplaced by a summation. There will thus be N linear equations in K unknowns qj, i==1, 2,.........K,

where g are the values of the object function sampled at discrete points.  These will be an ill-conditioned set of equations

whose realistic solutions can be obtained oaly by imposing smoothness of ¢ explicitly as a constraint (Phillips 1962).
Preferably, K is chosen to be less than N so that we have an over-determined system of equations. The initial solution
for our method is obtained by minimising a linear combination of two variances—the variance of residuals (difference

between computed and observed data) and that of the second differences Azqi of the solution (Phillips 1962 ; Twomey

1963). The solution, in the presence of noise, still retains a large number of unphysical negative values and hence we
optimise it by imposing positiveness as another constraint. For this, we minimize a linear combination of the vatiances
mentioned above and a weighted mean of the squares of those q; which were negative in the initial solution. The weights

are propottional to the square of the corresponding q; from the initial solution. This needs changing only the diagonal
elements of the normal equation matrix. The solution thus obtained is improved in the next iteration in a similar way.

This simple procedure, involving only linear equations to solve, was found to bs quite efficient in enforcing posi-
tiveness on the solution. The convergence is rapid, needing only two or three iterations for most cases. The tesolution
is significantly improved over the initial solution.

As a test of the metit of this method, we have analysed computer simulations of lunar occultation of a radio source
at 327 MHz (operating frequency of the Ooty radio telescope). In this case, p(x) is the Fresnel diffraction pattern of a
point source due to a straight edge. The soutce was chosen to have a Gaussian distribution (amplitude=2.5, and half-
power width=1 arc sec), and noise was superposed on the data by taking random numbers distributed normally with
unit rms. A total of 32 statistically independent simulations so obtained were analysed with the conventional Scheuer’s
method (Scheuer 1962) and also with the Optimum Deconvolution Method (ODM), described above. The results are
summarized in Table 1. We have also tabulated, for comparison, the expacted uncertainties in the source parametets
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Table 1

Analysis of 32 independent noisy occultation data

ODM Scheuet’s method**
Parameter True value
' Value tms Value rms expected
tms
Size (atc sec) 1.00 1.08 0.38 0.98 0.87 0.86
Flux © 2.65 2.45 0.32 2.96 0.40 0.34
Position - 0.00 0.02 0.26 -0.01 0.22 0.24

#¥ Size in Scheuer’s method is obtained as v B2 - B2 , where B, = 2 atc sec is the tesolution employed,
and B = 2".23 4 0".51 is the value obtained for the mean total size in our expetiments.

obtained in Scheuet’s method. These are calculated according to formulae given in von Hoerner (1964), where our data
correspond to a qy=5.3, q, being the signal-to-noise ratio when the data are avera ged over a block of 1 arc sec. Our

results for Scheuer’s method agree with the formulae for rms errots given by von Hoetner.

Table 1 shows that the acuracy of angular size obtained by our method is markedly superior to that given by the
conventional method. This has been achieved without losing accutacy in any other parameter.For 2 q, = 5.3, we

have restored a size of 1 arc sec with an rms error of 35 per cent of the mean, whereas tl:m minimum si_ze for whic_:h
accuracy is possible in Scheuer’s method is about 2 arc sec (according to von Hoerner’s equations). There is thus a gain
in resolution by almost a factor of two for q,=>5. Inaddition, since it is implicitly assumed in our method that all the

noise is present in the data and not in the solution, the restored output is contaminated by noise to a less extent than in
conventional methods. This may lead to a more objective interpretation in solutions heavily limited by noise.

The above example from lunar occultation is only illustrative ; the method is applicable to any convolution pro-
blem. The results may be improved somewhat by using statistical criteria supetior to the least squares method. How-
ever, the present method has the advantage that sll the equations to be solved are linear.

The author is indebted to Professot G. Swarup for the many helpful discussions during the course of this work
and Mr. V. K. Kapahi for going through the manuscript. _
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