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Abstract. The solar coronal plasma is highly structured in the magnetic
field, density and temperature. This plays a crucial role in the theory of MHD
oscillations. In this study, we model a coronal loop to be made up of a cylindrical
tube of constant cross-section. However, the magnetic field, the pressure and
density are assumed to be different both inside and outside the tube. The
tube admits modes such as sausage (symmetric), kink (asymmetric), surface
and body modes. The dispersion relation of the modes for a cylindrical tube
which is compressible, infinitely conducting with uniform flows inside the tube is
derived. Limiting cases are discussed briefly. The phase speed of the kink mode
can be used as a diagnostic for determining the magnetic field of the corona. For
different values of the coronal parameters, the magnetic field varies from a few
Gauss to 25 Gauss.

1. Introduction

There have been several studies on MHD waves in the corona in the context
of coronal heating and acceleration of the solar wind, both theoretically as well
as from an observational point of view. These waves also play an important
role in the solar-terrestrial connections. Observations of MHD oscillations and
waves have been done in almost all possible bands in the past few decades, in
particular radio pulsations (Aschwanden 1987; Aschwanden et al. 1999).

Significant progress in MHD wave theory has been made in the recent past
(see reviews of Roberts 2000; Nakariakov 2003). The discussion of other aspects
of coronal oscillations and waves can be found, in particular, in wave theory
(Goossens 1991), observations (Aschwanden et al. 1999) and prominence oscil-
lations (Oliver 1999).

2. The Model

The coronal loop is assumed to be a straight cylindrical tube, as a first ap-
proximation (Roberts, Edwin, & Benz 1984; Nakariakov & Ofman 2001). The
plasmas inside and outside the tube are assumed to have different densities,
magnetic field (though uniform), which are compressible, infinitely conducting.
We assume a uniform flow ‘U0’ of the plasma inside the tube of radius ‘a’ as
shown in Fig. 1. The effect of flows on the nature of kink oscillations is one of
the main aim of this study.
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Figure 1. The Model.

3. Dispersion Relation

The equations of motion governing the electromagnetic and hydrodynamic prop-
erties of a compressible, infinitely conducting and moving plasma inside the
cylinder of radius ‘a’ is linearized using the normal mode approach to derive the
dispersion relation. The wave equation for the total pressure (gas pressure +
magnetic pressure) is derived by algebraic simplifications.

For the modes that vary as

f(r, φ, z, t) = f̂(r) exp[i(kz + lφ− ωt)] (1)

where k is the axial wavenumber, l is the azimuthal wavenumber and ω is the an-
gular frequency, it can be shown that the radial dependence of the flow variables
satisfies the Bessel differential equation. By simple algebraic simplifications, the
dispersion relation can be shown to be (Satya Narayanan 1990)

ρ0[Ω2 − k2C2
A0]me + ρe[ω2 − k2C2

Ae]m0Fm(m0,me, a) = 0 (2)

where Ω = ω − k U0 is the Doppler-shifted frequency and

Fm(m0,me, a) =
Km(mea)I ′m(m0a)
K ′

m(mea)Im(m0a)
, (3)

m2
0 =

(k2C2
s0 − Ω2)(k2C2

A0 − Ω2)
(C2

s0 + C2
A0)(k2C2

T0 − Ω2)
, (4)

m2
e =

(k2C2
se − ω2)(k2C2

Ae − ω2)
(C2

se + C2
Ae)(k2C2

Te − ω2)
. (5)

Here Cs0 and Cse are the sound speeds inside and outside the tube, respectively.
CA0 and CAe are the Alfvén velocities inside and outside the tube while CT0 and
CTe are the tube speeds, respectively.

3.1. Limiting Cases

In the absence of a basic flow U0 = 0, which implies Ω = ω, the dispersion
relation reduces to (Roberts et al. 1984; Nakariakov & Ofman 2001)

ρ0[ω2 − k2C2
A0]me + ρe[ω2 − k2C2

Ae]m0Fm(m0,me, a) = 0. (6)
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Figure 2. The behaviour of Fm(ka) for different values of ka.

The expression for m2
0 is modified accordingly, with Ω being replaced by ω.

In the absence of a magnetic field (B01 = B02 = 0), the dispersion relation
with l = 0 reduces to

ρ0Ω2me + ρeω
2m0Fm(m0,me, a) = 0. (7)

For an incompressible flow, Cs0 and Cse →∞ so that m2
0 and m2

e → k2. In this
case, the dispersion relation can be solved analytically (Somasundaram & Satya
Narayanan 1987) with

Fm(m0, me, a) = Fm(ka). (8)

Here

Fm(ka) =
Km(ka)I ′m(ka)
K ′

m(ka)Im(ka)
. (9)

The behaviour of Fm(ka),m = 0,±1 for ka → 0 and ∞ is shown in Fig. 2.

ω

kVA0
=

V ± [(1 + ηF0(ka))(1 + α2F0(ka))− V 2ηF0(ka)](1/2)

[1 + ηF0(ka)]
(10)

where α = B02/B01, V = U0/CA0 and η = ρe/ρ0.
In the limit ka → 0, the above equation reduces to

ω

kCA0
= V ± 1. (11)
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It follows that for values V ≤ 1, there exists only one positive value for ω/kCA0.
For V > 1, there are two branches. In the limit ka → ∞, F0(ka) → 1 so that
Eq. (10) reduces to

ω

kCA0
=

V ± [(1 + η)(1 + α2)− V 2η](1/2)

(1 + η)
. (12)

For U0 = 0 and a → ∞, the cylindrical geometry reduces to the case of an
infinite fluid with a single interface. In this case the dispersion relation is given
by

ψ1(ω, k)(m2
e + l2)1/2 + ψ2(ω, k)(m2

0 + l2)1/2 = 0 (13)

where
ψ1,2(ω, k) = ρ01,2(k2C2

A1,2 − ω2). (14)

4. Kink Oscillations with Flows

Assume the plasma β ¿ 1. The pressure balance condition is given by

p0 +
B2

0

2µ
= pe +

B2
e

2µ
. (15)

Define : α = ρe/ρ0, ε = U0/CA0, x = ω/kCA0. For low β plasma, it can be
shown that

m0 = k[1− (x− ε)2]1/2 = m∗
0 (16)

me = k[1− αx2]1/2 = m∗
e . (17)

The dispersion relation for low beta plasma with flow can be written as

[(x− ε)2 − 1](1− αx2)1/2 + α(x2 − 1)[1− (x− ε)2]1/2F (m∗
0, m

∗
e , a) = 0 (18)

F (m∗
0,m

∗
e , a) =

Km(m∗
ea)I ′m(m∗

0a)
K ′

m(m∗
ea)Im(m∗

0a)
. (19)

The above relation is highly transcendental and will have to be solved numer-
ically. However, for ka ¿ 1, one can show that F (m∗

0,m
∗
e , a) ≈ 1 so that the

dispersion relation would reduce to

[(x− ε)2 − 1](1− αx2)1/2 + α(x2 − 1)[1− (x− ε)2]1/2 = 0. (20)

The above dispersion relation will be solved for certain parametric values per-
taining to the corona in due course.

5. Coronal Magnetic Field

As an illustration, we use the results of Nakariakov & Ofman (2001) for deter-
mining the magnetic field. They had shown that in the limit ka ¿ 1, there are
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Figure 3. The magnetic field as a function of the density.
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Figure 4. The magnetic field when L is changed.

two kink modes, the slow and the fast with their respective phase speeds. They
argued that the magnetic field can be determined by the following formula :

B0 = (4πρ0)1/2CA0 =
√

2π3/2L

P

√
ρ0(1 + ρe/ρ0). (21)

Figure 3 shows the dependence of the magnetic field on the density for different
values of the kink speed. It is evident from Eq. (21) for determination of the
magnetic field B0 in the corona, that the strength of the magnetic field depends
on L (length between the foot points of the loop), P (the period) and the ratio
of the plasma densities. This puts a certain constraint on the determination
of the field accurately. However, one can deduce the strength if one has good
observations of L, P and the ratio of the densities. One can in principle assume
a certain density model and work out. Figure 4 shows the magnetic field when L
is increased, keeping the ratio of the densities and period to be the same. There
is a marginal increase in the magnetic field.

Ramesh et al. (2003) have presented metric observations of transient, quasi
periodic radio emission in association with a ‘halo’ CME and an ‘EIT’ wave event



300 Satya Narayanan et al.

to determine the strength of the magnetic field in the corona. We hope to use
the theory of kink oscillations to interpret some of our recent radio observations
to determine the magnetic field of the corona. The data analysis is being carried
out and will be reported later.
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